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Abstract: Recently, sparse unmixing has received particular attention in the analysis of hyperspectral
images (HSIs). However, traditional sparse unmixing ignores the different noise levels in different
bands of HSIs, making such methods sensitive to different noise levels. To overcome this problem,
the noise levels at different bands are assumed to be different in this paper, and a general sparse
unmixing method based on noise level estimation (SU-NLE) under the sparse regression framework
is proposed. First, the noise in each band is estimated on the basis of the multiple regression
theory in hyperspectral applications, given that neighboring spectral bands are usually highly
correlated. Second, the noise weighting matrix can be obtained from the estimated noise. Third,
the noise weighting matrix is integrated into the sparse regression unmixing framework, which can
alleviate the impact of different noise levels at different bands. Finally, the proposed SU-NLE is
solved by the alternative direction method of multipliers. Experiments on synthetic datasets show
that the signal-to-reconstruction error of the proposed SU-NLE is considerably higher than those
of the corresponding traditional sparse regression unmixing methods without noise level estimation,
which demonstrates the efficiency of integrating noise level estimation into the sparse regression
unmixing framework. The proposed SU-NLE also shows promising results in real HSIs.

Keywords: alternative direction method of multipliers (ADMM); hyperspectral image (HSI);
sparse unmixing method based on noise level estimation (SU-NLE)

1. Introduction

Hyperspectral imaging has been a widely used commodity, and hyperspectral image (HSI) is
intrinsically a data cube which has two spatial dimensions (width and height) and a spectral dimension.
The wealth of spectral information in HSIs has opened new perspectives in different applications,
such as target detection, spectral unmixing, object classification, and matching [1–13]. The underlying
assumption in object classification techniques is that each pixel comprises the response of only one
material. Mixed pixels are prevalent in HSIs due to the insufficient spatial resolution of imaging
sensors and the mixing effects of ground surface, which make several different materials jointly occupy
a single pixel, thereby resulting in great difficulties for the accurate interpretation of HSIs [14,15].
Therefore, spectral unmixing is essential as it aims at decomposing mixed pixels into a collection
of pure spectral signatures, called endmembers, and their corresponding proportions in each pixel,
called abundances [16,17].

To address this problem, linear mixing model (LMM) has been extensively applied
in the fields of geoscience and remote sensing processing due to its relative simplicity
and straightforward interpretation [15]. Spectral unmixing can be roughly divided into three main
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classes according to the prior knowledge of the endmembers [18], namely, supervised, unsupervised,
and semi-supervised methods. Supervised unmixing methods estimate the abundances with known
endmembers, and the most representative supervised unmixing method is the fully constrained least
squares method [19]. Unsupervised unmixing methods aim to estimate both the endmembers and their
corresponding abundances. One approach is to extract the endmember using endmember extraction
algorithms [20,21] first, and then their corresponding abundances can be estimated by supervised
unmixing methods. In addition, the endmembers and their corresponding abundances can be
estimated simultaneously by independent component analysis methods [22,23] and non-negative
matrix factorization-based methods [24–26]. A semi-supervised unmixing method assumes that
a mixed pixel can be formulated in the form of linear combinations of numerous pure spectral
signatures (library) known in advance and then finds the optimal subset of signatures to optimally
model the mixed pixel in the scene, which leads to a sparse solution [27].

Sparse representation has recently been studied in a variety of problems [28–30]. Sparse unmixing
is a semi-supervised unmixing method, which assumes that the observed HSI can be formulated to
find the optimal subset of pure spectral signatures from a prior large spectral library. Some greedy
algorithms have been proposed for sparse unmixing of HSI, such as the orthogonal matching pursuit
(OMP), OMP+ and the iterative spectral mixture analysis (ISMA) algorithm. However, the unmixing
accuracies of these algorithms decrease rapidly due to the high correlation of the spectra of different
materials. To overcome this problem, Akhtar et al. proposed a novel futuristic heuristic greedy
algorithm called OMP-Star [31], which does not only show robustness against the high correlation
among the spectra but also exhibits the advantages of greedy algorithms. Tang et al. proposed the
regularized simultaneous forward-backward greedy algorithm (RSFoBa) [32] for the sparse unmixing
of HSIs and revealed that the combination of the forward and backward greedy steps can make the
RSFoBa more stable and less likely trapped into the local optimum than traditional greedy algorithms.
Shi et al. proposed a novel sparse unmixing algorithm called subspace matching pursuit [33], which
exploits the fact that the pixels in the HSI are usually highly correlated; thus, they utilized the
low-degree mixed pixels in the HSI to iteratively find a subspace for reconstructing the HSI. Fu et al.
proposed a new self-dictionary multiple measurement vector (SD-MMV) model [34], where the
measured hyperspectral pixels are adopted as the dictionary, and then a greedy SD-MMV algorithm
using simultaneous orthogonal matching pursuit is proposed.

In addition, taking advantage of sparse optimization, several sparse regression-based unmixing
methods that have anti-noise capability have also been proposed [35]. Bioucas et al. proposed
a sparse unmixing method through variable splitting and augmented Lagrangian (SUnSAL) [36],
which formulated the sparse unmixing method as a sparse regression problem, and the sparsity
of abundances was characterized by the `1 norm. However, the `1 norm leads to inconsistent
endmember selection. To address this problem, Themelis et al. proposed the weighted lasso
sparse unmixing method [18], where weights are adopted to penalize different coefficients in the `1

regularization scheme. SUnSAL also ignores the spatial information in HSIs. To maximize
the spatial information in HSIs, Iordache et al. included the total variation regularization term
to the SUnSAL and developed a new sparse unmixing algorithm called SUnSAL and total variation [37].
Mei et al. proposed a novel spatially and spectrally constrained sparse unmixing algorithm
by imposing spatial and spectral constraints in selecting endmembers from a spectral library that
consists of image-derived endmembers [38], which can alleviate the influence of spectral variation.
Zhong et al. proposed a new sparse unmixing algorithm based on non-local means (NLSU) [39],
and it introduces a non-local mean regularization term for sparse unmixing through a weighting
average for all the pixels in the abundance image, which is adopted to exploit the similar patterns
and structures of the abundance. Iordache et al. also proposed collaborative SUnSAL (CLSUnSAL)
to improve unmixing results by adopting the collaborative sparse regression framework [40],
where the sparsity of abundance is characterized by the `2,1 norm and simultaneously imposed
on all pixels in the HSI. Zheng et al. proposed a new weighted sparse regression unmixing method [41],



Remote Sens. 2017, 9, 1166 3 of 28

where the weights adopted for the next iteration are computed from the value of the current solution.
To overcome the difficulty in selecting the regularization parameter, Feng et al. proposed the adaptive
spatial regularization sparse unmixing method based on the maximum a posteriori estimation [42].
To improve the unmixing performance on noisy HSIs Zhang et al. proposed framelet-based sparse
unmixing, which can promote the sparsity of abundance in the framelet domain and discriminate
the approximation and detail components of HSI after framelet decomposition [35]. To consider
the possible nonlinear effects, two novel sparse unmixing methods have been proposed [43,44].
Considering that `p norm has shown numerous advantages over `1 norm, sparse unmixing methods
based on `p norm have also been developed [45,46]. Salehani et al. developed a new sparse unmixing
method using arctan smoothing [14], which starts from an `1 norm optimization problem and iteratively
converges quickly to an `0 norm optimization problem.

Other types of sparse unmixing methods have also been proposed. Themelis et al. presented
a novel hierarchical Bayesian method for the sparse unmixing of HSIs [47] and selected suitable
priors to ensure the non-negativity of the abundances and favor sparse solutions for the abundances.
Given that the relaxation to the original `0 norm may introduce sensitive weighted parameters
and additional calculation error, Xu et al. thus developed a novel sparse unmixing method based
on multi-objective optimization without any relaxation [48] that contains two correlative objectives:
minimizing the reconstruction error and controlling the sparsity of abundance. The priori knowledge
of HSIs has been integrated into the framework of hyperspectral unmixing. In addition, Tang et al.
proposed a novel method called sparse unmixing using spectra as a priori information [49], which can
address the generation of virtual endmembers and the absence of pure pixels.

However, all these methods ignore the different noise levels in different bands of HSIs, and thus
sensitive to the different noise levels. To make the unmixing peformance robust for outlier and noise,
some methods based on correntropy have been proposed [50,51]. Specifically, Zhu et al. [51]
proposed a sparsity-promoting correntropy-based unmixing method named CUSAL-SP and has shown
promising performance. Figure 1 shows five representative bands of the Indian Pines image. As shown
in Figure 1, the noise levels of the five representative bands are different. In addition, the noise levels
of Bands 1 and 220 are evidently higher than those of the other three bands, and previous sparse
unmixing methods treat all the bands similarly. However, for real HSIs, the noise levels of different
bands vary, and bands with high noise levels will dominate the loss function ‖Y− EA‖2

F, where Y
denotes the collected mixed pixel, E denotes the spectral library, A denotes the abundance matrix,
and ‖.‖F represents the matrix Frobenius norm. The estimation of the abundance of small noise
level would be severely affected and deviate significantly from the true value. Thus, treating all
bands in the same way would be inaccurate. To overcome this problem, according to Figure 1,
the noise levels at different bands are assumed to be different in this paper, and a novel sparse
unmixing method based on noise level estimation (SU-NLE) is proposed, where the algorithm flow
of the proposed method is presented in Figure 2. First, a simple and efficient noise estimation
method based on the multiple regression theory developed by Bioucas and Nascimento [52] is
adopted to estimate the noise in each band of HSI. Second, to consider the noise level of each
band, the proposed SU-NLE adopts a weighting strategy for treating all bands separately, that is,
the higher the noise level is, the smaller the weight of the band is. The weighting strategy can
strike a balance between different noise levels in different bands of the HSI, thereby alleviating
the impact of the noise levels at different bands on the final sparse unmixing accuracy. Third, the noise
weighting matrix obtained is integrated into the sparse regression unmixing framework, which can
make the proposed SU-NLE robust for different noise levels in different bands. Finally, to solve
the proposed SU-NLE, we adopt the alternative direction method of multipliers (ADMM), which is
a simple and powerful algorithm that is suitable for constrained optimization.

The main contribution of this work is the general sparse unmixing method called SU-NLE,
which adopts a simple and efficient weighting strategy to strike a balance between different noise
levels in different HSI bands, and the weighting strategy is integrated into the sparse regression
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unmixing framework to formulate the proposed method. When the noise level of each band is
the same, the weighting matrix is the identity matrix, and it is reduced to traditional sparse regression
methods. Thus, the proposed SU-NLE is more general and adaptive. The proposed SU-NLE can be
solved by the ADMM. Experiments on synthetic datasets show that the signal-to-reconstruction error
(SRE) of the proposed SU-NLE is considerably higher than those of the corresponding traditional
sparse regression unmixing methods without noise level estimation, which demonstrates the efficiency
of integrating noise level estimation into the sparse regression unmixing framework. The proposed
SU-NLE also shows promising results in real HSIs.

The remainder of this paper is organized as follows. In Section 2, we describe the proposed
SU-NLE and discuss the ADMM developed for solving the proposed method. In Section 3, we evaluate
the performances of the proposed SU-NLE and other algorithms on synthetic datasets and real HSIs.
Section 4 concludes this paper.

(a) (b) (c) (d) (e)

Figure 1. Five representative bands of Indian Pines image (a) band 1, (b) band 10, (c) band 30,
(d) band 200 and (e) band 220.

Sparse Unmixing based 
on the weighting matrix 
using Algorithm 2

Estimate the noise in 
each band based on the 
multiple regression theory

Obtain the noise 
weighting matrix W
using Algorithm 1

Figure 2. Algorithm flow of the proposed method.

2. Sparse Unmixing of HSI with Noise Level Estimation

In this section, we will describe the proposed sparse unmixing method SU-NLE. Then, we will
develop an ADMM for solving the proposed method. Finally, we will describe the relation of our
proposed SU-NLE with traditional sparse regression unmixing methods.

2.1. The Proposed SU-NLE

The LMM is widely admitted in the analysis of HSI, which assumes that a pixel can be represented
as a linear combination of endmembers, and the linear coefficients are their corresponding abundances.
Mathematically, the LMM can be written as follows:

y = Ea + n, (1)

where y denotes a D × 1 vector of observed pixel in HSI, with D denoting the number of bands,
and E = [e1, ..., eM] ∈ RD×M denotes the endmember, with M denoting the number of endmembers,
a ∈ RM×1 denotes the abundance vector, and n denotes the additive noise. Thus, the matrix formulation
of LMM can be written as follows:

Y = EA + N, (2)
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where Y ∈ RD×P denotes the collected mixtures matrix, with P denoting the number of pixels,
A ∈ RM×P denotes the abundance matrix, and N ∈ RD×P the collected additive noise.

The abundances have to obey two constraints, namely, they have to be nonnegative (ANC),
and they should sum to 1 (ASC), i.e.,

M

∑
i=1

ai = 1,

ai ≥ 0, ∀i = 1, ..., M.

(3)

However, for the unmixing of HSI in practice, the ASC constraint not always holds true due
to the intensive signature variability in an HSI [27]. Thus, we ignore the ASC constraint in unmixing
of HSI.

Although the traditional sparse regression unmixing methods have been widely used in sparse
unmixing of HSI, they do not take the noise level of different bands into consideration. As can be clearly
seen from Figure 1, the noise level of the five representative bands is different, and the noise levels
of bands 1 and 220 are obviously higher than those of the other three bands. Besides, the previous works
correlated with noise estimation of HSI [52–54] have demonstrated that the hyperspectral imaging
spectrometers adopt very narrow band, which makes the energy acquired in each band not enough
to obtain high signal-to-noise ratio (SNR), and the HSI is usually corrupted by wavelength-dependent
and sensor-specific noise, which not only degrades the visual quality of the HSI but also limits
the precision of the subsequent image interpretation and analysis. That is to say, the noise of HSI is
wavelength-dependent, thus the noise levels of different bands are different. However, the traditional
sparse regression unmixing methods treat all the bands in the same way, which do not take the different
noise levels of different bands into consideration. These bands having high level of noise will dominate
the loss function ‖Y− EA‖2

F, and the estimation of the whole abundance matrix would be seriously
affected, which makes it deviate far away from the true value. Thus, it would be inappropriate to treat
all the bands in the same way.

To overcome the above mentioned problem, according to the Figure 1 and the previous works
correlated with noise estimation of HSI [52–54], it is natural to assume that the noise levels at different
bands are different. We adopt a simple and efficient noise estimation method based on the multiple
regression theory, developed by Bioucas and Nascimento [52], to estimate the noise in each band
of HSI. The underlying reason is that the neighboring spectral bands are usually highly correlated,
which makes the multiple regression theory well suited for noise estimation of HSI.

Define the Z = YT , zi = [Z]:,i and Zδi = [z1, · · · , zi−1, zi+1, · · · , zD], where [Z]:,i denotes the ith
column of Z, i.e., zi denotes all the pixels of ith band of HSI. It is assumed in [52] that zi is a linear
combination of the remaining D− 1 bands. Mathematically, it can be written as follows:

zi = Zδi βi + ξi, i = 1, · · · , D, (4)

where βi is the regression vector, and ξi is the modeling error vector. βi can be estimated based
on the least squares regression scheme for each band:

β̂i = (ZT
δi

Zδi )
−1ZT

δi
zi, i = 1, · · · , D. (5)

Then, the estimated noise in each band of HSI is as follows:

ξ̂i = zi − Zδi β̂i, i = 1, · · · , D. (6)

Thus, it is natural to estimate the noise level of each band as follows:
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σi =

√√√√ 1
P

P

∑
j=1

ξ̂2
i (j), i = 1, · · · , D. (7)

where σi (i = 1, · · · , D) denotes the level of noise in each band, and ξ̂i(j) denotes the jth pixel of ith
band of HSI.

After calculating the noise level in each band, we adopt a simple and effective weighting strategy
to strike a balance between different noise levels in different bands of HSI, and higher noise level band
would have smaller weight. The diagonal element of the weighting matrix is the reciprocal of the noise
level in each band, and the non-diagonal elements are all zero, which can alleviate the timpact
of the noise levels at different bands. Mathematically, the diagonal element of the weighting matrix is
as follows:

Wi,i = 1/σi, i = 1, · · · , D. (8)

where W =

 W1,1 · · · 0
...

. . .
...

0 · · · WD,D

 denotes the weighting matrix. To sum up, the detailed procedure

to obtain the weighting matrix W is listed in Algorithm 1.

Algorithm 1: Obtain the weighting matrix W
Input: Y;
Output: W;

1 Initialization: Z = YT , W = 0;
2 for i = 1, · · · , D do
3 zi = [Z]:,i ;
4 Zδi = [z1, · · · , zi−1, zi+1, · · · , zD];
5 β̂i = (ZT

δi
Zδi )

−1ZT
δi

zi;

6 ξ̂i = zi − Zδi β̂i;

7 σi =
√

1
P ∑P

j=1 ξ̂2
i (j);

8 Wi,i = 1/σi;
9 end

10 return W.

After obtaining the weighting matrix, we integrate the weighting matrix into the sparse regression
unmixing framework to formulate our proposed method. Sparse unmixing is a semi-supervised
unmixing method, which assumes that the observed HSI can be formulated as finding the optimal
subset of pure spectral signatures from a prior large spectral library. In other words, hyperspectral
vectors are approximated by a linear combination of a “small” number of spectral signatures
in the library, and it is widely admitted that the sparsity of abundance can be characterized by the `1

norm. To take the noise level and the sparsity of abundance into account, mathematically, it can be
written as follows:

min
A
‖W(EA− Y)‖2

F + λ‖A‖1,

s.t. A ≥ 0,
(9)

where λ is a regularization parameter, which strikes the balance between the quadratic data fidelity
term and the sparsity-inducing regularization term.

However, mutual coherence of the endmember signatures in spectral library is usually very high.
Previous work in [27] has demonstrated that the mutual coherence has a large impact on the final sparse
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unmixing solutions. The more similar the endmember signatures in spectral library are, the more
difficult the sparse unmixing is. To overcome the above mentioned problems, Iordache et al. proposed
the collaborative SUnSAL (CLSUnSAL) to improve the unmixing results by adopting the collaborative
sparse regression framework [40]. Figure 3 shows the graphical illustration of the CLSUnSAL,
and it can be clearly seen from Figure 3 that the nonzero abundance should appear in only a few
lines, which indicates sparsity along the pixels of an HSI. In [55], it has been demonstrated that
the probability of sparse collaborative recovery failure decays exponentially with regard to the number
of channels, which demonstrates that multichannel sparse recovery is better than single channel
methods. In addition, the probability bounds still hold true even for a small number of signals. In other
words, for a real HSI, the collaborative (also called “simultaneous” or “multitask”) sparse regression
approach has shown advantages over the noncollaborative ones, which leads to a structured solution
since the fractional abundances contain only a few nonzero lines along the pixels of an HSI [40].
So it can be assumed that the abundance has the underlying collaborative sparse property, which is
characterized by the `2,1 norm. Therefore, to take the noise level and the collaborative sparsity
of abundance into account, mathematically, it can be written as follows:

min
A
‖W(EA− Y)‖2

F + λ‖A‖2,1,

s.t. A ≥ 0.
(10)

where for the abundance matrix A ∈ RM×P, `2,1 norm is defined as follows:

‖A‖2,1 = ∑M
i=1

√
∑P

j=1 A2
ij. (11)

The `2,1 norm can impose sparsity among the endmembers simultaneously (collaboratively) for all
pixels, which enforces the presence of the same singletons in the image pixels. The main difference
between using `1 norm and `2,1 norm is that the former adopts the pixel-wise independent regression,
while the latter imposes sparsity among all the pixels collaboratively [56].

y1 y2 … … … … … yP e1 e2 … … … … … eM=

a1

a2

…

ai

…

aj

…

aM

Collected mixed pixel Spectral library

Abundance matrix

Figure 3. Graphical illustration of the collaborative sparse unmixing method through variable splitting
and augmented Lagrangian (CLSUnSAL).

Therefore, for our proposed SU-NLE, mathematically, it can be written as follows:

min
A
‖W(EA− Y)‖2

F + λ‖A‖d,1,

s.t. A ≥ 0.
(12)

For the data fidelity term, the weighting matrix W is used to strike a balance between different
noise levels in different bands of HSI, and the regularization term λ‖A‖d,1 is used to impose
sparsity of HSI, where d = 1 or 2. When d = 1, the ‖A‖d,1 reduces to ‖A‖1, and the Equation (12)
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reduces to Equation (10), thus Equation (10) is named as SU-NLE (d = 1). When d = 2, the ‖A‖d,1
reduces to ‖A‖2,1, and the Equation (12) reduces to Equation (11), thus Equation (11) is named
as SU-NLE (d = 2).

2.2. ADMM for Solving SU-NLE

To solve the optimization problem in Equation (12), we develop an ADMM to take advantage
of the problem structure [57]. By adding the auxiliary matrix V1 and V2, the problem in Equation (12)
can be reformulated as follows:

min
A
‖W(EA− Y)‖2

F + λ‖V1‖d,1 + lR+(V2),

s.t. V1 = A,

V2 = A,

(13)

where lR+(A) = ∑i,j lR+(Ai,j) is the indicator function for the nonnegative orthant R+, Ai,j
represents the i, j-th component of A, and lR+(Ai,j) is zero if Ai,j belongs to the nonnegative orthant,
and +∞ otherwise.

By using the compact form, Equation (13) can be rewritten as follows:

min
V,Q

g(V, Q) s.t. GQ + HV = Z, (14)

where g(V, Q) = ‖W(EA − Y)‖2
F + λ‖V1‖d,1 + lR+(V2), G =

[
I 0
0 I

]
, Q =

[
A
A

]
,

H =

[
−I 0
0 −I

]
, V =

[
V1

V2

]
, Z =

[
0
0

]
. Thus, the augmented Lagrangian function can be

formed as follows:
L(V, Q, Λ) = g(V, Q) +

µ

2
‖GQ + HV− Z−Λ‖2

F, (15)

where µ > 0 is a positive constant, Λ is a scaled dual variable, and Λ/µ represents the Lagrange
multipliers. Therefore, we can sequentially optimizes L with respect to V, Q and Λ.

To update V1, when d = 1, we solve

V1
k+1 = arg min

V1
λ‖V1‖1 +

µ

2
‖V1 −Ak −Λk

1‖2
F

=Sλ/µ(A
k + Λk

1),
(16)

where Sτ [x] = sgn(x) max(|x| − τ, 0) denotes the shrinkage operator [58], and τ is a
threshold parameter.

When d = 2, we solve

V1
k+1 = arg min

V1
λ‖V1‖2,1 +

µ

2
‖V1 −Ak −Λk

1‖2
F, (17)

whose solution is the well-known vect-soft threshold [59], applied independently to each row r
of the update variable as follows:

V1
k+1(r, :) = vect-soft(ζ(r, :),

λ

µ
), (18)

where ζ = Ak + Λk
1, and vect-soft(b, τ) denotes the row-wise application of the vect-soft-threshold

function g(b, τ) = b max{‖b‖2−τ,0}
max{‖b‖2−τ,0}+τ

.
To update V2, we solve
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V2
k+1 = arg min

V2
lR+(V2) +

µ

2
‖V2 −Ak −Λk

2‖2
F

=max (Ak + Λk
2, 0).

(19)

To update A, we solve

Ak+1 = arg min
A
‖W(Y− EA)‖2

F +
µ

2
(‖V1

k+1−

A−Λk
1‖2

F + ‖V2
k+1 −A−Λk

2‖2
F)

=[(WE)T(WE) + µI]−1[(WE)T(WY)+
µ

2
(V1

k+1 −Λk
1 + V2

k+1 −Λk
2)].

(20)

Thus, the primal and dual residuals rk+1 and dk+1 are as follows:

rk+1 = GQk+1 + HVk+1, (21)

dk+1 = µGTH(Qk+1 −Qk). (22)

According to [57], the stopping criterion is as follows:

‖rk+1‖F/
√
(3M + D)P ≤ ε and

‖dk+1‖F/
√
(3M + D)P ≤ ε.

(23)

In the ADMM scheme for solving RSU, µ has a strong influence on the final convergence speed.
We use the same approach as in [57] to update µ, which aims at keeping the ratio between the ADMM
primal norms and dual residual norms within a given positive interval, and they both converge to zero.

Proposition 1. The function g in Equation (14) is closed, proper, and convex. If there exists a solution V∗

and Q∗, then the sequences {Vk} and {Qk} converge to V∗ and Q∗, respectively. Otherwise, one of the sequences
{Vk} and {Qk} diverges [57].

According to [57], we can obtain the Proposition 1, and the detailed proof of the convergence
can be referred to [57]. To sum up, the detailed procedure for solving the Equation (12) is listed
in Algorithm 2.

Algorithm 2: Solving Equation (12) with ADMM
Input: Y, E;
Output: A;

1 Initialization: k = 0, Λ0
1 = 0, Λ0

2 = 0, λ, µ, ε, Maxiter;
2 while Equation (23) is not satisfied & k < Maxiter do

3 V1
k+1 =

{
Sλ/µ(A

k + Λk
1), when d = 1,

Update by Equation (18), when d = 2;
4 V2

k+1 = max (Ak + Λk
2, 0);

5 Ak+1 = [(WE)T(WE) + µI]−1[(WE)T(WY) + µ
2 (V1

k+1 −Λk
1 + V2

k+1 −Λk
2)];

6 Λk+1
1 = Λk

1 − (V1
k+1 −Ak+1) ;

7 Λk+1
2 = Λk

2 − (V2
k+1 −Ak+1);

8 k = k + 1;
9 end

10 return A = Ak+1.
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2.3. Relation to Traditional Sparse Regression Unmixing Methods

For the convenience of comparison, we adopt a simple preprocessing method for the weighting
matrix, i.e., the diagonal elements of weighting matrix all divide by their mean values,
since the diagonal elements of weighting matrix of the proposed SU-NLE are usually very large,
which usually have two orders of magnitude. Our SU-NLE can take different levels of noise of different
bands into account. Besides, when the noise level of each band is the same, the weighting matrix
is the identity matrix, when d = 1, the ‖A‖d,1 reduces to ‖A‖1, thus the proposed SU-NLE reduces
to SUnSAL [36] when the noise level of each band is the same and d = 1. When d = 2, the ‖A‖d,1
reduces to ‖A‖2,1, thus the proposed SU-NLE reduces to CLSUnSAL [40] when the noise level of each
band is the same and d = 2. So the proposed SU-NLE is more general and adaptive than traditional
sparse regression unmixing methods.

3. Experiments

In this section, we will evaluate the performances of the proposed SU-NLE and the compared
algorithms both on the synthetic datasets and real HSIs. To demonstrate the efficiency of the proposed
SU-NLE, we mainly compare with three strongly correlated algorithms, i.e., SUnSAL [36],
CLSUnSAL [40] and CUSAL-SP [51]. To evaluate the performance of different sparse unmixing
algorithms, we adopt the SRE [27] to measure the power between the signal and error, and the SRE is
defined as follows:

SRE = 10log10

(
‖A‖2

F

‖A− Â‖2
F

)
, (24)

where A and Â denotes the actual and estimated abundance, respectively. Generally speaking,
larger SRE means better hyperspectral sparse unmixing performance.

3.1. Experimental Results with Synthetic Data

In the synthetic data experiments, the spectral library that we use is a dictionary of minerals
from the United States Geological Survey (USGS) digital spectral library available at http://speclab.cr.
usgs.gov/spectral-lib.html, which has 224 spectral bands uniformly ranging from 0.4 µm to 2.5 µm.
The adopted spectral library in this paper has 240 endmembers, which have been previous used
in [14,40]. Besides, we have conducted a lot of tests to find an appropriate parameter setting
for the proposed SU-NLE and the other compared algorithms. The regularization parameter λ plays
an important role in the regression based sparse unmixing algorithms, which controls the trade-off
between the fidelity term and the sparsity of the abundance. The Lagrange multiplier regularization
parameter µ, the error tolerance ε and the maximum number of iterations, which have less impact
on the unmixing accuracy of the regression based sparse unmixing algorithms, are set to a fixed
value. Therefore, the common parameter setting of the methods SU-NLE, SUnSAL and CLSUnSAL
for synthetic data is shown in Table 1. We also conduct experiments on the simulated experiment I using
CUSAL-SP [51] for λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105}, and the experiments
are performed on a server with 3.1-GHz Intel Core CPU, 16-GB memory, and Matlab code. The time
consumption of CUSAL-SP is less than 1, 000 s when λ ≤ 10−3. However, the time consumption
of CUSAL-SP is more than 12 h when λ = 10−2. If we tune the regularization parameter
λ of CUSAL-SP in the same way as SUnSAl, CLSUnSAL and the proposed SU-NLE, the time
consumption of all the simulated experiments would be more than one year. Nevertheless, we tune
the regularization parameter λ of CUSAL-SP according to [1]. Specifically, the sparsity-promoting
parameter λ is tuned using the set ŝ× {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3}, ŝ is a rough measure
of the sparsity level of the unknown abundance matrix A from the collected mixtures matrix Y
according to [60]. The ŝ is usually ranging from 0 to 1, so λ is less than 10−3, and the time consumption
of CUSAL-SP is comparable with SUnSAl, CLSUnSAL and the proposed SU-NLE. Since the way
to tune the regularization parameter λ of CUSAL-SP and other methods is different, so we do not

http://speclab.cr.usgs.gov/spectral-lib.html
http://speclab.cr.usgs.gov/spectral-lib.html


Remote Sens. 2017, 9, 1166 11 of 28

show the SRE results of CUSAL-SP with respect to different λ. Therefore, we tune the sparse unmixing
performance of SUnSAL, CLSUnSAL and the proposed SU-NLE using λ ∈ {10−5, 10−4, 10−3, 10−2,
10−1, 1, 101, 102, 103, 104, 105}, and tune the sparse unmixing performance of CUSAL-SP using
λ ∈ ŝ× {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3}.

Table 1. Common parameter setting of the proposed SU-NLE, SUnSAL and CLSUnSAL for
synthetic data.

λ µ ε Maxiter

{10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105} 10−2 10−6 1000

3.1.1. Simulated experiment I

In this experiment, the simulated HSI, of 75 × 75 pixels and 224 bands, is generated based on the
LMM. Five endmembers are randomly selected from the spectral library that have 240 endmembers,
and the abundances of the 5 selected endmembers are generated in the same way as in [37]. The
code to generate the abundance maps is available at http://www.lx.it.pt/~bioucas/publications.html.
There are both pure and mixed regions in the resulted HSI, and the mixtures are made up of two to
5 endmembers, which are distributed spatially in the form of distinct square regions. The generated
abundances of the 5 selected spectral signatures are shown in Figure 4, which indicates that both
pure and mixed regions exist in the simulated HSI. The background pixels comprise mixtures of the
5 endmembers, where their abundances are randomly fixed to 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051.
The data cubes obtained are then degraded by Gaussian white noise, and the SNRs of the different
HSI bands are different ranging from 20 dB to 40 dB, which is shown in Figure 5a, and the mean SNR
is 30.12 dB. Figure 5b shows the diagonal elements of weighting matrix of the proposed SU-NLE,
and it can be observed from Figure 5a,b that the fluctuation of the SNR of different bands is quite in
accordance with the diagonal elements of weighting matrix, which demonstrates the efficiency of the
estimation of the level of noise in each band. Besides, Figure 6 shows the SREs of the methods SU-NLE,
SUnSAL and CLSUnSAL as a function of varying regularization parameter λ. As shown in Figure 6,
the SREs of SUnSAL, CLSUnSAL, SU-NLE (d = 1) and SU-NLE (d = 2) first increase as λ increases,
and obtain the best SREs when λ = 10−2, 1, 10−2, 1, respectively. The SREs of SUnSAL, CLSUnSAL,
SU-NLE (d = 1) and SU-NLE (d = 2) then decrease when λ increases to a certain level. Besides, the
SREs of some methods approximate to 0 when λ > 102. This is due to sparsity dominating the solution,
which makes all the estimated abundances be nearly 0 when λ is too big. In addition, the SREs of
SU-NLE (d = 1) and SU-NLE (d = 2) are higher than those of SUnSAL and CLSUnSAL when λ < 102,
respectively, because SU-NLE (d = 1) and SU-NLE (d = 2) adopt the weighting strategy that considers
the different noise levels of different bands, which demonstrates the efficiency of integrating noise level
estimation into the sparse regression unmixing framework. Moreover, Figure 4 shows the abundance
maps of 5 endmembers for different methods when tuning the performance of all methods to their
best SREs. As shown in Figure 4, the abundance maps of the 5 endmembers for SU-NLE (d = 1) and
SU-NLE (d = 2) approximate better to the ground-truth abundance maps than those of SUnSAL and
CLSUnSAL, which also demonstrates the efficiency of integrating noise level estimation into the sparse
regression unmixing framework.

http://www.lx.it.pt/~bioucas/publications.html
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Figure 4. Abundance maps of 5 endmembers estimated with different methods under Gaussian white
noise with both pure and mixed regions having 75 × 75 pixels and 224 bands. From top to bottom:
ground truth, SUnSAL (λ = 10−2), CLSUnSAL (λ = 1), CUSAL-SP (λ = ŝ× 10−3), SU-NLE (d = 1)
(λ = 10−2) and SU-NLE (d = 2) (λ = 1).
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Figure 5. (a) The signal-to-noise ratio (SNR) of different band of the generated hyperspectral image
(HSI) and (b) diagonal elements of the weighting matrix using proposed sparse unmixing method
based on noise level estimation (SU-NLE) in simulated experiment I.
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Figure 6. SREs of the methods SU-NLE, SUnSAL and CLSUnSAL as a function of varying regularization
parameter λ under Gaussian white noise with both pure and mixed regions having 75 × 75 pixels
and 224 bands.

3.1.2. Simulated experiment II

In this simulated experiment, we generate simulated HSIs without pure regions. We adopt the
approach in [61] to generate the abundances, and the code is available at: https://bitbucket.org/aicip/
mvcnmf. The synthetic HSI has q2 × q2 pixels without pure pixels using the above mentioned spectral
library that have 240 endmembers. The HSI is divided into q× q regions, and each region has q× q
pixels, where q controls the region size and HSI image size. All pixels in each region have the same
type of ground cover, randomly selected as one of the endmember classes, then the spatial low-pass
filter of size (q + 1) × (q + 1) has been applied to the HSI to create mixed pixels. All pixels with
abundances greater than 80% are replaced by a mixture of all endmembers with equally distributed
abundances, which aims to further remove pure pixels, and the generated true abundances are shown
in Figure 7. The data cubes obtained are then degraded by Gaussian white noise, and the SNRs of
the different HSI bands vary and range from 10 dB to 50 dB, which is shown in Figure 8a, and the
mean SNR is 30.33 dB. Figure 8b shows the diagonal elements of weighting matrix of the proposed
SU-NLE, and it can be seen from Figure 8a,b that the fluctuation of the SNR of different bands is quite
in accordance with the diagonal elements of weighting matrix, which demonstrates the efficiency of
the estimation of the level of noise in each band. Figure 9 shows the SREs of the methods SU-NLE,
SUnSAL and CLSUnSAL as a function of the varying regularization parameter λ when q = 8 and the
number of endmembers is 4. As shown in Figure 9, the SREs of SUnSAL, SU-NLE (d = 1), and SU-NLE
(d = 2) first increase as λ increases, and they obtain the best SREs at different λ. The SREs of SUnSAL,

https://bitbucket.org/aicip/mvcnmf
https://bitbucket.org/aicip/mvcnmf


Remote Sens. 2017, 9, 1166 14 of 28

CLSUnSAL, SU-NLE (d = 1), and SU-NLE (d = 2) then decrease when λ increases to a certain level.
The SREs of some methods approximate to 0 when λ ≥ 102. This is due to sparsity dominating the
solution, which makes all the estimated abundances be nearly 0 when λ is too big, so it is meaningless
to set λ too large. Besides, the SREs of SU-NLE (d = 1) and SU-NLE (d = 2) are evidently higher than
those of SUnSAL and CLSUnSAL when λ < 102, respectively, which demonstrates that considering
the different noise levels in different bands efficiently improves the performance of sparse unmixing.
Moreover, Figure 7 shows the abundance maps obtained by the proposed and compared methods
contaminated by Gaussian white noise when q = 8 and the number of endmembers is 4. Figure 7 also
shows that the abundance maps obtained by the SU-NLE (d = 1) and SU-NLE (d = 2) are more similar
to the true abundance maps than those of SUnSAL and CLSUnSAL, because the SU-NLE (d = 1)
and SU-NLE (d = 2) adopt the weighting strategy to consider the noise levels in different bands.
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Figure 7. Abundance maps of four endmembers estimated with different methods under Gaussian
white noise with only mixed regions having 64 × 64 pixels and 224 bands. From top to bottom:
ground truth, SUnSAL (λ = 10−2), CLSUnSAL (λ = 1), CUSAL-SP (λ = ŝ× 10−5), SU-NLE (d = 1)
(λ = 10−3) and SU-NLE (d = 2) (λ = 10−1).
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Figure 8. (a) The SNR of different band of the generated HSI and (b) diagonal elements of the weighting
matrix using proposed SU-NLE in simulated experiment II.
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Figure 9. Signal-to-reconstruction errors (SREs) of the methods SU-NLE, SUnSAL and CLSUnSAL as a
function of varying regularization parameter λ under Gaussian white noise with only mixed regions
having 64 × 64 pixels, 4 endmembers and 224 bands.

We also study the influence of the number of endmembers on the final unmixing performance.
To avoid unnecessary deviation, we perform the simulations 100 times to obtain the mean SREs. The
setting for this experiment is as follows: image size is 64× 64, q = 8, filter size is 9× 9, the SNR ranges
from 10 dB to 50 dB, and all methods have tuned to their best SREs. Figure 10 shows the SREs of the
proposed and compared methods as a function of the varying number of endmembers under Gaussian
white noise with only mixed regions having 64 × 64 pixels and 224 bands. Figure 10 also shows that
the SREs generally decrease as the number of endmembers increases, because the spectral signatures
in the selected spectral library are usually highly correlated. In addition, the SREs of SU-NLE (d = 1)
and SU-NLE (d = 2) are higher than those of SUnSAL and CLSUnSAL for all numbers of endmembers,
respectively, which also demonstrates that the performance of sparse unmixing can be improved by
considering the different noise levels in different bands.
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Figure 10. SREs of different methods as a function of varying number of endmember under Gaussian
white noise with only mixed regions having 64 × 64 pixels and 224 bands.

Moreover, we study the influence of image size on the final unmixing performance
when the number of endmembers is 4. We also perform the simulations 100 times to obtain the mean
SREs. The setting for this experiment is as follows: q ranges from 6 to 10, which makes the image size
range from 36× 36 to 100× 100; the SNRs of different bands for all of the different image sizes range
from 10 dB to 50 dB. Figure 11 shows the SREs of the proposed and compared methods as a function
of varying image size under Gaussian white noise with only mixed regions having 64 × 64 pixels,
4 endmembers and 224 bands. As shown in Figure 11, the SREs of SU-NLE (d = 1) and SU-NLE
(d = 2) are higher than those of SUnSAL and CLSUnSAL for different image sizes, respectively,
which also demonstrates the importance of adopting the weighting strategy in the sparse regression
unmixing framework. In addition, the SREs of the proposed and compared methods remain stable
with the different HSI sizes, which demonstrates that the performance of regression-based unmixing
methods is not sensitive to image size.
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Figure 11. SREs of different methods as a function of varying image size under Gaussian white noise
with only mixed regions having 64 × 64 pixels, 4 endmembers and 224 bands.
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3.1.3. Simulated experiment III

In this simulation, we conduct experiments of contamination by correlated noise. Considering
that calibrating the HSI obtained from an airborne or spaceborne sensor is difficult, the noise and the
spectra in real HSIs are usually of low-pass type, which makes the noise highly correlated [27]. Thus,
experiments need to be conducted when the obtained HSI is contaminated by correlated noise. We
generate simulated HSIs using 5 randomly selected spectral signatures from the library on the basis
of LMM, which has pure and mixed regions that have 75 × 75 pixels and 224 bands. We adopt
the same approach in Simulated Experiment I to generate the abundance, which are shown in
Figure 12. The mixtures range from two to 5 endmembers, and the background pixels comprise
mixtures of the 5 endmembers, where their abundances are randomly fixed to 0.1149, 0.0741,
0.2003, 0.2055, and 0.4051. The HSI obtained is then contaminated with correlated noise, and the
correlated noise is generated using the same approach as in [33]. The correlated noise function is
available at http://www.mathworks.com/matlabcentral/fileexchange/21156-correlated-Gaussian-
noise/content/correlatedGaussianNoise.m, and the correlation matrix is set as default. The SNR
of each band of HSI ranges from 20 dB to 40 dB, which is shown in Figure 13a, and the mean SNR is
30.12 dB. Figure 13b shows the diagonal elements of weighting matrix of the proposed SU-NLE, and it
can be seen from Figure 13a,b that the fluctuation of the SNR of different bands is quite in accordance
with the diagonal elements of weighting matrix, which demonstrates the efficiency of the estimation
of the level of noise in each band. Figure 14 shows the SREs of the SU-NLE, SUnSAL and CLSUnSAL
as a function of varying regularization parameter λ under correlated noise with both pure and mixed
regions having 75 × 75 pixels and 224 bands. As shown in Figure 14, the SREs of SUnSAL, SU-NLE
(d = 1), and SU-NLE (d = 2) first increase as λ increases, and they obtain the best SREs at different
λ. Then, they decrease when λ increases to a certain level. The SREs of some methods approximate
to 0 when λ ≥ 102, and the underlying reason is that sparsity dominates the solution. The estimated
abundances be nearly 0 when λ is too big, so it is meaningless to set λ too large. Besides, the SREs
of SU-NLE (d = 1) and SU-NLE (d = 2) are considerably higher than those of SUnSAL and CLSUnSAL
when λ < 102, respectively, which demonstrates the efficiency of integrating noise level estimation
into the sparse regression unmixing framework. Moreover, Figure 12 shows the abundance maps
of 5 endmembers for different methods under correlated noise with both pure and mixed regions
having 75 × 75 pixels and 224 bands when tuning the performance of all methods to the optimal SREs.
As shown in Figure 12, the abundance maps of the 5 endmembers for the SU-NLE (d = 1) and SU-NLE
(d = 2) are more similar to the ground-truth abundance maps than those of SUnSAL and CLSUnSAL,
which also demonstrates that the unmixing performance can be improved by integrating noise level
estimation into the sparse regression unmixing framework.

http://www.mathworks.com/matlabcentral/fileexchange/21156-correlated-Gaussian-noise/content/correlatedGaussianNoise.m
http://www.mathworks.com/matlabcentral/fileexchange/21156-correlated-Gaussian-noise/content/correlatedGaussianNoise.m
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Figure 12. Abundance maps of five endmembers estimated with different methods under correlated
noise with both pure and mixed regions having 75 × 75 pixels and 224 bands. From top to bottom:
ground truth, SUnSAL (λ = 10−2), CLSUnSAL (λ = 1), CUSAL-SP (λ = ŝ× 10−3), SU-NLE (d = 1)
(λ = 10−2) and SU-NLE (d = 2) (λ = 1).
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Figure 13. (a) The SNR of different band of the generated HSI and (b) diagonal elements
of the weighting matrix using proposed SU-NLE in simulated experiment III.
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Figure 14. SREs of the methods SU-NLE, SUnSAL and CLSUnSAL as a function of varying
regularization parameter λ under correlated noise with both pure and mixed regions having
75 × 75 pixels and 224 bands.

3.1.4. Simulated experiment IV

In this simulated experiment, we generate simulated HSIs without pure regions under correlated
noise. We adopt the same approach in Simulated Experiment II to generate the abundance, and the
generated true abundances are shown in Figure 15. The data cubes obtained are then degraded by
correlated noise, the SNRs of the different HSI bands are shown in Figure 16a ranging from 10 dB to
50 dB, and the mean SNR is 30.12 dB. Figure 16b shows the diagonal elements of weighting matrix of
the proposed SU-NLE, and it can be seen from Figure 16a,b that the fluctuation of the SNR of different
bands is quite in accordance with the diagonal elements of weighting matrix, which demonstrates
the efficiency of the estimation of the level of noise in each band. Figure 17 shows the SREs of the
methods SU-NLE, SUnSAL and CLSUnSAL as a function of varying regularization parameter λ under
correlated noise with only mixed regions having 64 × 64 pixels and 224 bands. As shown in Figure 17,
the SREs of SUnSAL, SU-NLE (d = 1), and SU-NLE (d = 2) first increase as λ increases, and they
obtain the best SREs at different λ. The SREs of SUnSAL, CLSUnSAL, SU-NLE (d = 1), and SU-NLE
(d = 2) then decrease when λ increases to a certain level. The SREs of some methods approximate
to 0 when λ ≥ 102. This is due to sparsity dominating the solution, which makes all the estimated
abundances be nearly 0 when λ is too big, so it is meaningless to set λ too large. Besides, the SREs
of SU-NLE (d = 1) and SU-NLE (d = 2) are higher than those of SUnSAL and CLSUnSAL when
λ < 102, respectively, which demonstrates the efficiency of considering the different noise levels in
different bands to improve the unmixing performance. Moreover, Figure 15 shows the abundance
maps of 4 endmembers for different methods under correlated noise with only mixed regions having
64 × 64 pixels and 224 bands, and the estimated abundances of endmember 2 using SUnSAL and
CLSUnSAL fail badly. While the estimated abundances of endmember 2 using the SU-NLE (d = 1)
and SU-NLE (d = 2) approximate obviously better to the ground truth. Figure 15 also shows that the
abundance maps obtained by the SU-NLE (d = 1) and SU-NLE (d = 2) approximate better to the true
abundance maps than those of SUnSAL and CLSUnSAL, because the SU-NLE (d = 1) and SU-NLE
(d = 2) use the weighting strategy to consider the different noise levels in different bands.
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Figure 15. Abundance maps of four endmembers estimated with different methods under correlated
noise with only mixed regions having 64 × 64 pixels and 224 bands. From top to bottom: ground truth,
SUnSAL (λ = 10−1), CLSUnSAL (λ = 10), CUSAL-SP (λ = ŝ× 10−3), SU-NLE (d = 1) (λ = 10−2)
and SU-NLE (d = 2) (λ = 1).
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Figure 16. (a) The SNR of different band of the generated HSI and (b) diagonal elements
of the weighting matrix using proposed SU-NLE in simulated experiment IV.
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Figure 17. SREs of the methods SU-NLE, SUnSAL and CLSUnSAL as a function of varying
regularization parameter λ under correlated noise with only mixed regions having 64 × 64 pixels
and 224 bands.

We also study the influence of the number of endmembers on the final unmixing performance
when contaminated by correlated noise. We also perform the simulations 100 times to obtain
the mean SREs. The setting for this experiment is as follows: image size is 64× 64, q = 8, filter size
is 9 × 9, and the SNRs of different bands range from 10 dB to 50 dB. Figure 18 shows the SREs
of different methods as a function of varying number of endmember under correlated noise with only
mixed regions having 64 × 64 pixels and 224 bands. Figure 18 also shows that the SREs generally
decrease as the number of endmembers increases, because the spectral signatures are usually highly
correlated. For all numbers of endmembers, the SREs of SU-NLE (d = 1) and SU-NLE (d = 2) are
substantially higher than those of SUnSAL and CLSUnSAL, respectively, which also demonstrates
that the integration of the weighting strategy into the sparse regression framework helps improve
the unmixing performance.
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Figure 18. SREs of different methods as a function of varying number of endmember under correlated
noise with only mixed regions having 64 × 64 pixels and 224 bands.

Moreover, we study the influence of image size on the final unmixing performance
under correlated noise when the number of endmembers is 4. We also perform the simulations
100 times to obtain the mean SREs. The setting for this experiment is as follows: q ranges from 6 to 10,
which makes the image size range from 36× 36 to 100× 100; the SNRs of different bands for all
of the different image sizes range from 10 dB to 50 dB. Figure 19 shows the SREs of different methods
as a function of varying image size under correlated white noise with only mixed regions having
64 × 64 pixels, 4 endmembers and 224 bands. As shown in Figure 19, the SREs of SU-NLE (d = 1)
and SU-NLE (d = 2) are markedly higher than those of SUnSAL and CLSUnSAL for different image
sizes, respectively, which demonstrates the importance of adopting the weighting strategy into sparse
regression unmixing framework. The SREs of SUnSAL, CLSUnSAL, and SU-NLE (d = 1) remain stable
for different image sizes, and the SRE of SU-NLE (d = 2) increases slowly as the image size increases.
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Figure 19. SREs of different methods as a function of varying image size under correlated noise with
only mixed regions having 64 × 64 pixels, 4 endmembers and 224 bands.

In summary, the integration of noise level estimation to the sparse unmixing of HSI is important.
In addition, the proposed method can achieve excellent unmixing performance for different noise
levels in different bands, noise types, numbers of endmembers, and image sizes, which demonstrates
the efficiency of the proposed method.
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3.2. Experimental Results with Real Data

In the experiment on real data, we adopt the most benchmarked dataset for hyperspectral
unmixing, which was captured by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over a Cuprite mining district in June 1997 in Nevada. Several spectral bands (1–2, 104–113, 148–167
and 221–224) have been removed due to noise corruption and atmospheric absorption, leaving D = 188
spectral bands that range from 0.4 µm to 2.5 µm with a nominal bandwidth of 10 nm. The false color
image is shown in Figure 20, which is of size 250× 191.

Figure 20. False-color image of the AVIRIS Cuprite dataset.

The Cuprite is mineralogical, and the exposed minerals are all included in the USGS library
considered in the simulated experiments. Thus, we adopt the same USGS library in the simulated
experiments for the sparse unmixing of Cuprite, which has 240 endmembers. Figure 21 shows
the mineral map of the selected Cuprite image, which is available at http://speclab.cr.usgs.gov/
cuprite95.tgif.2.2um_map.gif. The Tricorder 3.3 software product [62] was used to map different
minerals present in the Cuprite mining district, and the USGS map can be served as a good
indicator for qualitative assessment of the fractional abundance maps produced by the different
unmixing methods [27,37,40]. Besides, Figure 22 shows the diagonal elements of the weighting
matrix of the proposed SU-NLE, which can estimate the noise level in different band of Cuprite.
Moreover, Figure 23 shows the fractional abundance maps of three representative endmembers
estimated by different unmixing methods using Cuprite dataset having 250× 191 pixels and 188
bands. The regularization parameters are chosen for different methods that approximate best
to the USGS Tetracorder classification map as follows: SUnSAL (λ = 10−3), CLSUnSAL (λ = 10−1),
CUSAL-SP (λ = ŝ× 10−3), SU-NLE (d = 1) (λ = 10−3) and SU-NLE (d = 2) (λ = 10−2).
As shown in Figure 23, the estimated abundances maps of Chalcedony using SU-NLE (d = 1)
and SU-NLE (d = 2) approximate to the USGS Tetracorder classification map of Chalcedony
obviously better than the SUnSAL and CLSUnSAL, respectively, which demonstrates the efficiency
of integrating noise level estimation into the sparse regression unmixing framework. Furthermore,
the average numbers of endmembers with abundances higher than 0.05 estimated by SUnSAL,
CLSUnSAL, CUSAL-SP, SU-NLE (d = 1) and SU-NLE (d = 2) are 5.124, 5.014, 4.620, 4.486 and 4.382,
respectively (per pixel). These differences lead to the conclusion that SU-NLE uses a smaller number
of endmembers to explain the data, thus enforcing sparsity. The average number of endmembers
with abundances higher than 0.05 estimated by SU-NLE (d = 1) and SUnSAL are higher than these
of SU-NLE (d = 2) and CLSUnSAL, respectively, which leads to the conclusion that SU-NLE (d = 2)
and CLSUnSAL enforce the sparseness both at the group and individual levels.

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Figure 21. United States Geological Survey (USGS) map of different minerals in the Cuprite
mining district.
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Figure 22. The diagonal elements of weighting matrix for the real data.
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Figure 23. Fractional abundance maps of three representative endmembers estimated by different
unmixing methods using Cuprite dataset having 250× 191 pixels and 188 bands. From top to bottom:
USGS Tetracorder classification map, SUnSAL (λ = 10−3), CLSUnSAL (λ = 10−1),
CUSAL-SP (λ = ŝ× 10−3), SU-NLE (d = 1) (λ = 10−3) and SU-NLE (d = 2) (λ = 10−2).
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4. Conclusions

In this paper, we propose a general sparse unmixing method based on noise level estimation.
The weighting strategy is adopted to obtain the noise weighting matrix, which can be integrated
into the sparse regression unmixing framework to improve the performance of sparse unmixing.
The proposed SU-NLE is robust for different noise levels in different bands in the sparse unmixing
of HSI, and it can be solved by ADMM. Moreover, the proposed method can obtain better unmixing
performance than other popular sparse unmixing methods on both synthetic datasets and real HSIs,
which demonstrates the efficiency of the strategy of integrating noise level estimation into the sparse
unmixing of HSI.
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