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Abstract: In this paper, we present a novel approach for automatically detecting buildings from
multiple heterogeneous and uncalibrated very high-resolution (VHR) satellite images for a rapid
response to natural disasters. In the proposed method, a simple and efficient visual attention method
is first used to extract built-up area candidates (BACs) from each multispectral (MS) satellite image.
After this, morphological building indices (MBIs) are extracted from all the masked panchromatic
(PAN) and MS images with BACs to characterize the structural features of buildings. Finally, buildings
are automatically detected in a hierarchical probabilistic model by fusing the MBI and masked PAN
images. The experimental results show that the proposed method is comparable to supervised
classification methods in terms of recall, precision and F-value.
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1. Introduction

Natural hazards (e.g., earthquakes) can destroy buildings and often result in serious casualties and
huge property losses. Therefore, rapid building mapping and damage assessments play a significant
role in the speed of emergency responses and disaster reduction [1–4]. Since earthquakes cannot be
predicted, such events must be managed using available satellite images. Figure 1 shows the available
very high-resolution (VHR) satellite images captured several days after the Wenchuan earthquake
in 2008. The lack of appropriate satellite imagery poses a considerable challenge for current rapid
building mapping techniques that require little or no human intervention [5], because (1) multiple
monocular VHR images are obtained from sensors with different spectral, spatial and radiometric
characteristics; (2) diverse buildings are scattered throughout areas with different backgrounds, such
as plains, mountainous regions, rural or urban areas; and (3) variable imaging environments, such as
haze or cloud cover conditions.

Currently, a number of studies have documented methods of extracting buildings from
remote-sensing images using low-level features, such as edge/line segments [6–9], corners [10], spectra,
texture [11,12] and morphological features (MFs) [13,14]. One study [5] has conducted a thorough
review of previous studies on building detection using single monocular remote-sensing images. In the
remainder of this section, we will provide an overview of recent work combining multiple features to
detect buildings.
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Figure 1. Historical images captured within seven days of the Wenchuan earthquake. 

Supervised classification is a flexible approach to combining detailed spectral and spatial 
information with shapes or textures to delineate buildings from VHR satellite images. Shackelford 
and Davis proposed a combination of pixel-based and object-based methods to classify urban land 
cover from pan-sharpened multispectral (MS) IKONOS-2 images [15]. A fuzzy pixel-based classifier 
was first used to discriminate spectrally similar road and building classes by integrating both 
spectral and spatial information. Subsequently, an object-based classifier discriminated the classes 
from urban impervious surfaces by using shape, spectral and neighborhood information. Huang et 
al. investigated a structural feature set for land cover classification in urban areas from MS imagery 
with high spatial resolution [16]. Fauvel et al. used a support vector machine (SVM) method to 
classify land cover in urban areas by concatenating spectral information and MFs [14]. Pesaresi et al. 
proposed an inter-scale learning and classification framework to produce a global human settlement 
layer by fusing the globally available information with low resolution and high-resolution 
image-derived textures and MFs [17]. San and Turker utilized the two-class SVM to detect building 
patches from pan-sharpened IKONOS imagery, and found that additional bands in SVM 
classification had a significant effect in building detection accuracy [18]. Pal and Foody found that 
the relevance vector machine (RVM) and sparse multi-nominal logistic regression (SMLR) were able 
to derive classifications of similar accuracy to the SVM but required considerably fewer training 
cases [19]. However, supervised methods for building classification may not be appropriate for 
facilitating rapid responses to disaster reduction because the effectiveness and efficiency of such 
methods are heavily dependent on training samples and the chosen machine learning approaches. 

Graph-based approaches are commonly used to verify buildings over possible rooftop 
candidates by modeling the spatial dependencies between candidates in a stochastic optimization 
process. Katartzis and Sahli used Markov random fields (MRFs) in a stochastic framework for the 
identification of building rooftops [20]. Benedek et al. integrated several low-level features in a 
multi-temporal marked point process model to detect buildings and their possible changes [21]. Li et 
al. proposed a higher-order conditional random field to extract rooftops by integrating both 
pixel-level and segment-level features [22,23]. Anees et.al exploited the least squares probabilistic 
classifier (LSPC) method to model class posterior probabilities using a linear combination of 74 
Gaussian kernels for change detection [24]. However, in graph-based methods, spatial dependencies 
among candidates are usually inferred for specific image planes. For another image with different 
patterns of land cover, the parameters of the models must be finely tuned. Therefore, such methods 
are inappropriate for rapid response techniques after natural disasters, which require rapid building 
mapping methods with little or no human input. 

In this paper, we present an unsupervised classification framework for rapid building mapping 
after natural disasters from multiple heterogeneous monocular VHR satellite images, which could 
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Supervised classification is a flexible approach to combining detailed spectral and spatial
information with shapes or textures to delineate buildings from VHR satellite images. Shackelford and
Davis proposed a combination of pixel-based and object-based methods to classify urban land cover
from pan-sharpened multispectral (MS) IKONOS-2 images [15]. A fuzzy pixel-based classifier was
first used to discriminate spectrally similar road and building classes by integrating both spectral
and spatial information. Subsequently, an object-based classifier discriminated the classes from urban
impervious surfaces by using shape, spectral and neighborhood information. Huang et al. investigated
a structural feature set for land cover classification in urban areas from MS imagery with high spatial
resolution [16]. Fauvel et al. used a support vector machine (SVM) method to classify land cover in
urban areas by concatenating spectral information and MFs [14]. Pesaresi et al. proposed an inter-scale
learning and classification framework to produce a global human settlement layer by fusing the
globally available information with low resolution and high-resolution image-derived textures and
MFs [17]. San and Turker utilized the two-class SVM to detect building patches from pan-sharpened
IKONOS imagery, and found that additional bands in SVM classification had a significant effect in
building detection accuracy [18]. Pal and Foody found that the relevance vector machine (RVM) and
sparse multi-nominal logistic regression (SMLR) were able to derive classifications of similar accuracy
to the SVM but required considerably fewer training cases [19]. However, supervised methods for
building classification may not be appropriate for facilitating rapid responses to disaster reduction
because the effectiveness and efficiency of such methods are heavily dependent on training samples
and the chosen machine learning approaches.

Graph-based approaches are commonly used to verify buildings over possible rooftop candidates
by modeling the spatial dependencies between candidates in a stochastic optimization process.
Katartzis and Sahli used Markov random fields (MRFs) in a stochastic framework for the identification
of building rooftops [20]. Benedek et al. integrated several low-level features in a multi-temporal
marked point process model to detect buildings and their possible changes [21]. Li et al. proposed
a higher-order conditional random field to extract rooftops by integrating both pixel-level and
segment-level features [22,23]. Anees et.al exploited the least squares probabilistic classifier (LSPC)
method to model class posterior probabilities using a linear combination of 74 Gaussian kernels for
change detection [24]. However, in graph-based methods, spatial dependencies among candidates are
usually inferred for specific image planes. For another image with different patterns of land cover,
the parameters of the models must be finely tuned. Therefore, such methods are inappropriate for
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rapid response techniques after natural disasters, which require rapid building mapping methods with
little or no human input.

In this paper, we present an unsupervised classification framework for rapid building mapping
after natural disasters from multiple heterogeneous monocular VHR satellite images, which could
eliminate the need to fine-tune model parameters from one image to another. In the proposed
framework, both VHR satellite images and their MFs are fused in a hierarchical probabilistic clustering
model. As shown in Figure 2, the model consists of two-layer clustering in which a local clustering
model is learned for a different VHR image. The goal of the local clustering is to segment the images
into individual objects or object parts. Therefore, the proposed model could adapt well to different
characteristics of the studied images and the imaging environment in terms of local clustering. In the
second layer, the MFs of image objects are used to discriminate buildings from non-buildings with
a learned probabilistic distribution over all images, which we call global clustering. The two-layer
clustering method is different from the method used by Shackelford and Davis [15], because learning
occurs in a unified hierarchical probabilistic model, which is an extension of the generalized Chinese
restaurant franchise (gCRF) method of Mao et al. [25].
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The remainder of this paper is organized as follows. In Section 2, the proposed method for rapid 
building mapping is presented in detail. In Section 3, the experimental results are described. Finally, 
discussion is presented and conclusions are drawn in Sections 4 and 5, respectively. 
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proposed method, gCRF_MBI (i.e., generalized Chinese restaurant franchise and morphological 
building index). After being given a VHR satellite image, a detailed algorithm and its mathematical 
description for the proposed method are given in Sections 2.2 and 2.3, respectively. Finally, we 
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2.1. Relationship between Components 

The proposed method consists of three sequential steps: (1) detection of built-up area 
candidates (BACs) from VHR satellite images; (2) extraction of the MFs masked by the BACs; and (3) 
unsupervised classification of both buildings and non-buildings. To simplify the expression, the 
acronyms used in the papers are given in Table 1. 

The approaches adopted in the proposed method are presented in Figure 3. First, the spectral 
residual (SR) method is used to detect potential built-up areas, i.e., BACs [26,27]. The BACs are used 
as basic units for feature extraction and classification. After this, the morphological building index 
(MBI) of Huang and Zhang is used to extract MFs for classification [28]. Based on the BACs, the 
gCRF process is expanded to fuse both the panchromatic (PAN) image and the MF image for 
unsupervised learning and classification. 

Figure 2. Framework of the proposed model.

The remainder of this paper is organized as follows. In Section 2, the proposed method for
rapid building mapping is presented in detail. In Section 3, the experimental results are described.
Finally, discussion is presented and conclusions are drawn in Sections 4 and 5, respectively.

2. Proposed Method

In this section, we describe the relationship among the three indispensable components of the
proposed method, gCRF_MBI (i.e., generalized Chinese restaurant franchise and morphological
building index). After being given a VHR satellite image, a detailed algorithm and its mathematical
description for the proposed method are given in Sections 2.2 and 2.3, respectively. Finally, we outline
the way to detect buildings from multiple VHR satellite images.

2.1. Relationship between Components

The proposed method consists of three sequential steps: (1) detection of built-up area candidates
(BACs) from VHR satellite images; (2) extraction of the MFs masked by the BACs; and (3) unsupervised
classification of both buildings and non-buildings. To simplify the expression, the acronyms used in
the papers are given in Table 1.

The approaches adopted in the proposed method are presented in Figure 3. First, the spectral
residual (SR) method is used to detect potential built-up areas, i.e., BACs [26,27]. The BACs are used
as basic units for feature extraction and classification. After this, the morphological building index
(MBI) of Huang and Zhang is used to extract MFs for classification [28]. Based on the BACs, the gCRF



Remote Sens. 2017, 9, 1177 4 of 22

process is expanded to fuse both the panchromatic (PAN) image and the MF image for unsupervised
learning and classification.Remote Sens. 2017, 9, 1177  4 of 22 
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Table 1. The glossary of acronyms used in the paper.

Acronyms Full Names

VHR Very high resolution
BAC Built-up area candidate
MS Multispectral

PAN Panchromatic
MBI Morphological building index
MF Morphological feature

SVM Support vector machine
RVM Relevance vector machine
SMLR Sparse multi-nominal logistic regression
LSPC Least squares probabilistic classifier
MRF Markov random field
gCRF generalized Chinese Restaurant Franchise

SR Spectral residual
DMP Differential morphological profile

SE Structure element
UTC Universal time coordinated
MV Majority vote

2.2. Algorithm for VHR Satellite Images

The flowchart of the proposed algorithm for a VHR satellite image is illustrated in Figure 4 and
consists of three steps: (1) BAC extraction using the SR method, (2) MF extraction using the MBI,
and (3) unsupervised learning for classification using the gCRF.

In the first step, an MS image is upsampled to the same spatial resolution as a PAN image using
nearest-neighbor resampling. After this, a saliency map is derived from the upsampled MS image using
the SR method as shown in Figure 4a, while a binary map with BACs is generated using a selection
threshold [29].

In the second step, the upsampled MS image and PAN image are first stacked to obtain a masked
stacked image using the BAC mask operation as shown in Figure 4b. After this, the MFs of buildings
in the BACs (i.e., the MBIs) are extracted from the masked stacked image.
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In the third step, hierarchical clusters are learned using both the VHR PAN image and the MBIs.
To simplify the description, certain terms are analogized between the image process and model
inference in the gCRF. The PAN images are first over-segmented into a set of superpixels, before each
superpixel with a band of pixels is analogized as a super-customer that includes a set of customers.
Thus, an over-segment over a PAN image and an MBI image will be explained by two types of
people: PAN super-customers (see gray circles in Figure 4c) and MBI super-customers (see color circles
in Figure 4c), respectively. Additionally, each BAC is analogized as a restaurant in the gCRF, with the
“i-th restaurant” marked with a red dotted line for illustration in Figure 4b. In the metaphor of the gCRF,
two random processes occur when a super-customer enters the restaurant: (1) a PAN super-customer
randomly selects a table to sit at according to the PAN image and (2) an MBI super-customer takes the
same table as the PAN super-customer and then randomly selects a dish to eat according to the MBI
image. From the perspective of image processing, both table selection and dish selection in the gCRF
model correspond to the local clustering and global clustering as shown in Figure 4c, respectively.
In the global clustering of the gCRF model, we assume that only two types of clusters occur: buildings
and non-buildings. Based on two-class clustering, buildings and non-buildings can be discriminated.
Since MBI features imply the structural information of buildings, buildings can be identified as clusters
with larger averaged MBI values.

2.3. Mathematical Description of Algorithm for VHR Satellite Images

In this subsection, a mathematical description is provided for each component adopted in the
proposed method.

2.3.1. SR

First, the BACs are extracted using the SR method. For the upsampled MS image I(x), the BACs
are extracted as follows.

(1) A frequency image f of the upsampled MS image I(x) is obtained by Fourier transform:

f = F(I(x)), (1)

where F denotes the Fourier transform.
(2) The SR R(f) is defined as follows:

R(f) = L(f) − h(f) × L(f), (2)

where L(f ) = log(A(f )); A(f ) represents the amplitude spectrum and is determined by A(f) = abs(f)
and h(f) is a 3 × 3 local average filter. Correspondingly, R(f ) denotes the built-up areas of the
input image.

(3) The saliency map S(x) in the spatial domain is constructed by the inverse Fourier transform:

S(x) = F−1[exp(R(f) + P(f))]2, (3)

where F−1 denotes the inverse Fourier transform and P(f) represents the phase spectrum, which
is determined by P(f) = angle (f).

After the saliency map, a binary image with BACs is obtained using the Otsu threshold algorithm.
Additional details on built-up area detection using the SR method can be found in a previous study [27].

2.3.2. MBI

After obtaining the BACs, the building structural features in the BACs are extracted using MBI.
Given the masked stacked image, the MBI calculations can be briefly described as follows.
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(1) The brightness value b(x) for pixel x of the masked stacked image is calculated as follows:

b(x) = max
1≤k≤K

(bandk(x)) (4)

where bandk indicates the spectral value of pixel x at the kth band and K is the number of bands.
(2) The differential morphological profiles (DMPs) of the white top-hat are defined as follows:

DMPW_TH(d, s) = |MPW_TH(d, s +∆s) −MPW_TH(d, s)| (5)

The white top-hat is defined as follows:{
MPW_TH = b− γre

b (d, s), i f s > 0
MPW_TH = b, i f s = 0

(6)

where γre
b denotes the opening-by-reconstruction of the brightness image b, while s and d indicate

the scale and direction of a linear structure element (SE), respectively. The term ∆s represents the
interval of the profiles, with smin ≤ s ≤ smax. The sizes of SE (smax, smin, and ∆s) are determined
according to the resolution of the image and the characteristics of buildings (smax = 2, smin = 52,
and ∆s = 5 in this paper).

(3) The MBI of the built-up areas are defined as the average of their DMPs:

MBI =
∑
d,s

DMPW_TH(d, s)

D× S
, (7)

where D and S denote the direction and scale of the profiles, respectively. Four directions are
considered in this letter (D = 4), because an increase in D did not result in higher accuracy for
building detection. The number of scales is calculated by S = ((smax − smin)/∆s) + 1.

MBI construction is based on the fact that building structures have larger values in most DMP
directions. An MBI image that indicates the building structure is thus obtained.

2.3.3. gCRF

As shown in Figure 4, the probabilistic inference in the gCRF method can be explained by the
iterative progress of both local and global clusters. In the local cluster, each over-segment of the PAN
image within each BAC would be allocated with a local label using currently-inferred statistical models
of local clusters. In the global cluster, all the over-segments of the BMI images with the same local
cluster label would be allocated with global labels using currently-inferred statistical models of two
global clusters, which are namely building and non-building.

Specifically, let L and G be the matrix with randomly-initiated labels of local and global clusters,
respectively. Given a PAN image XP and its corresponding MBI image XM, the statistical models
of l-th local cluster and g-th global cluster could be estimated as i.e., FP

l (x) and FM
g (x), respectively.

In this paper, the function F(x) is a multinomial function.

Given the j-th oversegmented pixels
→
x

P
i,j within the i-th BAC on a PAN image, the local clustering

is used to allocate a local cluster label (i.e., li,j = l) with a probability distribution equal to:

P(l¬i,j = l|Li,j) ∝

 n¬j
i,l FP

l (
→
x

P
i,j), i f cluster l has already existed,

αFP
l (
→
x

P
i,j), i f cluster l a new one.

(8)

where L¬i,j is the matrix without local label li,j; n¬j
i,l is the number of pixels in the l-th local cluster with

the exception of the j-th over-segment; FP
l (
→
x

P
i,j) is the likelihood of

→
x

P
i,j in the l-th local cluster over
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the PAN image, which can be inferred from pixels using both the PAN image and the matrix of local
cluster labels, i.e., L¬i,j; and α is a prior parameter.

Let
→
x

M
i,l be all of the pixels within the i-th BAC on the MBI images, whose local cluster label is

equal to l. The global clustering is to allocate a global label (i.e., gi,l = g) to those with a probability
distribution equal to:

P(gi,l = g|G¬i,l) ∝ m¬i,l
g FM

g (
→
x

M
i,l ), (9)

where G¬i,l is the matrix without the l-th global label in the i-th BAC; m¬i,l
g is the number of local

clusters within the g-th global clusters, when the l-th local cluster in the i-th BAC has been removed;

and FM
g (
→
x

M
i,l ) is the likelihood of

→
x

M
i,l in the g-th global cluster. The global label g could be two different

integers, which corresponds to the class label of building or non-building, respectively. The global
cluster is regarded as having the class of building if it has a higher mean MBI value.

The iteration of both local and global clustering would be stopped when the number of iterations
of sweeping the whole image is up to the preset number of iterations.

2.4. Algorithm for Multiple Heterogeneous VHR Satellite Images

In a stage of emergency rescue for earthquake disasters, multiple pre-earthquake satellite images
might be distributed in a progressive way. The proposed method could also be utilized in these types of
situations. For the sake of the simplification of description, we take two satellite images as an example
to describe the algorithm for two types of situation: (1) the two images are simultaneously used to
learn and detect buildings from them unsupervised; and (2) the statistical models of both building
and non-building (i.e., the two global clusters based on morphological features) have been learned
from one image, which are used to infer the global cluster label for each local cluster learning from the
other image.

For the sake of illustration, we assume that the two images come from two different sensors,
namely QuickBird and Pléiades. As for the first situation, the process of building detection from the
two images is shown in Figure 5a. The local clustering over the two images is totally separated. In other
words, a set of statistical models of local clusters are learned for each image in the local clustering.
However, during the global clustering, the same set of statistical models of global clusters would be
learned from all local clusters from the two images. At the same time, each local cluster would be
randomly allocated a global cluster label using Equation (9). Please note that both the multiple local
clustering and the global clustering are integrated in a unified framework of probabilistic inference,
which is called gCRF [25].
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As shown in Figure 5b, in the second situation, we assume that one image is available after the
other one. Therefore, we could learn statistical models of global clusters from the first available image,
which is the QuickBird image. Given a new image (e.g., the Pléiades image) the clustering process
consists of: (1) local clustering using the Pléiades PAN image; and (2) allocating the global cluster label
for each inferred local cluster within each BAC using the learned statistics model of global clusters.

3. Experimental Results and Discussion

In this section, both the experimental data and evaluation methods are described in detail, before
the relationships among the three components of the proposed method are analyzed using a set of
experiments with different combinations of components. After this, the performance of the gCRF_MBI
method is evaluated by a comparison with spectral-based and MBI-based methods in terms of both
qualitative and quantitative perspectives.

3.1. Experimental Setting

3.1.1. Experimental Data

Two VHR satellite images that cover the areas frequently affected by earthquakes in Sichuan
Province, China, were used in our experiments (Figure 6a). One image of an area in the town of
Hanwang, Mianzhu City, was taken by the QuickBird satellite on 29 February 2008, with a size of
6500 × 6500 pixels (approximately 15 km2). Another image of Yuxi Village, Ya’an City was acquired
on 22 January 2013 by the Pléiades satellite, with a size of 8000 × 8000 pixels (approximately 20 km2)
(Figure 6b). The ground-truth maps for the two test images were manually delineated, with Figure 6c,d
showing the same location with the magnified regions of the ground-truth maps. Table 2 lists the
corresponding parameters of the two satellite sensors.

The two test images covering southwest China have heterogeneous landscapes typical to this
region. Thus, they include scattered built-up areas and dense vegetation mixed together. Additionally,
Hanwang is a town on a plain, whereas the Yuxi is a village in a mountainous region with considerable
topographic relief. The background of built-up areas in the former region is relatively simple, while
that of the latter region is more complex in terms of spectra. The collection time (UTC, universal time
coordinated) of the QuickBird image and Pléiades image is 04:10:15.
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Table 2. Parameters of the satellite sensors.

Sensor Satellite
Pan MS

Resolution (m) Band (µm) Resolution (m) Band (µm)

QuickBird 0.6 0.45–0.90 2.4

0.45–0.52
0.52–0.60
0.63–0.69
0.76–0.90

Pléiades 0.5 0.47–0.83 2.0

0.43–0.55
0.50–0.62
0.59–0.71
0.74–0.94

3.1.2. Evaluation Method

In our experiments, three well-known quality measures (recall, precision and F-value) were used to
evaluate the performance of the proposed method as applied in a previous study [30], which were
calculated as follows:

Recall = TP
TP+FN

Precision = TP
TP+FP

F = 2×Recall×Precision
Recall+Precision

(10)

where TP represents the building pixels detected by the model and included in the ground-truth dataset,
FP refers to the building pixels detected by the model but not included in the ground-truth dataset and
FN represents the building pixels not detected by the model but included in the ground-truth dataset.
The F-value is the harmonic mean of the recall and precision values.

3.2. Interaction between Components in Proposed Method

The gCRF_MBI method consists of three indispensable components: SR, MBI, and gCRF.
Each component can affect the final building result. In this subsection, we first analyze the relationship
between the SR and gCRF and then the relationship between the MBI and SR. Finally, we describe the
relationship between the MBI and gCRF.
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3.2.1. SR and gCRF

The relationship between the SR and gCRF was analyzed by comparing the gCRF model and the
“SR+gCRF” model. In the gCRF model, the restaurant is defined as a square partition grid, and the
size of the square grid is provided in advance. In comparison, the definition of the restaurants in the
“SR+gCRF” model is replaced by the built-up areas and each BAC extracted by the SR is regarded as
a restaurant in the model.

We compared the building results of the two models to evaluate how the SR affects the results.
For the sake of fairness, the PAN image and MS image were both used as inputs for the two models.
The only difference between the two models was the definition of a restaurant. In the gCRF model,
determining the optimal size of the squared partition grid is difficult, and its size affects the clustering
results. The size of the restaurant in this experiment was 20 × 20 pixels. As shown in Figure 7a,
certain roads, bare soils and vegetation were inaccurately detected as buildings because of the similar
spectral information. Quantitative evaluations of the building results of the two models are provided
in Table 3. Due the restrictions of the built-up areas, the building results in the “SR+gCRF” model were
much better than those of the gCRF model. Additionally, classifying the built-up areas as restaurants
presented several advantages, such as eliminating the need to select the size of the square grid and
providing semantic information for the built-up area.
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3.2.2. MBI and gCRF

We analyzed the relationship between the MBI and gCRF by comparing the building results of
the “SR+gCRF” model and the proposed method. The inputs were different for these two models.
In the “SR+gCRF” model, we fused the PAN and MS images to extract the buildings. In comparison,
in the proposed method, the MBI image replaced the MS image and the PAN image was fused by the
gCRF model to extract the buildings. The building results of the “SR+gCRF” model and the proposed
method are provided in Figure 8. In terms of visual inspection, the results of the “SR+gCRF” model
were worse than those of the proposed method overall with respect to the details. Darker roads were
incorrectly labeled as roofs because their spectra were too similar for discrimination, which reveals
that the MBI feature was better than the MS feature in building extraction. It is important to note
that the roofs were dark and roads were highlighted in our experiments, which is inconsistent with
normal conditions.

A quantitative evaluation of the building results of the two models is provided in Table 3. In terms
of the recall, precision and F-value results, the proposed method was nearly 10% better than the
“SR+gCRF” model. In addition, the proposed method had greater consistency with the ground-truth
data compared to the “SR+gCRF” model.
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3.2.3. MBI and SR

The relationship between the MBI and SR was analyzed by comparing the “MBI+SR+gCRF”
model and the proposed method. The inputs were the same for the two models (i.e., masked PAN
image and masked MBI image), although the methods for obtaining the MBI were different. In the
“MBI+SR+gCRF” model, the MBI feature was first extracted from the stacked image (i.e., the MBI
feature of the whole image was obtained), before the masked MBI image was generated by the BAC
mask operation. Finally, the masked MBI image and PAN image were fused into the gCRF model for
building extraction. However, in the proposed method, the masked stacked image was first obtained
from the stacked image by the BAC mask operation, before the masked MBI feature was extracted
using the MBI. Finally, the masked MBI image and PAN image were used as inputs for the gCRF
model. The MBI features and the corresponding building results of the two methods are shown
in Figures 9 and 10, respectively.

As illustrated in Figure 10, the MBI feature of the “MBI+SR+gCRF” model was much worse
than that of the proposed method due to the effect of a large amount of vegetation. This was
greatly improved in the proposed method because the influence of BACs was eliminated. We also
quantitatively compared the buildings extracted by the two methods. As shown in Table 3, the recall,
precision and F-values of the “MBI+SR+gCRF” model were much lower than those of the proposed
method. Thus, the MBI feature in the “MBI+SR+gCRF” model was inadequate for extracting
buildings. The comparative experiment revealed that extracting buildings using MBI directly (i.e., in
the “MBI+SR+gCRF” model) was not ideal and could be greatly improved by restraining the BACs
extracted by the SR, such as in the proposed method.
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Table 3. Quantitative evaluation of the building results of the different methods.

Methods Recall Precision F-Value

gCRF 61.17% 35.43% 44.88%
SR+gCRF 78.19% 61.86% 69.07%

MBI+SR+gCRF 51.53% 39.78% 44.90%
The proposed method 86.39% 75.62% 80.65%

3.3. Performance Evaluation

This section describes three group experiments that were conducted to evaluate the performance
of the proposed method. The first group of experiments was used to compare the buildings extracted
from two satellite images with those from a single image; the second group was used to compare
the performance of the proposed method and spectral-based methods; and the third group was
used to evaluate the performance of the proposed method and MBI-based methods. It is important
to note that the spectral-based methods and MBI-based methods in the second and third groups
included Kmeans-based unsupervised methods and SVM-based supervised algorithms. For the
sake of clarity, the compared methods (except for gCRF_MBI) are named according to the form
“CLASSIFIER_FEATURE_TYPE”, where “CLASSIFIER” refers to the name of the classifier used in the
method, such as Kmeans or SVM; “FEATURE” denotes the input feature image of the classifier, which
could be an MS image or MBI image; and “TYPE” refers to the type of the image unit. For example,
“Pix” and “Seg” denote pixel-based and object-based classifications, respectively. “MV” means that
the label of an over-segment was derived from a majority vote of the pixel-based classification label
within the over-segment. It is important to note that each over-segment is represented as the mean
value of the image within the over-segment. Moreover, the over-segments used in these methods
were obtained using eCognition. In the supervised methods, the training samples of buildings and
non-buildings are 10% of the total pixels of the ground truth for SVM-based methods [31].

3.3.1. Number of Images

In the gCRF_MBI method, the MBI structural features of buildings, which replaces the spectral
feature in MS images, were fused with spatial details in the PAN images to extract buildings.
Compared with the spectral features of the buildings in the MS images, the MBI features of buildings
cannot change with a change in sensor. Therefore, the proposed method has the capability to
simultaneously extract buildings from multiple heterogeneous VHR satellite images.

In this subsection, we compare the building results extracted from a single image with those from
two heterogeneous satellite images, which are called “generalized images”. The “generalized-image”
experiments are the VHR satellite images acquired in succession, as described in the second situation
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in Section 2.4. In the “generalized-image” experiments, we used the QuickBird image and the Pléiades
image, with the parameters of the proposed method learned by one image being generalized to another.

Two experiments were designed for the QuickBird image. In the first experiment, only the
QuickBird image was used to extract buildings as the input for the gCRF_MBI model. However, in the
second experiment, two images from different sensors (the “generalized-images”) were used as inputs
for the model. The parameters of global clustering in the model learned from the Pléiades image
were directly applied to the QuickBird image for building extraction. Similarly, only the Pléiades
image was used input for the model for building extraction in the first experiment. In the second
experiment, the “generalized images” were used as model inputs, while the parameters of global
clustering in the model learned from the QuickBird image were directly used for building extraction in
the Pléiades image.

With respect to visual interpretation, the results of two experiments for the QuickBird image
were similar and the same as those used for the Pléiades image (Figure 11). Table 4 presents the
quantitative evaluation of the building results. The results show that for both the QuickBird image
and the Pléiades image, the building results extracted from a single image were 0.2% higher than
that from “generalized images” in terms of recall and precision. The difference in accuracy was small.
Therefore, we conclude that the proposed method has the capability to simultaneously extract buildings
from multiple heterogeneous and non-calibrated VHR satellite images.
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Figure 11. Building results of the “generalized-image” comparison experiments: (a) only QuickBird
image; (b) “generalized images” (for QuickBird image); (c) only Pléiades image; and (d) “generalized
images” (for Pléiades image).

Table 4. Quantitative evaluation of the building results of the different methods.

Images Recall Precision F-Value

Only QuickBird image 86.39% 75.62% 80.65%
“generalized-images” (for QuickBird image) 86.19% 75.36% 80.41%

Only Pléiades image 80.73% 72.73% 76.52%
“generalized-images” (for Pléiades image) 80.49% 72.42% 76.24%
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3.3.2. gCRF_MBI Compared to Spectral-Based Methods

In this subsection, we compare the proposed gCRF_MBI method to spectral-based methods.
It is important to note that the input for all experiments in this subsection are the two test images,
which are the QuickBird image and the Pléiades image. The gCRF_MBI experiment involves
the two images being acquired simultaneously, as described in the first situation in Section 2.4.
The experimental results reveal that the accuracy of the building results extracted from the two images
simultaneously is the same as that from a single image. The compared spectral-based methods are the
Kmeans-based unsupervised methods and SVM-based supervised methods. The Kmeans-based methods
included Kmeans_MS_Pix, Kmeans_MS_MV and Kmeans_MS_Seg. The SVM-based methods included
SVM_MS_Pix, SVM_MS_MV and SVM_MS_Seg. In the supervised SVM-based algorithms, training
samples were selected from two experimental images rather than from either of the two alone.

The building results for the different spectral-based methods from the two images are shown
in Figures 12 and 13. Overall, the building results extracted by the SVM-based supervised methods
were better than those of the Kmeans-based unsupervised methods. Both the Kmeans-based unsupervised
and SVM-based supervised methods used the spectral feature in the MS image to extract buildings.
In the Pléiades image, some water in the rivers and certain building roofs were similar in their spectra.
Thus, many mistakes were introduced in the building results extracted by both the unsupervised and
supervised methods, as shown in Figure 13.
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Figures 14 and 15 show the quantitative evaluation of the building results. The results of the 
quantitative evaluation also validated the above analysis. In the QuickBird image, the F-values of the 
Kmeans-based methods were approximately 50%, while the F-values of the SVM-based methods were 
nearly 70%. Additionally, the F-values of both the Kmeans-based and SVM-based methods for the 
Pléiades image were lower than those for the QuickBird image. The low accuracy of the Kmeans-based 
and SVM-based methods based on the spectral features from the two images was due to the 
variations in the sensors used to take the images and the spectral resolution, wavelength range and 
central wavelength of the images. These building results were not satisfactory and were far lower 
than those of the proposed method. 
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and (f) SVM_MS_Seg.

Figures 14 and 15 show the quantitative evaluation of the building results. The results of the
quantitative evaluation also validated the above analysis. In the QuickBird image, the F-values of
the Kmeans-based methods were approximately 50%, while the F-values of the SVM-based methods
were nearly 70%. Additionally, the F-values of both the Kmeans-based and SVM-based methods for the
Pléiades image were lower than those for the QuickBird image. The low accuracy of the Kmeans-based
and SVM-based methods based on the spectral features from the two images was due to the variations
in the sensors used to take the images and the spectral resolution, wavelength range and central
wavelength of the images. These building results were not satisfactory and were far lower than those
of the proposed method.
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Figure 14. Quantitative evaluation of the spectral-based methods using the QuickBird image: (a) recall;
(b) precision; and (c) F-value.
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Figure 15. Quantitative evaluation of the spectral-based methods using the Pléiades image: (a) recall;
(b) precision; and (c) F-value.

3.3.3. gCRF_MBI Compared to MBI-Based Methods

In this subsection, we compare the proposed gCRF_MBI method with MBI-based methods.
Similarly, the inputs of all experiments in this subsection are the two test images, which are namely
the QuickBird image and the Pléiades image. The gCRF_MBI experiment involves these two images
acquired simultaneously, as described in the spectral-based experiments. The compared MBI-based
methods are the Kmeans-based unsupervised methods and SVM-based supervised methods. Similar to
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the spectral-based experiments, the Kmeans-based methods included Kmeans_MBI_Pix, Kmeans_MBI_MV
and Kmeans_MBI_Seg. The SVM-based methods included SVM_MBI_Pix, SVM_MBI_MV and
SVM_MBI_Seg. In the supervised SVM-based algorithms, training samples were selected from two
experimental images.

The building results of the different MBI-based methods from the two images are shown
in Figures 16 and 17. In terms of visual interpretation, the building results of the MBI-based methods
were much better than those of the spectral-based methods, while the results of the proposed method
were similar to those of the SVM-based methods, because the MBI features of buildings could be
shared in different images from different sensors. Therefore, the MBI features were more suitable for
building extraction compared to spectral features.
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the QuickBird image. However, distinguishing the buildings in the extracted results was difficult 
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Figures 18 and 19 show the quantitative evaluation of the building results. In the QuickBird image,
the building results of the gCRF_MBI method had a slightly higher recall than those of the SVM-based
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methods, although they performed slightly worse than the SVM_MBI_MV and SVM_MBI_Seg methods
in terms of precision. The Pléiades image produced a similar result to that of the QuickBird image.
However, distinguishing the buildings in the extracted results was difficult because the buildings in
the Pléiades image were closely adjacent. Therefore, in terms of recall and precision, the accuracy of the
building results using the Pléiades image was lower than that of the QuickBird image. In summary,
the gCRF_MBI method achieved a result comparable to that of the SVM-based supervised methods.

Remote Sens. 2017, 9, 1177  18 of 22 

 

precision, the accuracy of the building results using the Pléiades image was lower than that of the 
QuickBird image. In summary, the gCRF_MBI method achieved a result comparable to that of the 
SVM-based supervised methods. 

 
(a) (b) (c) 

Figure 18. Quantitative evaluation of the MBI-based methods using the QuickBird image: (a) recall; 
(b) precision; and (c) F-value. 

 
(a) (b) (c) 

Figure 19. Quantitative evaluation of the MBI-based methods using the Pléiades image: (a) recall; (b) 
precision; and (c) F-value. 

4. Discussion 

In this section, we discussed the proposed method from the viewpoint of three aspects: 
hierarchical image analysis units, feature fusion in a probabilistic framework and multiple methods 
of application. 

4.1. Hierarchical Image Analysis Units 

The gCRF_MBI method consists of three indispensable components, which are namely SR, MBI 
and gCRF. They work on a set of hierarchical image analysis units, i.e., pixels, over-segments, 
buildings and BACs. In terms of image analysis units, the gCRF_MBI method is similar to the 
unsupervised classification method in [32], which utilizes a set of pixels, over-segments, objects and 
scenes. In [32], both objects and scenes are inferred from PAN images during unsupervised learning. 
Instead of inference, the scenes, i.e., BACs in the gCRF_MBI method, have already been extracted 
before they are used as analysis units. Specifically, the SR produces the BACs from each satellite 
image in the gCRF_MBI method. Within each BAC, morphological features (i.e., MBI) are extracted 
and used to delineate the buildings during the local clustering. It can be seen from Figure 10 that the 
MBI extracted from each BAC is significantly better than that from the whole image in terms of 
building extraction. In addition, the complementary relationship among the three components has 
been analyzed under multiple combinations in Section 3.2. 

As for the relationship of SR and gCRF, the definition of a restaurant in the gCRF is different. 
Results reveal that the built-up areas extracted using the SR can help improving the building results. 
As for the MBI and gCRF, experimental results show that morphological feature extracted using MBI 
is better than the MS feature in building extraction. As shown in Table 3, the gCRF_MBI method is 
the best one among all of the other combinations in terms of the quantitative evaluation. 

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

Figure 18. Quantitative evaluation of the MBI-based methods using the QuickBird image: (a) recall;
(b) precision; and (c) F-value.
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Figure 19. Quantitative evaluation of the MBI-based methods using the Pléiades image: (a) recall;
(b) precision; and (c) F-value.

4. Discussion

In this section, we discussed the proposed method from the viewpoint of three aspects: hierarchical
image analysis units, feature fusion in a probabilistic framework and multiple methods of application.

4.1. Hierarchical Image Analysis Units

The gCRF_MBI method consists of three indispensable components, which are namely SR, MBI
and gCRF. They work on a set of hierarchical image analysis units, i.e., pixels, over-segments, buildings
and BACs. In terms of image analysis units, the gCRF_MBI method is similar to the unsupervised
classification method in [32], which utilizes a set of pixels, over-segments, objects and scenes. In [32],
both objects and scenes are inferred from PAN images during unsupervised learning. Instead of
inference, the scenes, i.e., BACs in the gCRF_MBI method, have already been extracted before they
are used as analysis units. Specifically, the SR produces the BACs from each satellite image in the
gCRF_MBI method. Within each BAC, morphological features (i.e., MBI) are extracted and used to
delineate the buildings during the local clustering. It can be seen from Figure 10 that the MBI extracted
from each BAC is significantly better than that from the whole image in terms of building extraction.
In addition, the complementary relationship among the three components has been analyzed under
multiple combinations in Section 3.2.

As for the relationship of SR and gCRF, the definition of a restaurant in the gCRF is different.
Results reveal that the built-up areas extracted using the SR can help improving the building results.
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As for the MBI and gCRF, experimental results show that morphological feature extracted using MBI
is better than the MS feature in building extraction. As shown in Table 3, the gCRF_MBI method is the
best one among all of the other combinations in terms of the quantitative evaluation.

4.2. Feature Fusion in a Probabilistic Framework

Similar to the gCRF in [25], the proposed gCRF_MBI method is also based on a probabilistic
framework for feature fusion. Unlike the gCRF, the MBI features instead of MS images are fused with
PAN images in the gCRF_MBI method. As shown in Figure 8, the morphological feature is better than
the MS feature in terms of building extraction. In addition, as an unsupervised method, the gCRF_MBI
is comparable to the SVM-based supervised classification methods in terms of quantitative evaluations.
This shows that the proposed method might be an effective and efficient way to extract buildings from
VHR satellite images to support decision making in the response phase of natural disasters. The reason
for this is that the proposed method is free of supervised learning. Specifically, in Section 3.3, we
compared the gCRF_MBI method with spectral-based methods and MBI-based classification methods.
As shown in Figures 14 and 15, the proposed method is better than both the SVM-based supervised
method and the Kmeans-based unsupervised method, when MS features are fed into the classifiers.
It can be seen from Figures 18 and 19 that the gCRF_MBI method is better than Kmeans-based methods
and comparable to the supervised SVM-based methods when MBI is used as a feature in these
classifiers. Furthermore, we also compared spectral-based and MBI-based classification results in
a same type of classifier. For both Kmeans-based and SVM-based classification methods, MBI-based
results are better than spectral-based results. These results show that morphological features could
characterize buildings in a rather consistent way across different VHR satellite images. This is the key
point that the proposed method could be applied to building extraction from multiple heterogeneous
VHR satellite images.

4.3. Multiple Methods of Application

Until now, it has been very difficult, if not impossible, to prepare or teach a general model
to automatically detect buildings from heterogeneous VHR satellite images over the world. When
an emergent natural disaster occurs, rapid-building mapping techniques that require little or no
human intervention are preferred. The proposed method would be a nice choice, since it is not only
unsupervised and free of supervised training with fine-tuned parameters, but it could be also utilized
in multiple ways. As shown in Figure 5, the gCRF_MBI could be utilized to automatically detect
buildings using a model learned from multiple VHR satellite images. The learned model could also be
adaptively generalized to new VHR satellite images by keeping the learned statistic characteristics of
buildings unchanged. In this manner, the proposed method could further boost the speed of building
maps from a large number of VHR satellite images for rapid responses to natural disasters.

In this paper, the gCRF_MBI method is dedicated to quickly extracting buildings from
pre-earthquake VHR satellite images. In the future, we would extend the proposed method to
discover the damage triggered by an earthquake [33], or to detect changes by fusing multiple temporal
images [34,35].

5. Conclusions

In this paper, an unsupervised method was proposed to automatically detect buildings from
multiple heterogeneous and non-calibrated VHR satellite images to provide a rapid response to natural
disasters. The contributions of this research consist of the following:

(1) We propose a novel, unsupervised classification framework for building maps from multiple
heterogeneous VHR satellite images by fusing two-layer image information in a unified,
hierarchical model. The first layer is used to reshape over-segmented superpixels to potential
individual buildings. The second layer is used to discriminate buildings from non-buildings
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using the MFs of the candidates. Due to the flexible hierarchical structure of the probabilistic
model, a model is learned for each image in the first layer, while a probabilistic distribution for
buildings and non-buildings is inferred for all images in the second layer.

(2) Compared with traditional methods, the combination of multiple features eliminates the need to
fine-tune model parameters from one image to another. Therefore, the proposed method is more
suitable for automatically detecting buildings from multiple heterogeneous and uncalibrated
VHR satellite images.

In the proposed gCRF_MBI method, the SR was first used to extract BACs from each MS image.
After this, MBIs were extracted from all the masked PAN and MS images with the BACs to characterize
the structural features of buildings. Finally, buildings were automatically detected in the gCRF model
by fusing both the MBI and masked PAN images. Moreover, the roles of three components of the
gCRF_MBI model (SR, MBI and gCRF) were analyzed in our experiments, which showed that each
component in the proposed method could be improved in some way. For example, the SR used for
extracting the BACs could be replaced by other visual attention models, such as the Itti model [36] or
the FDA_SRD (i.e., frequency domain analysis and salient region detection) model [37], while the MBI
used for extracting MFs could be replaced by other common features of buildings, such as shadows
or heights. The experimental results show that the proposed method is better than Kmeans-based
unsupervised methods and comparable to SVM-based supervised methods. In addition, there are
some drawbacks to the proposed method. For example, variable imaging environments, such as haze
or cloud cover, were not considered here. In the future, we would extend the proposed method to
a general scene for building detection or other object categories.
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