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Abstract: Object-Based Image Analysis (OBIA) has been successfully used to map slums. In 
general, the occurrence of uncertainties in producing geographic data is inevitable. However, most 
studies concentrated solely on assessing the classification accuracy and neglecting the inherent 
uncertainties. Our research analyses the impact of uncertainties in measuring the accuracy of 
OBIA-based slum detection. We selected Jakarta as our case study area because of a national policy 
of slum eradication, which is causing rapid changes in slum areas. Our research comprises of four 
parts: slum conceptualization, ruleset development, implementation, and accuracy and uncertainty 
measurements. Existential and extensional uncertainty arise when producing reference data. The 
comparison of a manual expert delineations of slums with OBIA slum classification results into 
four combinations: True Positive, False Positive, True Negative and False Negative. However, the 
higher the True Positive (which lead to a better accuracy), the lower the certainty of the results. This 
demonstrates the impact of extensional uncertainties. Our study also demonstrates the role of 
non-observable indicators (i.e., land tenure), to assist slum detection, particularly in areas where 
uncertainties exist. In conclusion, uncertainties are increasing when aiming to achieve a higher 
classification accuracy by matching manual delineation and OBIA classification. 
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1. Introduction 

The most recent global target in slum reduction stated in the Sustainable Development Goals 
(SDG) is to ensure access to adequate, safe and affordable housing and essential services for all 
people by 2030 [1]. Although the target has been stipulated, the number of slum dwellers is growing. 
In 2012, the number of dwellers living in urban slums was 863 million, which increased from 776 to 
827 and 881 million in 2000, 2010 and 2015, respectively [2,3]. Highly dynamic changes in cities and 
slums require techniques that can provide rapid and reliable information for policy formulations 
related to slums. However, information regarding the growth and expansion of slums is sparsely 
available [4]. Survey-based data collection methods have limitations due to long temporal gaps and 
the degree of aggregation [5]. Thus, data might be obsolete when being used [6]. Meanwhile, 
although satellite imagery provides almost real-time information [6], slums and non-slums often 
share similar surface materials [7], and slum morphologies differ within and across cities [8], which 
makes their identification somehow difficult.  

Among various approaches that were developed, Object-Based Image Analysis (OBIA) has an 
excellent potential to extract slums using spectral as well as contextual information through a 
hierarchical procedure [9]. However, often the classification process is context and data dependent 
[6] and not flexible to be applied to a different place (city), different images (sensors and different 
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dates). The development of the Generic Slum Ontology (GSO) aimed to bridge this gap [6,9], by 
providing a complete characterization of slums using morphological indicators [7] at three spatial 
levels, i.e., environs, settlement and object [10]. This characterization was developed by adopting the 
durable housing indicator from UN-Habitat [5]. 

Although the GSO assists in slum detection, it provides a generic concept of slums [11], while 
slums can show considerable diversity within a city and even within a settlement [7,12]. For 
instance, the same characteristics (e.g., density) often differ locally and depend on developmental 
stages of settlements [5]. Therefore, settlements having similar densities might be considered as 
slums in one place but as non-slums in another place [13]. This illustrates challenges faced when 
aiming at a transferable slum mapping approach based on a set of generic indicators. 

The above-mentioned variability (e.g., spatial, temporal, sensors) requires a local adaptation of 
the GSO from expert-domain knowledge. One way to develop such a knowledge-base is by using an 
ontology [14]. The usage of an ontology may change the numerical approach, which is commonly 
used in image analysis, to a symbolic approach that will fit the expert-domain knowledge [15]. The 
role of the knowledge-based approach in image classification has been stressed by several authors. 
For instance, by developing ontology-based classification using spectral rules [15], and 
knowledge-based region labelling [14]. 

Thus, in the OBIA context, adaptations of such a ruleset for different images are inevitable 
[7,16,17]. Nonetheless, it is crucial to promote transparency of the adaptations to ensure objectivity 
[16], in measuring transferability of the ruleset [18]. Here, transferability is defined as the degree of 
adaptations of a ruleset to produce comparable results from different imaging conditions [7]. 
Previous studies on OBIA-based slum detection focus either on comparability of the results [7,17] or 
on the degree of adaptations [19,20] and both approaches use accuracy as a benchmark. 

Measuring transferability by only considering the accuracy indicators as a benchmark has some 
shortcomings. First, the occurrence of uncertainties in producing geographic data is inevitable [21], 
and the level of uncertainties will propagate through the whole process chain [22]. Second, in OBIA, 
manual image interpretation is commonly used as reference data [23], often producing ambiguous 
results as some interpreters delineate more detailed objects and the others may generalise objects 
[24]. Third, it is hard to define the exact transition between slums and non-slums [25]. Fourth, the 
differences in experience and the way to conceptualise slums among interpreters may lead to 
different delineations of reference data [25]. Hence, reflecting on the uncertainties mentioned above, 
it is crucial to consider these in the accuracy assessment for OBIA classifications [24]. 

In this paper, we analyse the impact of uncertainties in producing reference data for the 
accuracy assessment of OBIA-based slum detection. We organised our study into four sections. First, 
we describe our case study. Second, we discuss materials and methods, which includes the 
development of OBIA rulesets, accuracy and uncertainties measurements. Third, we present our 
results, fourth, we discuss the results and fifth, we present the conclusions of our research. 

2. Case Study 

Jakarta, the capital city of Indonesia, has grown enormously since a half-century ago, and its 
metropolitan area is home to more than 30 million inhabitants [26]. The magnitude of economic 
activities and the presence of numerous societal infrastructures attract rural people to Jakarta. 
However, the lack of capacities by the local government in providing affordable housing has forced 
low-income households to settle in substandard housing areas [27]. Thus, Jakarta is facing 
challenges in terms of managing its rapid demographic and economic growth, which also affects the 
growth of slums [28]. Approximately, 60% of Jakarta’s population, predominately from a 
low-income household, are living in informal settlements called kampungs. 

At the national level, the Government of Indonesia has set the 100-0-100 policy (100% access to 
clean water, 0% slums, 100% access to sanitation) as part of the Medium Term National 
Development Program (RPJM) [29]. The national government committed 9.5 billion US Dollars from 
the national budget until 2019 for this purpose [30]. Hence, to monitor the slum dynamics is key to 
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determining the success of implementing this policy [31]. For this purpose, reliable and updated 
information on slums is required. 

In general, to define slum boundaries in Jakarta is not straightforward. Informal developments 
in Jakarta started a half-century ago when Jakarta experienced rapid urbanisation [32]. At that time, 
the planning institutions were not established [33]. Locally, these informal settlements are called 
kampungs, and in their earliest development stages, they were housing predominantly low-income 
groups. As a result of the city growth, kampungs expanded and became more heterogeneous, also 
housing mid-level income households [34,35]. Nonetheless, kampungs share similar characteristics 
with slums, i.e., overcrowding, unorganised layout and limited amenities [36]. Nowadays, many 
kampungs have been provided with basic facilities, and many of its dwellers have legal rights on their 
lands and properties [32]. In remotely sensed imagery, it is difficult to make a distinction between 
slum and non-slum kampungs. However, on the ground, this difference can be observed, e.g., using 
building material, household income, floor material, access to sanitation as indicators. 

In Indonesia, various governmental bodies, scholars and organisations have attempted to 
formulate a slum definition. For instance, the National Board of Statistics developed indicators 
according to the housing quality and mentioned that slum building can be characterized by 
inadequate living space [37]. Meanwhile, the Ministry of Public Works developed indicators 
according to the quality of settlements, where slums can be characterized by its under-served 
facilities [38]. Internationally, the most commonly employed definition of a slum is based on the 
durable housing indicators, where a slum is an area that is characterised by lack of access to safe 
water and sanitation, low building quality, overcrowded and lacks tenure security [39]. 

For the purpose of this study, we selected a subset around Tebet district (sized 29 square 
kilometres) in Jakarta (Figure 1) due to three reasons. First, the Tebet district is comprised of various 
land uses, namely high-income residential areas, shopping arcade, the centre of the transportation 
hub, and slums. Second, the Ciliwung river that is locally associated with slums flows through this 
district. Third, the district houses various types of slums (e.g., slums that are located on the 
riverbank, near the railroad, near the Central Business District (CBD). 

(a) (b) 

Figure 1. Map of the study area in Jakarta Province (Indonesia) (a), surrounded by Banten Province 
and West Java Province (the metropolitan area includes some parts of these provinces), area 
boundary source: Openstreet Map (2015) (Manufacturer, City, US State abbrev., Country); (b) 
selected subset located in Tebet district, Jakarta. Image source: Google Earth (2015) (City, US State 
abbrev., Country). 
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3. Materials and Methods 

Our research methods are comprised of four main parts: (i) slums conceptualisation, (ii) OBIA 
ruleset development, (iii) ruleset implementation, (iv) accuracy and uncertainty measurement. Our 
methodology is shown in Figure 2, and the detailed process is described in the following paragraph. 

 
Figure 2. Research methodology comprised of four main parts and their following activities. 

In the first part, we related the definitions of slums by the local experts with image-based 
information by using several observable visual elements, e.g., tone, shape, size, texture and 
association [6,10]. We selected five local experts from different backgrounds, i.e., government, 
consultants and NGOs. As mentioned in [25], the selected experts needed to have a professional 
knowledge of slums. Therefore, we selected experts that have been involved in programs related to 
slums in Jakarta. From the government, we have interviewed two experts, one from the National 
Government (Ministry of Public Works), and one from the Local Government (Department of 
Spatial Planning, Jakarta). In addition, we interviewed two experts from consultancies that were 
involved in formulating the national policy of slums in Indonesia. Lastly, we interviewed one 
representative from an NGO, who participated in monitoring settlement targets for the Millennium 
Development Goals (MDG). Besides expert interviews, field observations were conducted in the 
areas experts delineated as slums. The characteristics of slums obtained during the interviews were 
used for developing the ruleset for the OBIA-based slum detection. 

In the second part, we developed the OBIA-based ruleset for slum detection according to the 
definitions mentioned in the first step. In general, OBIA aiming to relate geographic features with 
image objects can be divided into two main parts, namely segmentation and classification [40]. In 
general, segmentation delineates regions (segments) of an image that share common attributes [41]. 
The result is a relatively homogeneous and significant grouping of pixels [42]. Meanwhile, the 
classification process assigns each segment to a particular class according to predefined 
characteristics, e.g., tone, shape, size, texture and association. For segmentation, we used 
multi-resolution segmentation (MRS) since this algorithm has been widely used in OBIA-based slum 
detection studies (e.g., [5,12]). However, the implementation of MRS is dependent on the Scale 
Parameter (SP) [43], controlling the heterogeneity of image objects [44]. The SP value is often selected 
in a trial-and-error process [45]. Therefore, we employed the Estimation Scale Parameter (ESP) tool 
[43] to determine the most appropriate SP. 

In the third part, we implemented the ruleset in our study area. We selected Pleiades imagery 
granted from the European Space Agency (ESA) with standard-ortho bundles for the year of 2015, 
with a spatial resolution of 0.5-m for R-G-B-NIR bands. We managed to obtain an image with a 
cloud cover of less than 10%. We purposively selected two small test areas (sized km2)), without any 
cloud cover. For the first test area, we selected an area with a relatively similar agreement of slum 
boundaries among experts, while, in the second area, experts considerably disagreed about slum 
boundaries. 

Lastly, in the fourth part, we measured the accuracy of the classification result. Manual 
delineation of slum boundaries (on top of the image) by local experts were used to produce the 
reference data, as demonstrated in [24,25]. Thus, we compared the extracted slums from the OBIA 
ruleset, with the reference data from the local experts. This comparison obtained four possible 
results (Figure 3), i.e., true positive (TP), false positive (FP), true negative (TN) and false negative 
(FN). 
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Figure 3. Four possible results from combining classification result with the reference data produced 
by the experts. 

We used three indicators for measuring accuracy, i.e., precision, recall and accuracy. Precision 
or confidence describe the proportion of predictive-positive cases, which show a correct match with 
the reference data [46]. It can be measured by comparing TP with TP and FP (1). Meanwhile, recall or 
sensitivity indicates the proportion of real positive cases that were correctly predicted. It can be 
measured by comparing the number of TP, with TP and FN (2). Lastly, accuracy indicates the total 
correct positive and negative cases (i.e., TP and TN) to the total number of possible cases (i.e., TP, FP, 
FN, TN) (3) [46]. Therefore, precision, recall and accuracy were calculated as: Precision = TPTP + FP, (1)

Recall = TPTP + FN, (2)

Accuracy = TP + TNTP + FP + FN + TN. (3)

Regarding uncertainties, as pointed out in [25], the difficulties to draw exact boundaries where 
slums change into non-slums and vice versa leading to uncertainty, i.e., existential and extensional 
uncertainty [47]. First, existential uncertainty indicates the degree of confidence whether a slum 
exists in reality [25,47], and it may depend on experts’ experience or conceptual difference upon 
image interpretations [25]. Second, extensional uncertainty indicates the area delineated as a slum 
with limited certainty [25]. 

Furthermore, uncertainties also arose from different slum conceptualizations by local experts. 
While [25] aimed to study the deviations of slum boundaries observed from Very High Resolution 
(VHR) images, our research emphasises the impact of various degrees of slum boundaries’ 
agreements on the values of the accuracy assessment. To do so, we compared the classification result 
(OBIA slum map for each test area) obtained in the third part with the reference data showing 
various agreement levels. For instance, first, we compared the classification result with an area 
where the reference data showed the highest agreement (all five experts agreed that an area is a 
slum). Next, we measured the accuracy according to the indicators mentioned in (1) to (3). We 
repeated this procedure for each subset and every degree of agreement (ranging from 1 to 5 experts). 
This comparison allowed us to examine the impact of different agreements in the reference data on 
accuracy levels for mapping slums in Jakarta. 
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4. Results 

4.1. Slums Conceptualisation 

The result of the expert interviews shows the local diversity of slum characteristics (Table 1). 
The expert from the national institutions (i.e., Ministry of Public Works) defined slums according to 
the building size, which, in general, is smaller in size compared to non-slum buildings. In addition, 
slums are located commonly on the riverbank or near railroads, with irregular building orientations. 
The expert from the local government mentioned similar characteristics regarding the location on 
the riverbank and near railroads. With regards to the difficulties to distinguish slum and non-slum 
kampungs, the tenure status was often mentioned as a characteristic that could be used for 
distinguishing. Experts (NGO and two consultants) also came up with the slum characteristic of 
small building sizes. In addition, they also mentioned that slums have irregular building 
orientations, poor roof materials and are located on the riverbank and near railroads. The last expert 
(the second consultant), however, only mentioned building size and irregular building orientation as 
slums characteristics. 

Table 1. Different characteristics and definitions of slums among local experts. (1) is from the central 
government; (2) is from the local government; (3) is from Non-Government Organization (NGO), 
and (4) and (5) are housing policies consultants. 

Characteristics 
Local Expert 

(1) (2) (3) (4) (5) 
1 Located on/close the river bank/railroad √ √ √ √ 
2 Small building size √  √ √ √ 
3 Irregular building orientation √  √ √ √ 
4 Poor roof material  √ √ √  
5 Built on illegal land  √    

According to the visual image interpretations, local experts have different agreements on slum 
locations in our study area. In Figure 4a, we show the different agreements of slum extents 
(delineated by experts), where the red area and blue areas indicate the highest and lowest agreement 
respectively. To give a better understanding regarding slum characteristics on the ground, we 
conducted field observations. For the first sample (Figure 4b), we selected an area along the Tebet 
Timur Street, which was digitized by four of our experts. From field observations, this area is 
characterised by its proximity to the river and has irregular building orientations. We also found that 
buildings in this area are made up of poor materials (e.g., cardboard, plastics, corrugated iron, 
woven bamboo). In addition, we noticed different types of roof materials (i.e., ranging from tiles to 
corrugated irons). For the second example, we selected an area in Manggarai I street (Figure 4c), 
which shows diversity in terms of expert agreements on slums (ranging from one to five experts). 
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(a) (b)

(c) (d)

Figure 4. Slums extracted from manual delineation by different experts. (a) shows the different 
agreements of slum extents, where the red colour indicates areas with the highest agreement and the 
blue colour indicates the lowest; (b) shows the ground conditions of slums where four experts 
agreed; (c) shows the ground conditions of slums, which were indicated as a slum by all experts; (d) 
shows the ground conditions of a slum that was selected by one and two experts. The red boxes in (a) 
indicate our test areas. 

4.2. OBIA Ruleset Development 

When developing the OBIA ruleset, we translated the characteristics of slums obtained from the 
local experts, into characteristics that can be recognised by a computer. The association may include 
tone, shape, size, texture and associations. Table 2 shows the five characteristics of slums that are 
used to develop the ruleset.  

For the first characteristic, slums are commonly located on the riverbank or near the railroad. 
Thus, we employed a vector layer of rivers and railroad (Openstreet Map data) using proximity as a 
rule. For the second and third characteristics, we associate the size and shape of the building with 
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the shape and size of the segment. Meanwhile, for the fourth characteristic, we associate the roof 
material of slum buildings with the tone/colour of the segment. The last characteristic is most 
interesting. Unlike the four previous characteristics, the last one is not directly observable from an 
image. Therefore, we used a proxy indicator to determine the tenure status. According to the 
interview with the expert from the Jakarta province, Jakarta is implementing a strict zoning 
regulation, which means it is illegal to construct within protected zones. Thus, we decided to use the 
zoning map to delineate the protected zones, where any construction is illegal and has no legal 
tenure status. 

The idea of using a non-observable indicator has induced us to develop two scenarios when 
implementing our ruleset. First, we run our ruleset with four indicators (only observable; indicator 
number 1 to 4 in Table 2). Second, we include the non-observable indicator (number 5 in Table 2). We 
applied both scenarios for the two test areas. 

Table 2. Translation of the real world characteristics into image domain characteristics in the context 
of the Generic and the Local Ontology of Slums. 

Real World Domain Image Domain
1 Located on the riverbank/near railroad Association: Distance to River/Railroad 
2 Small building size Size: Small 
3 Irregular building orientation Shape: compactness 
4 Poor Roof material Tone: Asbestos, corrugated iron 
5 Built in the illegal land Ancillary data: Land Use Plan 

After we associate each slum characteristic with its consecutive image domain, we develop our 
ruleset in Trimble’s eCognition, Developer version 9 (Trimble Germany GmbH, Munich, Germany). 
Our ruleset can be divided into two steps (Figure 5)—first, background removal, and, second, slum 
detection. In the background removal step, we implement MRS with a low SP (SP = 1) to extract 
background classes, i.e., vegetation, railroads, roads, and the rivers. Next, we apply a coarse 
segmentation for the remaining unclassified segments, and here we implement our ruleset for slum 
detection. 

 
Figure 5. Object Based Image Analysis (OBIA) ruleset flowchart, which starts with background 
removal, followed by slum detection. 

In the first step, we find that, among various possible associations (i.e., tone, shape, size, texture 
and associations), which can be used for classification, the Normalized Difference Vegetation Index 
(NDVI: proportion between near-infrared and red band) shows its ability to detect the vegetation 
well. Each object that has an average value of NDVI greater than zero is classified as vegetation. 
However, if we choose a coarse segmentation, vegetation is under-segmented (Figure 6). Hence, we 
are intentionally over-segmenting because we aim to obtain the shape and size of the vegetation 
class as close as possible to its real shape and size. 
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(a) (b) (c) 

Figure 6. Impact of segmentation scale on vegetation classification. (a) shows segments with an 
Normalized Difference Vegetation Index (NDVI) of greater than zero obtained from fine 
segmentation and (b) from coarse segmentation, and (c) image before the segmentation process. 

For the remaining background classes (i.e., road, railroad, river), we classify the segments using 
vector data. For this purpose, we also implemented a fine segmentation for these classes. After we 
classified all background classes, the remaining class (i.e., unclassified) has a certain probability to be 
classified as a slum. Here, we implement the second step. 

In this second step, we re-segment the unclassified class, aiming at coarser segments. The ESP 
can produce three levels of segmentation, which can be associated with three levels of slums objects 
as mentioned in [5]. Since slum buildings are characterised by their small size (Table 2), it is difficult 
to extract every single building as an object. Therefore, we use the second level of SP obtained from 
ESP, which is 95. 

After conducting the segmentation process, we implement our concept of slums to develop the 
ruleset for classifying each test area. The threshold values were obtained through a trial and error 
process, and we assigned these values into the class description in E-cognition software (version, 
Manufacturer, City, US State abbrev., Country) (Table 3). 

Table 3. Threshold value for each rule. 

Rule Threshold Value 

Association: Distance to River/Railroad 
1. Border to river > 0 pixels 
2. Border to railroad 0 > pixels 

Shape: compactness 
1. Compactness ≤ 5 
2. Grey-Level Co-occurrence Matrix  
(GLCM) Dissimilarity ≥ 0.0005 

Tone: tile—corrugated iron, asbestos Mean red/green 1 ≤ tone ≤ 1.075 
Ancillary data: Land Use Plan (second scenario) Mean Layer Tenure > 0.25 

For the first rule, we use the border to the river and railroad and assign each object that has 
more than zero pixels touching the border of river/railroad as a slum. Regarding shape, we 
implement two rules, compactness and grey level co-occurrence matrix (GLCM) dissimilarity. 
Compactness indicates the variations among pixels under one object. The lower the compactness, 
the higher the variation of pixel values. Regarding GLCM dissimilarity, the higher the value, the less 
that the pixel values show similarity within one segment [48]. For the tone, since the roof materials of 
slum houses in our study area are predominated by tiles or corrugated iron, we find that the average 
of red/green shows a linear relationship with the roof colour. Here, we use the band arithmetic 
approach in E-cognition by calculating the proportion of red and green band in each segment. The 
last rule is only applicable to the second scenario. To develop this rule, we first converted the zoning 
map of the study area from vector to raster. Then, we reclassified the value of each land use class 
into two labels, i.e., have tenure and no tenure. Next, this binary image is segmented using MRS (the 
zoning map was not used within the segmentation as not all scenarios were using the zoning map as 
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ancillary data). We calculate the ‘tenure value’ of each segment and identify the threshold for slums. 
The more the segmented image overlapped with the ‘tenure segment’, the higher the chance that the 
segment is a slum. 

We use “OR” function for association in our ruleset, which means that a slum may be located 
near the river, or near the railroad, or in the proximity of both of them. Meanwhile, for the rest of the 
indicators, we use the “AND” function, which means that the object must meet all threshold value to 
be classified as slums. 

4.3. Ruleset Implementation 

We implement our ruleset in the first test area (clear boundaries between slum and non-slum), 
and the second area (unclear boundaries). In addition, we implement our ruleset for two scenarios, 
first with using tenure status as an additional proxy, and second without tenure status. Hence, the 
four pairs of results are shown in Figure 7. 

(a) (b)

(c) (d)

Figure 7. Mapped slums in the first test area (a,b). (a) indicates slums without the tenure indicator 
(only consider explicit indicators); (b) indicates slum employing the tenure indicator. Meanwhile, 
(c,d) indicates slums in the second area, by including and excluding the tenure indicator, 
respectively. 
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In Figure 7, we notice some similarities and differences in the classification results for the 
different scenarios. Figure 7a,b is an area where slum and not slum areas have clear boundaries. In 
Figure 7a, where the tenure indicator is not implemented, we find two slum zones, which are located 
in the western and eastern parts of this area. Meanwhile, in Figure 7b, implementing the tenure 
indicator, only the eastern part is classified as a slum. Furthermore, Figure 7c,d refers to the area 
where slum and not slum areas have unclear boundaries. The results show similarities of slum 
patches in the eastern part in Figure 7a,b while result Figure 7c,d show a more distinct pattern of 
slums. However, we also find similarities of slum patches for the second test area, particularly for 
slums that are located near the railroad or the river. 

4.4. Accuracy and Uncertainty Measurements 

For each classification results shown in Figure 7, we compared with the degree of agreements 
by experts, which ranges from five (highest agreement) to only one agreement (only selected by one 
expert (reference data). This results in twenty possible values for each accuracy indicator mentioned 
in Equations (1) to (3). Table 4 shows the size of true positive (TP), false positive (FP) and false 
negative (FN), measured in square meters. 

Table 4. The size (in m2) of true positive, false positive and false negative obtained by comparing 
classification results with the level of agreement. 2015_TA1_EXP indicates the year of the image, TA1 
gives the location of the first test area (TA). EXP indicates that we only used explicit/observable 
indicators, while ANC means that we include an ancillary (not observable in images) indicator. 

Dataset 
True Positive

 
5 4 3 2 1

2015_TA1_EXP - 41,321 - - 41,802  
2015_TA1_ANC - 36,209 - - 36,690  
2015_TA2_EXP 11,397 11,938 15,155 35,486 94,480  
2015_TA2_ANC 3905 4445 7662 19,328 57,517  

Dataset 
False Positive

 
5 4 3 2 1

2015_TA1_EXP - 31,763 - - 31,281  
2015_TA1_ANC - 2502 - - 2021  
2015_TA2_EXP 228,686 228,146 224,929 204,598 145,604  
2015_TA2_ANC 156,702 156,162 152,945 141,279 103,090  

Dataset 
False Negative

 
5 4 3 2 1

2015_TA1_EXP - 56,656 - - 73,609  
2015_TA1_ANC - 61,768 - - 78,721  
2015_TA2_EXP 7217 9701 10,280 28,408 96,939  
2015_TA2_ANC 14,710 14,156 14,727 42,044 133,902  

 Highest Value  Other Values 

The number of TP indicates the size of the area that is detected as slums by the OBIA 
classification as well as in the reference data. We find differences in the amount of TP between TA1 
and TA2, also between EXP and ANC. Apparently, the difference between EXP and ANC in TA1 is 
lower than in TA2. Both areas and scenarios show similarities related to the number of agreements. 
As we reduce the required degree of agreements for the reference data (from 4 to 1 in TA1, and from 
5 to 1 in TA2), the size of TP is increasing. However, we only find two degrees of agreement in TA1 
(i.e., one and four experts). Meanwhile, we find various levels of agreements in TA2, which indicates 
that our experts have very different perceptions concerning slum boundaries in TA2. 

FP indicates the size of the area, which is detected as slums by the OBIA classification but is not 
delineated as slums by the experts. Interestingly, the difference of FP between EXP and ANC in TA1 
is substantially greater than in TA2. In TA1, the size of FP in EXP is thirteen times higher than ANC. 



Remote Sens. 2017, 9, 1164  12 of 17 

 

Meanwhile, the difference of FP in TA2 for EXP is only one-and-a-half times greater than ANC. TA1 
and TA2 show similarities related to the degree of agreements. As we reduce the degree, we get a 
decreasing number of FP. 

Lastly, the FN indicates the size of the area that is detected as a slum by the experts but not 
detected as a slum by the OBIA classification. We notice a similar pattern of FN between EXP and 
ANC in TA1 and TA2. As we decrease the number of required agreements, we have an increasing 
number of FN. However, the increasing of FN in TA1 (for EXP and ANC) is more gradual than in 
TA2. In TA2, we find a significant increase of FN when we reduce the agreement from 2 to 1. This 
points to very diverse perceptions by experts on slum boundaries in TA2. Therefore, it results in a 
substantial size of slum patches with only one agreement—Figure 4a in the red box labelled c. Using 
the value of TP, FP and FN, we calculate precision, recall and accuracy shown in Table 5. 

Table 5. Accuracy values (i.e., precision, recall and accuracy) of classification results for the first and 
second area, two scenarios and different degrees of agreement. 

Dataset 
Precision

 
5 4 3 2 1

2015_TA1_EXP - 56.54% - - 57.20%  
2015_TA1_ANC - 93.54% - - 94.78%  
2015_TA2_EXP 4.75% 4.97% 6.31% 14.78% 39.35%  
2015_TA2_ANC 2.43% 2.77% 4.77% 12.03% 35.81%  

Dataset 
Recall

 
5 4 3 2 1

2015_TA1_EXP - 42.17% - - 36.22%  
2015_TA1_ANC - 36.96% - - 31.79%  
2015_TA2_EXP 61.23% 55.17% 59.58% 55.54% 49.36%  
2015_TA2_ANC 20.98% 23.90% 34.22% 31.49% 30.05%  

Dataset 
Accuracy

 
5 4 3 2 1

2015_TA1_EXP - 91.16% - - 89.51%  
2015_TA1_ANC - 93.57% - - 91.93%  
2015_TA2_EXP 76.41% 76.22% 76.48% 76.70% 75.75%  
2015_TA2_ANC 82.86% 82.97% 83.23% 81.67% 76.30%  

 Highest Value  Other Values

Table 5 shows that the usage of tenure data in the first area results in a high precision. As shown 
in Equation (1), precision is measured by comparing TP with TP and FP. Hence, high precision 
results from a low FP, which indicates that our OBIA ruleset is only producing a small number of 
slums that are not delineated as slums by our experts. 

In TA2, we notice substantial differences compared to TA1. Implementing the tenure status in 
TA2 results in the lowest precision compared to other combinations (i.e., TA1_EXP, TA1_ANC and 
TA2_EXP). This is due to the high number of FP, which are areas not delineated as a slum by experts 
but classified as a slum. Interestingly, in Figure 4a, the red box labelled c, no expert selecting the area 
adjacent to the railroad as slums. Figure 7c,d indicates that our ruleset is detecting areas adjacent to 
the railroad as slums since we used this in our ruleset (Table 2). Although TA1 and TA2 show 
significant differences of precision values, similarities exist across different degrees of slum 
agreement, reducing the required degree of agreements results in a higher precision value. These 
higher values result from lower FP, caused by an increase in the size of slum extents in the reference 
data. 

Recall, as mentioned in Equation (2), is measured by comparing TP with TP and FN. Hence, the 
high values of recall result from low FN, and this indicates that only a small number of slums in the 
reference data is not detected as a slum by the OBIA ruleset. In general, 2015_TA2_ANC has the 
lowest recall value compared to others (Table 5). This indicates that, in 2015_TA2_ANC, many slums 
from the reference data are not detected by the OBIA ruleset. As shown in Figure 4a in the red box 
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labelled c, experts have different perceptions of slum boundaries. Thus, selecting only areas with a 
high agreement in TA2 will result in high FN. Interestingly, if we compare recall values among 
different agreements in the reference data, only TA2_ANC shows a different pattern. The highest 
value is obtained for three agreements; however, differences across recall values are small. This 
indicates that settlements without tenure status have a high probability to be identified as a slum by 
the experts. 

Regarding accuracy, we can point to the difference between TA1 and TA2. In TA 1, the highest 
accuracy is achieved by the largest number of agreements. In TA2, slightly higher accuracy values 
are obtained by lower agreements. This pattern can be seen in both EXP and ANC scenarios. In 
general, our ruleset gains a higher accuracy when applied in TA1, where the slum boundaries are 
more clear. By comparing different locations, scenarios and indicators, we can examine the impact of 
the ruleset’s performance as we decreased the degree of agreement (from highest to lowest 
agreement) (Table 6). 

Table 6. Changes in performance indicators using the highest and the lowest agreement in the 
reference data. 

Dataset Precision Gain Recall Gain Accuracy Gain 
2015_TA1_EXP 0.66% −5.95% −1.65% 
2015_TA1_ANC 1.24% −5.17% −1.65% 
2015_TA2_EXP 34.61% −11.87% −0.66% 
2015_TA2_ANC 33.38% 9.07% −6.56% 

Surprisingly, we notice that no data set gains more accuracy as we reduce the degree of 
agreement from the highest to the lowest. In Table 5, the maximum accuracy of every possible 
combination is never obtained by the lowest agreement. For a gain, we can notice that only 
TA2_ANC shows an increased gain as we decreased the level of agreement. Regarding precision, 
TA2 shows a significant increase of precision as we reduce the level of agreement. 

5. Discussion 

Image interpretations by experts are commonly used to measure the accuracy of OBIA 
classification results [25,49]. In this study, we employed reference data generated by manual 
delineation of local experts from varied backgrounds. From the results (Figure 4), we noticed 
different agreements regarding the extent of slums. Nonetheless, these differences cannot be 
qualified as inaccuracies, and every image interpretation is equally valid [24]. It is likely that the 
different interpretations are rather caused by the uncertainties existing in a particular area [24]. 
Comparing the slum delineations in our two test areas (Figure 4a, the red box labelled b and c), we 
can notice how these uncertainties caused variations on slum agreements among experts. In the first 
test area, agreements on slum locations and boundaries varied less compared to the second test area. 
During ground observations, we noticed clear boundaries of slums in the first test area (eastern 
part), and formal housing and commercial area (the western part). On the contrary, the second area 
is dominated by kampungs. As mentioned in Section 2, kampungs may consist of formal housing 
kampungs having also high built-up densities or slum kampungs commonly having very high 
built-up densities. These vague boundaries between slum and non-slum kampungs make it difficult 
to determine where exactly a slum changes into a non-slum [25]. 

Comparing OBIA classification with manual delineations can result in three scenarios (besides 
True Negative). First, slum delineations (experts) are outside the OBIA (slum) result, i.e., False 
Negative (FN). Second, OBIA results are outside slum delineations, i.e., False Positive (FP). Third, 
slum delineations are matching the OBIA result, i.e., True Positive (TP). In Table 4, we have shown 
how FN, FP and TP change across different level of agreements. In general, a higher level of 
agreement will lead to more certainty about the delineated slums. Regarding the first scenario, TA1 
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and TA2 show a similar pattern, as we reduce the degree of certainty, the higher the FN results. For 
the second scenario, the lower the degree of certainty, the lower the FP. Meanwhile, for the third 
scenario, the highest TP is obtained with the lowest certainty. Thus, the more we try to match 
manual delineations and OBIA classification results, the higher the uncertainty will be. 

Although we employed an ontology-based slum’ characterization starting from expert domain 
knowledge, this is solely done in the image classification step. Ontologies are commonly used in the 
classification part [15]; however, the potential use of ontologies in other phases requires further 
exploration. As mentioned by [15], the processing time needed is growing exponentially when more 
concepts are included into the ontology. 

Regarding experts’ experience, we argue that our experts have a reasonable expertise and have 
a strong understanding of slums in Jakarta. Similar to [25], the level of experience is not a significant 
factor related to delineations’ accuracy. Meanwhile, regarding the conceptual differences, we 
noticed a different characterization of slums among expert (Table 1), which contributed to different 
delineations. However, it may not be the only cause. Previous research [50] indicated that the 
performance of experts in digitizing in an image is affected by internal and external factors. Internal 
factors include demographics, experience and skills, personality, memory span, motivation and 
comparative anxiety. The external factors may include quality of screen/images, amount of 
distraction, tiredness, and time of day. However, we do not further examine how this internal factor 
might impact the quality of slum identifications by our experts. However, we argue that some 
external factor affected the quality of slum identifications—for instance, tiredness and time of day. 
Our survey was taken in different sessions, i.e., during office hours, and after office hours. It is likely 
that interviews conducted after office hours affected the quality of image interpretation due to 
tiredness. All of these factors introduce uncertainties for the generation of reference data, which are 
commonly not made explicit. However, when aiming at remote sensing based slum mapping, it will 
be very important to make these uncertainties explicit and clarify how they relate to mapping 
accuracies. Making these uncertainties explicit is important for bridging the communication gap [50] 
between technical experts and planners. This will allow for better understanding the scope and 
limitations of OBIA based slum mapping in support of planning and decision making on monitoring 
the implementation of slum upgrading policies. 

6. Conclusions 

Our study aimed to analyse the uncertainties in measuring the accuracy of OBIA-based slum 
detection in Jakarta, Indonesia. Comparing the results of manual delineations of slum areas by 
experts with OBIA classification results, there are, in general, four possible outcomes, i.e., True 
Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN). The values of TP, 
FP, FN and TN, and the accuracy indices changed when the degree of expert agreements changed in 
the reference data. These different degrees of agreements demonstrated that there are uncertainties 
on the location and boundaries of slums, referred to as existential and extensional uncertainties, 
respectively. This outcome stresses the dilemma faced by slum mapping campaigns. Furthermore, 
our study demonstrated the role of a non-observable indicator (land tenure), in order to assist slum 
detection, particularly when uncertainties exist. However, the recall of our classification result 
decreased by introducing this additional indicator, while the classification accuracies increased. The 
inherent uncertainties in reference data (even within a city, there is limited agreement on what 
defines a slum and where are the boundaries between slum and non-slum areas) emphasise the need 
to include uncertainty analysis in slum mapping approaches besides assessing classification 
accuracies. We also need to build slum ontologies that integrate local knowledge when aiming for a 
city or nationwide slum mapping and monitoring campaigns employing VHR imagery. However, 
the transferability of slum mapping indicators that are very context specific is limited, i.e., indicators 
might work well in one area but may lead to an increase in uncertainties and/or lower accuracies in 
other areas. Based on the findings of our research, we conclude that slum mapping studies need to 
better address uncertainties embedded in reference data for developing a transferable and robust set 
of indicators. Considering the entire uncertainties when producing reference data, it is critical to 
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explicitly clarify their influence on classification results. This will be a first stepping-stone towards 
generating a knowledge base, which allows for providing base information but also has the potential 
to bridge the communication gap between remote sensing experts and domain experts (i.e., 
planners—policy makers). Furthermore, such uncertainty analysis will lead to better understanding 
where remote sensing can assist in planning and decision making in the context of slum upgrading 
projects and policies. 
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