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Abstract: Accurate classification of tree-species is essential for sustainably managing forest 

resources and effectively monitoring species diversity. In this study, we used simultaneously 

acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne 

system to classify tree-species in subtropical forests of southeast China. First, each individual tree 

crown was extracted using the LiDAR data by a point cloud segmentation algorithm (PCS) and the 

sunlit portion of each crown was selected using the hyperspectral data. Second, different suites of 

hyperspectral and LiDAR metrics were extracted and selected by the indices of Principal 

Component Analysis (PCA) and the mean decrease in Gini index (MDG) from Random Forest (RF). 

Finally, both hyperspectral metrics (based on whole crown and sunlit crown) and LiDAR metrics 

were assessed and used as inputs to Random Forest classifier to discriminate five tree-species at two 

levels of classification. The results showed that the tree delineation approach (point cloud 

segmentation algorithm) was suitable for detecting individual tree in this study (overall accuracy = 

82.9%). The classification approach provided a relatively high accuracy (overall accuracy > 85.4%) 

for classifying five tree-species in the study site. The classification using both hyperspectral and 

LiDAR metrics resulted in higher accuracies than only hyperspectral metrics (the improvement of 

overall accuracies = 0.4–5.6%). In addition, compared with the classification using whole crown 

metrics (overall accuracies = 85.4–89.3%), using sunlit crown metrics (overall accuracies = 87.1–

91.5%) improved the overall accuracies of 2.3%. The results also suggested that fewer of the most 

important metrics can be used to classify tree-species effectively (overall accuracies = 85.8–91.0%). 
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1. Introduction 

Forests cover approximately 30% of total land area [1] and account for the majority of tree-

species on land [2]. They play a key role in providing ecosystem goods, mitigating climate change 

and maintaining biodiversity [3–5]. The subtropical forests occupy about 25% of the area of China 

with highly diverse and complex ecosystems, which are particularly important for protecting 

regional ecological environment and maintaining species diversity [6,7]. Accurate identification of 

tree-species is crucial for effectively managing forest resources and timely monitoring species 

diversity [8,9]. The precise acquisition of tree-species information is also important for forest 

disturbance assessments and carbon storage estimations [10,11]. Remote sensing technology can 

provide detailed abundant-spectral, continuous-spatial, and multi-temporal forest information, 

allowing for tree-species discrimination based on their spectral and structure signatures [12–14]. Due 

to the unique characteristics of remote sensing technique, such as quantitative spatially explicit 

information acquisitions and “wall-to-wall” observations, remotely sensed data have been used for 

tree-species classification in tropical, temperate and boreal forests [15–19]. 
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1.1. Background 

Hyperspectral data provide a large amount of continuous narrow bands with detailed spectral 

signatures that can be related to the spectrum features of different tree-species, and these 

relationships can then be used to classify tree-species [20,21]. Airborne hyperspectral imagery usually 

has a fine spectral and spatial resolution because the remote sensing platform (i.e., airplane) is usually 

operating in altitudes much lower than that of the space borne planforms [22,23]. As a result, airborne 

hyperspectral data have been used to identify tree-species in previous studies [24–29]. The tree-

species classifications using airborne hyperspectral data were mainly operated at the pixel and crown 

scale. At the pixel scale, tree-species identification is conducted using per-pixel classification 

approaches based on the spectral signatures of each pixel [30,31]. However, the noise, illumination 

and spectral variety within the tree crowns will negatively affect the classification results [32,33]. At 

crown scale, object-oriented approaches use tree crowns as classification units and will reduce the 

negative effects of spectral variability within pixels [34]. Clark et al. [15] found that the overall 

accuracy of tree-species classification at crown scale was 7% higher than accuracy achieved at pixel 

scale. Similarly, many studies also demonstrated that the tree-species classification at crown scale 

had higher accuracy than classification at pixel scale [35,36]. Moreover, the classification map at 

crown level can be linked to biophysical and biochemical properties of trees and applied to individual 

tree studies [37–39]. However, the illumination is non-uniform within tree crowns, which causes 

spectrum differences at illuminated and shaded parts. The spectral reflectance from sunlit portion of 

crown is dominated by first order scattering, and is better correlated with biogeochemical properties 

of canopy [40]. Therefore, the usage of sunlit portion spectra has benefits for tree-species 

classification. Feret et al. [13] divided the tree crown into sunlit part and shadow part when 

classifying 17 tree-species in tropical forests and found that tree crown classification with sunlit part 

produced 1.6% higher overall accuracy than in the case of whole crown. Clark et al. [15] classified 

seven tree-species in a tropical forest and found that the overall accuracy of classifier using sunlit 

spectra was 4.2% higher than using whole crown spectra. The hyperspectral metrics, formulated 

using bands from visible (VIS) to near-infrared (NIR), depend upon the pigments, structure and 

physiology of each crown and have potentials for identifying tree-species [41,42]. In general, the 

derivatives of reflectance from the vegetation were considered to be related to the content of 

chlorophyll, nitrogen and phosphorus of tree crowns [43,44]. Moreover, the vegetation indices such 

as Carotenoid Reflectance Index (CRI) and Anthocyanin Reflectance Index (ARI) were utilized to 

discriminate the differences of canopy pigments content and structure at individual tree level [45,46]. 

Fagan et al. [47] used vegetation indices extracted from hyperspectral date to classify six tree-species 

and three general forest-types in the forest of northeastern Costa Rica, and the producer’s accuracies 

were higher than 75%. Jensen et al. [29] used hyperspectral metrics such as band means, band ratios 

and vegetation indices to classify 500 tree-species in urban forest, which achieved the overall accuracy 

of 91.4%. Moreover, Clark et al. [20] used suits of hyperspectral metrics including derivative, 

absorption and vegetation indices to classify seven tree-species in tropical rainforest, and the overall 

accuracies were 70.6% at crown scale. Nevertheless, the hyperspectral data are restricted to the 

horizontal information and generally limited in quantifying vertical structure of forest [23]. 

Light Detection and Ranging (LiDAR) provides three dimension information of forest-canopy-

structure and can be used for extracting forest-structure parameters [48,49]. Using the three 

dimension point clouds of LiDAR data, tree crowns can be delineated with algorithms applied to 

canopy height model (CHM) or point clouds directly [50–53]. The differences of canopy-vertical-

structure between tree-species (i.e., tree heights, branch patterns and foliage distributions) provide 

an opportunity to classify tree-species using LiDAR data [14]. LiDAR metrics such as height 

percentiles, canopy-return-density and pulse-return-intensity have been applied to describe vertical 

structure of individual trees and classify tree-species [54–57]. Ørka et al. [57] used the metrics of 

height percentiles and canopy-return-densities individually to classify tree-species of Norway spruce 

(Picea abies L.) and Birch (Betula sp.), to obtain 74% and 77% overall accuracies, respectively. Liu et al. 

[58] used the point clouds metrics including height percentiles and variation of point height to classify 

15 urban tree-species, and the overall accuracy of classification was 61%. Vaughn et al. [59] utilized 



Remote Sens. 2017, 9, 1180  3 of 24 

 

the metrics of point distribution and return intensity to identify five tree-species in the Pacific 

Northwest United States, which resulted in 79.2% overall accuracy. The LiDAR metrics related to 

canopy-vertical-structure have been proven beneficial for tree-species classification in numerous 

studies [60,61].  

The combined usage of airborne hyperspectral and LiDAR data provides both spectral and 

structure information of tree crowns. Many studies have shown potentials of the combined data in 

improving accuracy of tree-species classification. For example, Jones et al. [23] fused hyperspectral 

and LiDAR data to classify 11 tree-species in a temperate forest, compared with classification using 

only hyperspectral imagery, the increases of producer’s accuracies were 5.1–11.6%. Dalponte et al. 

[62] combined the LiDAR data with hyperspectral data for 23 tree-species classification in the Po 

Plain, and the kappa accuracy was increased from 87.9% to 89.0% when using couples of 

hyperspectral and LiDAR metrics. In addition, Alonzo et al. [63] coupled hyperspectral and LiDAR 

data for 29 urban tree-species classification and achieved higher overall accuracy (+4.2%) than 

utilizing hyperspectral data alone. For individual tree-species classification, the combinations of two 

datasets had come from the addition of LiDAR structure metrics such as tree height percentiles and 

variation of point distribution [58,63]. On the other hand, the accurate tree crowns delineated from 

CHM or point clouds using segmentation algorithms may improve tree-species classification 

accuracy indirectly [64,65]. 

However, many of the previous studies related to hyperspectral- and LiDAR-based tree-species 

classification were conducted using single type of the data (e.g., [13,14,61,66]). Moreover, the tree-

species classification used combined hyperspectral and LiDAR data were mainly implemented in 

tropical, temperate and boreal forests [13,19,20,23], and the published studies from subtropical forest 

are few. In addition, most of the previous studies undertook tree-species classification at crown scale, 

where it is assumed that the variances of spectra within species is low at crown scale [20,36]. 

However, the shadows induced by the crown components (e.g., leaves, branches and trunk) may lead 

to more spectra variances between tree crowns [67,68].  

1.2. Objectives 

In this study, simultaneously acquired airborne hyperspectral and LiDAR data were used to 

delineate and classify tree-species in subtropical forests. Individual tree crown was extracted using 

point cloud segmentation algorithm (PCS) by the LiDAR data. Then, tree crown-based hyperspectral 

metrics extracted from the whole crown and sunlit crown (the portions of crown that solar radiation 

reach directly [69,70]) were compared and combined with LiDAR metrics to classify five tree-species 

within the study site using the Random Forest algorithm. The main objectives of this paper are: (1) to 

assess the synergetic effects of combining hyperspectral and LiDAR-derived metrics for classifying 

five tree-species in two levels in the subtropical forests; and (2) to investigate the most important 

metrics for tree-species classification (using mean decrease in Gini index from the Random Forest 

algorithm) and evaluate the classification accuracies. 

2. Materials and Methods  

A general overview of the technique route for tree-species classification is shown in Figure 1. 

First, the hyperspectral raw data were preprocessed to minimize the impacts of atmospheric 

interference and terrain distortion. Second, four sets of metrics (raw bands, first derivative bands, 

second derivative bands and vegetation indices) were calculated and subsequently selected using 

principal component analysis (PCA). Third, each individual tree crown was extracted using point 

cloud segmentation algorithm (PCS) by the LiDAR data after de-noising and filtering, and then sunlit 

portions in each crown were selected from hyperspectral data. Finally, the LiDAR metrics computed 

from discrete LiDAR data within crowns and the hyperspectral metrics in individual tree crown and 

in sunlit portions were utilized to Random Forest classifier to discriminate five tree-species at two 

levels of classification. 
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Figure 1. An overview of the technique route for tree-species classification using hyperspectral and 

LiDAR data. 

2.1. Study Site 

This study was conducted at Yushan Forest, a state-operated forest and national forest park, in 

the town of Changshu in Jiangsu Province, southeast China (120°42′9.4″E, 31°40′4.1″N) (Figure 2). It 

covers approximately 1103 ha, with an elevation ranging between 20 and 261 m above sea level. It is 

situated in the north subtropical monsoon climatic region with an annual precipitation of 1062.5 mm. 

The Yushan forest belongs to the north subtropical secondary forest, and it can be classified to 

coniferous dominated, broadleaved dominated and mixed forests [71]. The main coniferous tree-

species are Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Masson pine (Pinus massoniana 

Lamb.). The major broadleaved tree-species include Sweet gum (Liquidambar formosana Hance) and 

Sawtooth oak (Quercus acutissima Carruth.), mixed with Chinese chestnut (Castanea mollissima BL.).  

 

Figure 2. The location of study area in Yushan forest and the distribution of the plots of three main 

forest types: Coniferous dominated forest, broadleaved dominated forest and mixed forest. Left side 

is the orthophoto of Yushan forest and right side is the distribution of three types of plots. 
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2.2. Field Data 

In this study, inventory data of field plots were obtained from the forest survey (under a leaf-on 

condition). A total of 20 square field plots (30 × 30 m2) were established within the study site in August 

2013, guided by data from an existing pre-stratified stand inventory data (2012). These plots were 

designed to cover a range of species composition, age classes, and site indices, and can be divided 

into three types based on species composition: (i) coniferous dominated forest (n = 4); (ii) broadleaved 

dominated forest (n = 5); and (iii) mixed species forest (n = 11). The position of the center of field plots 

were assessed by Trimble GeoXH6000 GPS units, corrected with high precision real-time differential 

signals received from the Jiangsu Continuously Operating Reference Stations (JSCORS), resulting in 

a sub-meter accuracy [71].  

Individual tree within each plot with a diameter at breast height (DBH) larger than 5 cm was 

measured. The measurements included position, species, tree top height, height to crown base, and 

crown width in both cardinal directions. DBH was measured using a diameter tape for all trees. The 

calculation of position was based on the direction and distance of trees relative to the plot center. Tree 

top height was measured using a Vertex IV hypsometer. Crown widths were obtained as the average 

of two values measured along two perpendicular directions from the location of tree top. Moreover, 

the crown class, i.e., dominant, co-dominant, intermediate and overtopped, were also recorded. Since 

the intermediate and overtopped trees have little chance of being detected from above, they were 

excluded from the data analysis and classification. The statistics of the forest characteristics of three 

forest types are summarized in Table 1. 

Table 1. Description of the forest characteristics of three forest types. 

Forest Type 
Height (m) DBH (cm) Crown Radius (m) 

Percentage of Trees within 

Upper Classes (%) 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Dominant Co-Dominant 

Coniferous 9.80 1.84 15.59 3.96 1.45 0.51 20.6 46.1 

Broadleaved 11.92 2.02 18.32 5.61 2.40 0.67 10.7 43.7 

Mixed 10.18 2.23 16.85 9.36 1.91 0.81 14.4 42.1 

2.3. Remote Sensing Data 

The hyperspectral and LiDAR data were acquired simultaneously by the LiCHy (Hyperspectral, 

LiDAR and CCD) Airborne Observation System [72] which was operated at 900 m above ground 

level with a flight path covering the entire Yushan Forest. Hyperspectral data were obtained using 

AISA Eagle sensor with 3.3 nm spectral resolution. The data employed were already georeferenced 

by the data provider. LiDAR data were acquired using a Riegl LMS-Q680i scanner with 360 kHz 

pulse repetition frequency and a scanning angle of ±30° from nadir. The average ground point 

distances of the dataset were 0.49 m (within a scanline) and 0.48 m (between scanlines) in a single 

scan, and the pulse density was three times higher in the overlapping regions. The specifications of 

hyperspectral and LiDAR data are summarized in Table 2. 

Table 2. Specifications of hyperspectral and LiDAR data used. 

Data 
Date of 

Acquisition 
Sensor  

Flight 

Altitude 
Spectral Range Bands 

Spatial 

Resolution 

Hyperspectral  17 August 2013 AISA Eagle 900 m 398.55–994.44 nm 64 0.6 m 

LiDAR 17 August 2013 RIEGL LMS-Q680i 900 m 1550 nm 1 >10/m2 

2.4. Data Pre-Processing 

The hyperspectral images were atmospherically corrected using the Empirical line model with 

the field reflectance spectra (dark and bright targets where each target recorded ten curves) obtained 

by ASD FieldSpec spectrometer (Analytical Spectral Devices, Boulder, CO, USA). Then, the 

background noise of LiDAR data was suppressed by de-noising process and smoothed by a Gaussian 

filter. A 0.5 m digital terrain model (DTM) and digital surface model (DSM) were created by 
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calculating the average elevation from the ground points and highest points within each cell, 

respectively, and the cells that contained no points were interpolated by linear interpolation of 

neighboring cells. The DTM of the study area was subtracted from the elevation value of each point 

to compute the normalized point cloud. Finally, the geometric corrections of the hyperspectral images 

were implemented with a nearest-neighbor interpolation using the DSM data to minimize terrain 

distortions and register hyperspectral data to LiDAR data. The number of ground control points 

(GCP) was more than 30 in the hyperspectral image of each plots (30 × 30 m2). The overall accuracy 

of geometric correction was higher than 0.25 m. 

2.5. Hyperspectral Metrics Calculation 

The spectral reflectance is important to classify tree-species because it can be applied to record 

the biophysical and biochemical attributes of vegetation such as leaf area index (LAI), biomass, and 

presence of pigments (e.g., chlorophyll and carotenoid) [73–75]. All bands (64 bands) including the 

area of visible, red edge and near infrared were chosen in this study.  

Derivative analysis is often used to enhance the target features and meanwhile weaken noises 

like illumination and soil background [76]. The first and second order derivatives are used most 

commonly. In this study, derivatives for metrics were extracted using reflectance data, and the first 

and second derivative bands (128 bands) were calculated.  

Hyperspectral vegetation indices have been developed based on specific absorption features that 

quantify biophysical and biochemical indicators best. Various narrowband vegetation indices 

calculated from hyperspectral image helped detect and map tree-species [19,20]. Here, a set of 20 

narrowband vegetation indices was calculated and summarized in Table 3. The definitions and 

references are presented below. 

Table 3. Vegetation indices that were used in the study with their respective formulas and the 

references. ρ is reference at a specific wavelength in nm. 

Vegetation Index Equation Reference 

LAI and canopy structure 

Simple ratio (SR)  798 / 679  [77] 

Normalized difference vegetation index 

(NDVI) 
798 - 679 798 + 679  [78] 

Enhanced vegetation index (EVI)           2.5 798 - 679 1 + 798 + 6 679 - 7.5 482  [79] 

Green normalized difference vegetation 

index (GNDVI) 
      798 - 553 798 + 553  [80] 

Modified red-edge normalized difference 

vegetation index (mNDVI705) 
       750 - 705 750 + 705 - 2 445  [81] 

Soil adjusted vegetation index (SAVI)    1.5 798 - 679 798 + 679 + 0.5     [82] 

Sum green index (SGI) a
GREEN  [83] 

Leaf and canopy pigments 

Carotenoid reflectance index 1 (CRI1)     1 / 510 - 1 / 550  [45] 

Carotenoid reflectance index 2 (CRI2)     1 / 510 - 1 / 700  [45] 

Anthocyanin reflectance index 1 (ARI1)     1 / 550 - 1 / 700  [46] 

Anthocyanin reflectance index 2 (ARI2)       800 1 / 550 - 1 / 700  [46] 

Green index (GI)  ( 798 553) - 1  [84] 

Chlorophyll index (CI)  ( 760 700) - 1  [85] 

Red edge index (REI)  ( 798 714) - 1  [84] 

Plant pigment ratio (PPR)       550 - 450 550 + 450  [86] 

Transformed chlorophyll absorption in 

reflectance index (TCARI) 
             3 700 - 670 - 0.2 700 - 550 700 670  [87] 
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Light use efficiency 

Photochemical reflectance index (PRI)    ( 531 - 570) ( 531 + 570)  [88] 

Photochemical reflectance ratio (PRR)  531 570  [89] 

Red green ratio index (RGRI) b
RED GREEN  [90] 

Structure insensitive pigment index (SIPI)       800 - 445 800 - 680  [91] 

a Normalized mean reflectance from 500 to 600 nm; b Mean of all bands in the red range divided by 

the mean of all bands in the green range. 

2.6. Individual Tree Detection 

The point cloud segmentation (PCS) algorithm of Li et al. [52] was applied to detect individual 

trees. It was a top-to-bottom region growing approach to segment trees individually and sequentially 

from point cloud. The algorithm started from a tree top and “grow” an individual tree by including 

nearby points based on the relative spacing. Points with a spacing smaller than a specified threshold 

were classified as the target tree, and the threshold was approximately equal to the crown radius. 

Additionally, the shape index (SI) was added to improve the accuracy of segmentation by avoiding 

the elongated branch. The PCS algorithm was implemented using LiForest (GreenValley 

International, Berkeley, CA, USA) software, and the space threshold was equal to the mean crown 

radius of each corresponding forest type (coniferous = 1.45 m, broadleaved = 2.40 m and mixed = 1.91 

m). The results of segmentation were point cloud which contained the attribute of tree ID, and points 

from the same tree had same ID. For each detected tree, the tree position, tree height and crown area 

were estimated and compared to the corresponding tree in the field. It was considered correct when 

a detected tree was located within the crown of the field inventory tree. The point cloud of detected 

tree was rasterized to image to match with hyperspectral image, and the value of each pixel was 

assigned as point ID appeared most frequently. The pixels had the same value in rasterized image 

were considered as a part of the same tree, and the range of crown was the boundary of pixels with 

the same value. 

To evaluate the accuracy of tree detection, three measures including recall (r, represents the tree 

detection rate), precision (p, represents the precision of detected trees) and F1-score (F1, presents the 

overall accuracy taking both omission and commission in consideration) were introduced using the 

following equations [92,93]. 

Nt
r =
Nt + No

 (1) 

Nt
p =

Nt + Nc
 (2) 



r p

F = 2
r + p

1
 (3) 

where Nt is the number of the detected trees which exist in field position, No is the number of the 

trees which were omitted by algorithm, and Nc is the number of the detected trees which do not exist 

in field. 

2.7. LiDAR Metrics Calculation 

Discrete LiDAR metrics are descriptive structure statistics, and they are calculated from the 

height normalized LiDAR point cloud. In the study, 12 metrics for each tree were calculated, 

including: (i) selected height measures, i.e., percentile heights (h25, h50, h75 and h95), minimum height 

(hmin) and maximum height (hmax); (ii) selected canopy’s return density measures, i.e., canopy return 

densities (d2, d4, d6 and d8); (iii) variation of tree height, i.e., coefficient of variation of heights (hcv); and 
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(iv) canopy cover, i.e., canopy cover above 2 m (CC). A summary of the LiDAR metrics and 

descriptions is given in Table 4. 

Table 4. Summary of LiDAR metrics computed from point clouds. 

Metrics Description 

Percentile height (h25, h50, h75, h95) 
The percentiles of the canopy height distributions  

(25th, 50th, 75th, 95th) of first returns 

Canopy return density (d2, d4, d6, d8) 

The canopy return density over a range of relative heights, i.e., percentage  

(0–100%) of first returns above the quantiles (20%, 40%, 60%, and 80%)  

to total number of first returns 

Minimum height (hmin) Minimum height above ground of all first returns 

Maximum height (hmax) Maximum height above ground of all first returns 

Coefficient of variation of heights (hcv) Coefficient of variation of heights of all first returns 

Canopy cover above 2 m (CC) Percentage of first returns above 2 m 

Previous studies have found that first returns have more stable capabilities for forest biophysical 

attribute estimation than all returns [94]. Therefore, LiDAR metrics were computed by first returns. 

Metrics of percentile height and canopy return density were generated from first returns which were 

higher than 2 m above ground to exclude returns from low-lying vegetation. 

2.8. Sunlit Portion in Individual Tree Crown 

Previous studies have demonstrated that the spectral signal from sunlit crown was dominated 

by first order scattering and the impacts of soil and shadows were minimal, therefore it was 

appropriate for foliage or canopy modeling [95]. The sunlit crown was defined as all the pixels within 

an individual tree crown that had reflectance values in near infrared band greater than the mean 

value of crown in that band [96]. In this study, the pixels in each crown with reflectance values in 800 

nm higher than the mean value were selected as sunlit crown. 

2.9. Hyperspectral Metrics and the Selection 

The individual tree crown and sunlit crown metrics were extracted from hyperspectral metrics 

using spatial statistical analysis. Metrics at the two levels both included raw reflectance bands (n = 

64), derivative bands (n = 128) and vegetation indices (n = 20). 

In general, hyperspectral imagery was considered to be suited for tree-species classification due 

to its high spectral resolution and a large amount of hyperspectral metrics. However, the high 

dimension of spectral data would cause Hughes phenomenon and always perform ineffectively in 

classification [97,98]. As result, it was necessary to optimize the hyperspectral metrics and reduce 

dimension of spectral data. The Principal Component Analysis (PCA) which aimed to calculate a 

subspace of orthogonal projections in accordance with the maximized variance of the whole metrics, 

therefore was widely applied in hyperspectral metrics optimization [99,100]. In this study, the PCA 

algorithm was used to reduce the dimension of the hyperspectral metrics. The best 20 metrics, which 

had high correlation with the first three principle components, were correspondingly selected from 

reflectance bands, derivative bands and vegetation indices at both the whole crown and sunlit crown 

level. 

2.10. Random Forest and Classification 

The Random Forest classifier is a non-parametric ensemble of decision trees which have been 

trained using bootstrap samples of training data. A number of trees are constructed based on random 

feature subset and it is faster to grow a large number of decision trees without pruning. In random 

forest, only the best among a subset of candidate features are selected randomly to determine the 

split at each node. Approximately one-third of samples that are not used in the bootstrapped training 

data are called the out-of-bag (OOB) samples, which offer unbiased estimates of the training error 

and could be used to evaluate the relative importance of features.  
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In total, 587 samples including Chinese chestnut (C.C: n = 117), Sweet gum (S.G: n = 100), 

Sawtooth oak (S.O: n = 114), Masson pine (M.P: n = 130) and Chinese fir (C.F: n = 126) were classified 

at two levels (five tree-species and two forest-types). Random forest classifiers were trained using 

training dataset, while the classification accuracies were assessed by the validation dataset. The 

training and validation datasets were allocated randomly, and the proportion of training dataset and 

validation dataset were 60% and 40%, respectively. The number of decision trees was set to 1000 to 

ensure that each sample was classified more than once. The classification accuracies were assessed 

by overall accuracy (OA), the producer’s and user’s accuracy. 

In this study, the LiDAR metrics (12 metrics) and the hyperspectral metrics (80 metrics selected 

by the indices of PCA) were selected again using the correlation analysis (the metrics that strongly 

correlated with other metrics were excluded) before classification, and the number of retained LiDAR 

metrics and hyperspectral metrics (whole crown and sunlit crown metrics) were eight and thirty, 

respectively. The classification of five tree-species and two forest-types were both divided into four 

parts: (i) using LiDAR metrics (n = 8) and sunlit hyperspectral metrics (n = 30) to classify tree-species 

(SA); (ii) using LiDAR metrics (n = 8) and crown hyperspectral metrics (n = 30) to classify tree-species 

(CA); (iii) using sunlit hyperspectral metrics (n = 30) to classify tree-species (SH); and (iv) using crown 

hyperspectral metrics (n = 30) to classify tree-species (CH). In order to select the most important 

metrics, metrics were eliminated from random forest classifier one by one. The order in which metrics 

ruled out were controlled by the ranking for importance (the mean decrease in Gini index) of each 

metric in each loop, and the last metric was eliminated. 

3. Results 

Figure 3 shows the result of individual tree detection using PCS algorithm in one plot (30 × 30 

m2). Furthermore, visual inspection indicated that the algorithm succeed in segmenting subtropical 

forest trees. In total, 587 (80.1%) of dominate and co-dominate trees were correctly detected in all of 

the 20 plots. The error of omission (the number of trees which was not detected by PCS algorithm) 

was 146 (19.9%), and the error of commission (the number of detected trees which did not exist in the 

field) was 97 (14.2%). The F1-score of coniferous dominated plots was highest (88.2%), followed by 

the broadleaved dominated plots (85.7%), and the mixed plots was lowest (80.3%) (Table 5). It was 

likely due to the crown of coniferous trees which tended to be compact and relatively isolate from 

each other. However, the broadleaved trees were rounded and more likely to overlay, and the 

structure of mixed plots was more complicated than coniferous dominated and broadleaved 

dominated plots. The accuracy of estimated tree height and diameter were also assessed using 

inventory data. The accuracy of estimated crown diameter (RMSE = 0.36 m, rRMSE = 9.5% observed 

mean crown diameter) was less than the tree height (RMSE = 0.48 m, rRMSE = 4.6% observed mean 

height). 

 

Figure 3. (a) Point cloud of one plot; and (b) the result of segmentation using PCS algorithm (each 

single tree corresponds to a color).  
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Table 5. The accuracy assessment of individual tree detection. 

 No. of Trees Correct/Nt Omission/No Commission/Nc r (%) p (%) F1 (%) 

Coniferous 142 116 26 5 81.7 95.9 88.2 

Broadleaved  135 120 15 25 88.9 82.8 85.7 

Mixed  456 351 105 67 77.0 84.0 80.3 

All  733 587 146 97 80.1 85.8 82.9 

The point clouds of each tree extracted by PCS algorithm were rasterized to the image, which 

was matched with hyperspectral data; therefore, the boundary of each individual tree was consistent 

with hyperspectral image. One sample plot of hyperspectral imagery with detected tree tops, crown 

boundaries and the tops of linked trees in field is shown in Figure 4a. The portions in each crown 

with reflectance values in the band of 800 nm higher than the mean value were selected as sunlit 

crown. The detected trees and sunlit portion in each crown can be seen in Figure 4b.  

 

Figure 4. (a) Hyperspectral image with the location of trees (dominant and co-dominant), the PCS 

algorithm detected tree tops and the tree crowns within one plot (30 × 30 m2); and (b) map of sunlit 

portion of each crown which were selected from hyperspectral data. 

The reflectance of five tree-species extracted from sunlit crown indicated that the species 

exhibited various spectral responses, especially in the areas of near infrared. It was noted by the 

difference sizes of envelopes (Figure 5a–e) and the mean spectral reflectance in Figure 5f. The 

hyperspectral metrics were also calculated based on this premise. With the PCA algorithm, 20 best 

metrics were correspondingly selected from reflectance bands, derivative bands and vegetation 

indices at both whole crown and sunlit crown level. The result of best metrics selected from sunlit 

crown metrics is shown in Figure 6. The metrics are mainly located in the regions of visible, red edge 

and near infrared. 

Figure 7 presents the overall accuracies of five tree-species classifications using random forest 

classifier with respect to the reduction of metrics numbers (0–30). When the number of metrics was 

less than six, the overall accuracies of classifications decreased by the reduction of the number of 

metrics in most cases. Then, the overall accuracies were tend to be stable at the certain numerical 

range when metrics number was larger than six. Therefore, only few selected metrics could be used 

to classify tree-species effectively, and six was the optimal number of metrics for five tree-species 

classifications in this study. The top-six important metrics were selected as the most important 

metrics for five tree-species classifications (Table 6). Classification using LiDAR and sunlit 

hyperspectral metrics (5SA) performed best, followed by classification using sunlit hyperspectral 

metrics (5SH) and classification using LiDAR and crown hyperspectral metrics (5CA), and the 

classification using crown hyperspectral metrics (5CH) performed worst. The classifications using 

LiDAR and hyperspectral metrics had better performance than classifications using only 

hyperspectral metrics; therefore, the fusion of hyperspectral and LiDAR data could improve the 
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accuracy of tree-species classification in subtropical forests. In addition, the classifications using 

sunlit crown metrics also outperformed the classifications using whole crown metrics, which 

indicated that the metrics extracted from sunlit crown had lower within-species variance and could 

be used to enhance the species separability. 

 

Figure 5. (a–e) Mean (bold line) and ±1 standard deviation of reflectance by species for sunlit crown; 

and (f) mean spectral reflectance of the studied species. 

Similarly, Figure 8 displays the overall accuracies of two forest-types classifications with respect 

to the reduction of metrics number (0–30). When the number of metrics was less than three, the 

overall accuracies of classifications decreased by the reduction of the number of metrics in all cases. 

Then, the overall accuracies tended to be stable at certain numerical range when metrics number was 

larger than three. Therefore, only few selected metrics could also be used to classify forest types 

effectively, and three was the optimal number of metrics for two forest-types classification in this 

study. The top-three important metrics were selected as the most important metrics for two forest-

types classification (Table 6). For two forest-types classification, classification using LiDAR and sunlit 

hyperspectral metrics (2SA) performed best, followed by classification using sunlit hyperspectral 

metrics (2SH) and classification using LiDAR and crown hyperspectral metrics (2CA), and the 

classification using crown hyperspectral metrics (2CH) performed worst. The classifications using 

LiDAR and hyperspectral metrics had better performance than classifications using only 
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hyperspectral metrics, which demonstrated that the fusion of hyperspectral and LiDAR data could 

also improve the accuracy of two forest-types classification in subtropical forests. Meanwhile, the 

classifications using sunlit crown metrics outperformed the classifications using whole crown 

metrics, and it indicated that the metrics extracted from sunlit crown had lower within-type variance 

and could be used to enhance the separability of forest types as well. 

 

Figure 6. Mean spectral reflectance and derivative curves for all sunlit crowns of five tree-species. 

Dots with the same color above curves represent the best 20 bands selected by PCA procedure. 

 

Figure 7. Evolution of overall classification accuracy with changing number of metrics. 5SA = Five 

tree-species classification using all metrics (LiDAR and sunlit hyperspectral metrics); 5CA = Five tree-

species classification using all metrics (LiDAR and crown hyperspectral metrics); 5SH = Five tree-

species classification using sunlit hyperspectral metrics; 5CH = Five tree-species classification using 

crown hyperspectral metrics. 
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Figure 8. Evolution of overall classification accuracy with changing number of metrics. 2SA = Two 

forest-types classification using all metrics (LiDAR and sunlit hyperspectral metrics); 2CA = Two 

forest-types classification using all metrics (LiDAR and crown hyperspectral metrics); 2SH = Two 

forest-types classification using sunlit hyperspectral metrics; 2CH = Two forest-types classification 

using crown hyperspectral metrics. 

Table 6. The six most important metrics from random forest for classifying tree-species ranked high 

to low according to the mean decrease in Gini index.  

Rank  5SA 5CA 5SH 5CH 2SA 2CA 2SH 2CH 

1 * hcv * hcv + CRI1 + PRR * h95 * hcv + REI + CI 

2 * h95 * h95 + PRR + CRI1 + mNDVI705 * h95 + CRI1 + PRR 

3 + CRI1 + REI + ARI1 + CI + CRI1 + RGRI + 1st_18 + CRI1 

4 * d2 + 1st_18 + mNDVI705 + ARI1 + 1st_18 + ARI1 + RGRI + mNDVI705 

5 + 1st_50 * d2 + 1st_45 + RGRI * CC * CC + ARI1 + RGRI 

6 + 1st_18 + RGRI + 1st_50 + 2nd_29 + 2nd_22 + 1st_18 + 2nd_24 + ARI1 

5SA = Five tree-species classification using all metrics (LiDAR and sunlit hyperspectral metrics); 5CA 

= Five tree-species classification using all metrics (LiDAR and crown hyperspectral metrics); 5SH = 

Five tree-species classification using sunlit hyperspectral metrics; 5CH = Five tree-species 

classification using crown hyperspectral metrics; 2SA = Two forest-types classification using all 

metrics (LiDAR and sunlit hyperspectral metrics); 2CA = Two forest-types classification using all 

metrics (LiDAR and crown hyperspectral metrics); 2SH = Two forest-types classification using sunlit 

hyperspectral metrics; 2CH = Two forest-types classification using crown hyperspectral metrics; * = 

LiDAR metrics; + = Hyperspectral metrics. 

The confusion matrix and accuracies of classifications using the most important metrics at two 

classification levels, i.e., all five tree-species and two forest-types are shown in Tables 7 and 8, 

respectively. Classifications of two forest-types using three most important metrics (overall accuracy 

= 86.7–91.0%) have slightly higher accuracies than the classifications of five tree-species using six 

most important metrics (overall accuracy = 85.8–90.6%). In both classifications of five tree-species and 

two forest-types, classification using LiDAR and sunlit hyperspectral metrics had highest accuracy 

(overall accuracy = 90.6% and 91.0%), followed by classification using sunlit hyperspectral metrics 

(overall accuracy = 88.8% and 89.3%) and classification using LiDAR and crown hyperspectral metrics 

(overall accuracy = 87.1% and 88.0%), sequentially, and the classification using crown hyperspectral 

metrics had lowest accuracy (overall accuracy = 85.8% and 86.7%). The classifications using LiDAR 

and hyperspectral metrics (overall accuracy = 87.1–91.0%) performed better than the classifications 

using only hyperspectral metrics (overall accuracy = 85.8–89.3%), and the classifications using sunlit 
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crown metrics (overall accuracy = 88.8–91.0%) outperformed using whole crown metrics (overall 

accuracy = 85.8–88.0%). 

Table 7. Confusion matrix (including overall accuracies, per-class user’s and producer’s accuracies) 

for five tree-species classification using the validation dataset: (a) classification using the six most 

important metrics (LiDAR and sunlit hyperspectral metrics); (b) classification using the six most 

important metrics (LiDAR and crown hyperspectral metrics); (c) classification using the six most 

important metrics (Sunlit hyperspectral metrics); and (d) classification using the six most important 

metrics (Crown hyperspectral metrics). C.C = Chinese chestnut, S.G = Sweet gum, S.O = Sawtooth oak, 

M.P = Masson pine and C.F = Chinese fir. 

(a) 

Class C.C S.G S.O M.P C.F User’s (%) Commission (%) 

C.C 41 1 0 1 0 95.3 4.7 

S.G 2 37 1 2 0 88.1 11.9 

S.O 0 1 38 3 1 88.4 11.6 

M.P 2 1 4 46 0 86.8 13.2 

C.F 1 0 2 0 49 94.2 5.8 

Producer’s (%) 89.1 92.5 84.4 88.5 98.0 
Overall Accuracy = 90.6% 

Omission (%) 10.9 7.5 15.6 11.5 2.0 

(b) 

Class C.C S.G S.O M.P C.F User’s (%) Commission (%) 

C.C 40 1 2 0 1 90.9 9.1 

S.G 2 35 4 2 1 79.5 20.5 

S.O 1 2 35 3 0 85.4 14.6 

M.P 2 1 2 46 1 88.5 11.5 

C.F 1 1 2 1 47 90.4 9.6 

Producer’s (%) 87.0 87.5 77.8 88.5 94.0 
Overall Accuracy = 87.1% 

Omission (%) 13.0 12.5 22.2 11.5 6.0 

(c) 

Class C.C S.G S.O M.P C.F User’s (%) Commission (%) 

C.C 42 1 2 1 0 91.3 8.7 

S.G 1 36 1 3 1 85.7 14.3 

S.O 2 1 37 3 1 84.1 15.9 

M.P 0 2 3 44 0 89.8 10.2 

C.F 1 0 2 1 48 92.3 7.7 

Producer’s (%) 91.3 90.0 82.2 84.6 96.0 
Overall Accuracy = 88.8% 

Omission (%) 8.7 10.0 17.8 15.4 4.0 

(d) 

Class C.C S.G S.O M.P C.F User’s (%) Commission (%) 

C.C 40 1 3 1 0 88.9 11.1 

S.G 2 33 2 2 1 82.5 17.5 

S.O 2 3 37 3 1 80.4 19.6 

M.P 1 1 1 44 2 89.8 10.2 

C.F 1 2 2 2 46 86.8 13.2 

Producer’s (%) 87.0 82.5 82.2 84.6 92.0 
Overall Accuracy = 85.8% 

Omission (%) 13.0 17.5 17.8 15.4 8.0 
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Table 8. Confusion matrix (including overall accuracies, per-class user’s and producer’s accuracies) 

for two forest-types classification using the validation dataset: (a) classification using the three most 

important metrics (LiDAR and sunlit hyperspectral metrics); (b) classification using the three most 

important metrics (LiDAR and crown hyperspectral metrics); (c) classification using the three most 

important metrics (Sunlit hyperspectral metrics); and (d) classification using the three most important 

metrics (Crown hyperspectral metrics). 

(a) 

Class Broadleaf Conifer  User’s (%) Commission (%) 

Broadleaf 121 11 91.7 8.3 

Conifer 10 91 90.1 9.9 

Producer’s (%) 92.4 89.2 
Overall Accuracy = 91.0% 

Omission (%) 7.6 10.8 

(b) 

Class Broadleaf Conifer  User’s (%) Commission (%) 

Broadleaf  119 16 88.1 11.9 

Conifer 12 86 87.8 12.2 

Producer’s (%) 90.8 84.3 
Overall Accuracy = 88.0% 

Omission (%) 9.2 15.7 

(c) 

Class Broadleaf  Conifer User’s (%) Commission (%) 

Broadleaf 120 14 89.6 10.4 

Conifer 11 88 88.9 11.1 

Producer’s (%) 91.6 86.3 
Overall Accuracy = 89.3% 

Omission (%) 8.4 13.7 

(d) 

Class Broadleaf  Conifer User’s (%) Commission (%) 

Broadleaf  117 17 87.3 12.7 

Conifer 14 85 85.9 14.1 

Producer’s (%) 89.3 83.3 
Overall Accuracy = 86.7% 

Omission (%) 10.7 16.7 

4. Discussion 

The tree-species classification would have better performance because the fusion of 

hyperspectral and LiDAR data could achieve the combination of spectral and structure information 

[62,63,101]. In this study, although the classifications using hyperspectral metrics showed a relative 

good performance (overall accuracies were stable over 85%), the classifications using LiDAR and 

hyperspectral metrics performed better and had higher accuracies. Moreover, the improvements of 

overall accuracies were from 0.4% to 5.6% except few cases caused by the effect of Hughes 

phenomenon (Figures 7 and 8). Furthermore, compared with the classifications using only 

hyperspectral metrics, the mean omission and commission of classifications using LiDAR and 

hyperspectral metrics decreased by 1.5% and 1.6%, respectively (Tables 7 and 8). Cao et al. [16] 

classified tree-species using only full-waveform LiDAR data with random forest classifier in the same 

study area of subtropical forests. Compared with our results, lower overall accuracies were obtained 

in six tree-species (68.6%) and two forest-types (86.2%) classification. Alonzo et al. [63] reported a 

4.2% increase of classification overall accuracy for the addition of LiDAR data to hyperspectral 

metrics in urban forests located on Santa Barbara, California. Jones et al. [23] classified 11 tree-species 
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using the fused hyperspectral and LiDAR data at pixel-level in temperate forests of coastal 

southwestern Canada and found that the producer’s accuracy increased 5.1–11.6% compared with 

using single dataset, which was slightly higher than reported in this study. The reason for the slight 

lower improvement of accuracy in our study may be due to the complexity of multilayered 

subtropical forest which decline the capability of LiDAR metrics to discriminate tree-species. 

Traditionally, the individual tree crown (ITC) was manually delineated on RGB false color 

image, or automatically delineated based on image segmentation algorithm on optical image and 

LiDAR-derived canopy height model (CHM). The result of crown delineation using optical image 

was influenced by the image quality which depended on many factors (e.g., sensor status, 

illumination and view geometry), and the segmentation algorithm using LiDAR-derived CHM was 

not ideal as the CHM which had inherent errors during the interpolating process from point cloud to 

gridded model. The PCS algorithm is a method to segment individual tree from point cloud directly. 

It could provide three dimensional structure information of each tree and avoid the limitation of 

using CHM. In this study, the PCS algorithm was a top-to-bottom region growing approach that 

segmented trees individually and sequentially from point cloud. In total, 587 (80.1%) of dominate 

and co-dominate trees were correctly detected and the overall accuracy was 82.9%. Cao et al. [16] 

applied local maximum filtering algorithm to detect individual tree in the same research area, and 

the 78.5% of dominate and co-dominate trees were correctly detected. The slightly lower detection 

accuracy compared with this study may be caused by the errors of CHM and the smooth median 

filtering. The accuracy of estimated crown diameter (rRMSE = 9.5%) by PCS algorithm was lower 

than tree height (rRMSE = 4.6%), which may be owing to the overlapping of adjacent canopy in 

subtropical forest. 

Based on the selected result of hyperspectral metrics extracted from sunlit crown using PCA 

algorithm (Figure 6), three spectral regions were identified. Two regions in the visible band (500–600 

nm and 680–750 nm) included blue edge, green peak, part of yellow edge, red valley and red edge. 

Previous studies had used these bands to separate tree-species at various scales [20,102,103]. They 

were related to nitrogen, pigment content, vegetation vigor, light use efficiency, plant stress and 

biophysical quantities, and all these properties were supposed to differ among species [104–106]. The 

other region was in the near infrared band (800–900 nm) which had high reflectance due to multiple-

scattering within leaf structure such as spongy mesophyll. The region was related to cell structure, 

biophysical quantity and yield (e.g., biomass and LAI) [107,108]. Clark et al. [15] found that the 

species differences were mainly focused in NIR region at canopy scale. It was also confirmed in this 

study that the difference of five tree-species was maximum in NIR bands (Figure 5f). 

In hyperspectral image, the crown spectral values may exhibit bimodal tendencies related to the 

sunlit and shadow parts [96], and the multiple-scattering among tree crown may lead to noisy 

spectral values. The sunlit crown values were dominated by first-order scattering from canopy and 

the influences of soil background, trunk and branch were minimum. Therefore, using metrics 

extracted from sunlit crown may improve the classification accuracy. This hypothesis was confirmed 

by our results that the classifications using sunlit crown metrics (overall accuracies stable at 87.1–

91.5%) had better performance than using whole crown metrics (overall accuracies stable at 85.4–

89.3%), and the mean improvement of overall accuracy was 2.3% (Figures 7 and 8). The classification 

of 17 tree-species in tropical forests undertaken by Feret et al. [13] showed similar results. Meanwhile, 

compared with the classifications using whole crown metrics, the omission and commission of 

classifications using sunlit metrics were declined 0–7.5% and 0–8.6%, respectively (Tables 7 and 8). 

With the one by one elimination of the input selected metrics after decorrelation, the overall 

accuracies were stable at certain numerical range (standard deviation = 0.53–0.64%) at the beginning, 

and then started decrease since the remaining metrics could not provide sufficient information for 

species discrimination. The number of input metrics of last point before the decline of overall 

accuracies was seen as the optimal number of metrics for classification. In this study, six and three 

were the optimal number of metrics for five tree-species and two forest-types classification, 

respectively. The top-ranked six or three metrics were selected as the most important metrics. 

Compared with highest overall accuracies of each classification, the overall accuracies of five tree-
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species and two forest-types classification using the most important metrics descended only 0.4–1.3% 

and 0.4–2.1%, respectively. Therefore, the classifications using the most important metrics improved 

the overall accuracies significantly and these metrics could be used to classify tree-species efficiently, 

which is consistent with the previous studies [16,99]. 

The point clouds metrics have significant relationship with three dimensional structure 

proprieties of canopy [57,109,110]. During the classifications, the LiDAR metrics hcv, h95 and d2 were 

selected as the most important metrics (Table 6). hcv indicated the height variation of all first returns, 

and it could reflect the canopy structure of different species. At the study site, coniferous trees usually 

have dense and homogenous tower-shaped crown which lead to a relative low height variance of 

first return within crown. Meanwhile, the broadleaved trees have loose and heterogeneous ovoid 

crown which lead to a high height variance of first return within crown. hcv is sensitive to this 

difference, which makes it possible to be a good metric for species discrimination. h95 is also a good 

indicator of classifying tree-species since it is upper percentile height which can reflect the height of 

trees in some extent. Furthermore, the forest in study area is under a mature or near mature condition, 

therefore, the tree height is approaching the maximum value, resulting the differences of height 

among different species. d2 is the percentage of first return above the 20 quantiles to total number of 

first returns, and the crown with dense foliage and branch could reduce the number of points in lower 

height, thereby d2 could be used to describe the dense of crown. The species with different crown 

density will lead to the various d2, and thus it could be effectively applied to classify tree-species.  

Previous studies have verified the significant effects of hyperspectral metrics for tree-species 

classification [13,63], and this study also showed the obvious advantages of hyperspectral metrics. 

The overall accuracies of classifications using only hyperspectral metrics were greater than 85% and 

the overall accuracies were higher after adding LiDAR metrics. Six frequently used hyperspectral 

metrics (i.e., CRI1, REI, ARI1, CI, PRR and 1st_18) were selected from the most important metrics. 

For each metric, the differences of five tree-species are significant (Figure 9). CRI1, ARI1 and CI are 

metrics representing reflectance of carotenoid, anthocyanin and chlorophyll, respectively, and are 

correlated with the content of pigments directly. Therefore, the content of pigments in five tree-

species will lead these three metrics to vary with different tree-species. Gitelson et al. [84] found that 

REI had a strong relationship with canopy content of chlorophyll (R2 = 0.94, RMSE = 0.15 g/m2), and 

can be used to estimate the content of chlorophyll accurately. Therefore, it was applied to classify 

tree-species effectively in this study, and the distribution of box plot was similar to CI. PRR is a 

metrics used to measure the efficiency of light use which may be influenced by content of pigments 

and the crown surface structure. As a result, tree-species (e.g., Masson pine) with high content of 

pigments and dense crown have high light use efficiency. It has been proved that classification using 

first-order derivative metrics outperformed using reflectance metrics [111]. 1st_18 is the value of first-

order derivative in 553 nm correlated with chlorophyll and biomass which can be used to assess 

vegetation fertility level and biophysical quantity, thus it is a good indicator to classify five tree-

species in subtropical forest. 

To compare the six metrics selected from most important metrics, CRI1, ARI1, PRR and 1st_18 

were all calculated using green bands, and REI and CI were calculated using red edge bands. Green 

band and red edge region were both verified as informative areas of spectrum in vegetation studies 

[112], which is similar with the results of band selection using PCA algorithm (Figure 6). CRI1, ARI1, 

PRR and 1st_18 all had different values in sunlit crown and whole crown, yet the ranges of REI and 

CI in sunlit crown and whole crown were similar (Figure 9). Therefore, CRI1, ARI1, PRR and 1st_18 

might be more sensitive to illumination than REI and CI. It could be explained that the green bands 

had shorter wavelength and the value was more likely influenced by scattering in crown than red 

edge bands [113]. 
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Figure 9. Box plots for selected most important hyperspectral metrics at crown and sunlit crown levels 

for the five tree-species (X axis is the five tree-species and Y axis is the most important metrics).  

5. Conclusions 

In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy 

(Hyperspectral, LiDAR and CCD) airborne system to classify five tree-species (in two classification 

depths) in subtropical forests of southeast China. The results showed that the tree delineation 

approach (point cloud segmentation algorithm) was suitable for detecting individual tree in this 

study (overall accuracy = 82.9%). The classification approach provided a relative high accuracy for 

classifying tree-species in the study site (overall accuracy > 85.4% for five tree species and overall 

accuracy > 86.3% for two forest-types). The classification using both hyperspectral and LiDAR metrics 

resulted in higher accuracies than only hyperspectral metrics (the improvement of overall accuracies 

= 0.4–5.6%). In addition, the classifications using sunlit crown metrics (overall accuracies = 87.1–

91.5%) had improved the overall accuracies of 2.3%, compared with the classification using whole 

crown metrics (overall accuracies = 85.4–89.3%). The results also suggested that fewer of the most 

important metrics can be used to classify tree-species effectively (overall accuracies = 85.8–91.0%). 

Although this study shows significant potential for combined hyperspectral and LiDAR data to 

classify tree-species in subtropical forests, more advanced spectral and structure metrics need to be 

explored and the high spatial resolution data, which were acquired simultaneously by the LiCHy 

Airborne Observation System, can be fused with the hyperspectral and LiDAR data in the future 

work to enhance the capability of tree-species classification in subtropical forests. 
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