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Abstract: The 40 km resolution SMOS (Soil Moisture and Ocean Salinity) soil moisture, previously 
disaggregated at a 1 km resolution using the DISPATCH (DISaggregation based on Physical And 
Theoretical scale CHange) method based on MODIS optical/thermal data, is further disaggregated 
to 100 m resolution using Sentinel-1 backscattering coefficient (σ°). For this purpose, three distinct 
radar-based disaggregation methods are tested by linking the spatio-temporal variability of σ° and 
soil moisture data at the 1 km and 100 m resolution. The three methods are: (1) the weight method, 
which estimates soil moisture at 100 m resolution at a certain time as a function of σ° ratio (100 m to 
1 km resolution) and the 1 km DISPATCH products of the same time; (2) the regression method 
which estimates soil moisture as a function of σ° where the regression parameters (e.g., intercept 
and slope) vary in space and time; and (3) the Cumulative Distribution Function (CDF) method, 
which estimates 100 m resolution soil moisture from the cumulative probability of 100 m resolution 
backscatter and the maximum to minimum 1 km resolution (DISPATCH) soil moisture difference. 
In each case, disaggregation results are evaluated against in situ measurements collected between 1 
January 2016 and 11 October 2016 over a bare soil site in central Morocco. The determination 
coefficient (R2) between 1 km resolution DISPATCH and localized in situ soil moisture is 0.31. The 
regression and CDF methods have marginal effect on improving the DISPATCH accuracy at the 
station scale with a R2 between remotely sensed and in situ soil moisture of 0.29 and 0.34, 
respectively. By contrast, the weight method significantly improves the correlation between 
remotely sensed and in situ soil moisture with a R2 of 0.52. Likewise, the soil moisture estimates 
show low root mean square difference with in situ measurements (RMSD= 0.032 m3 m−3). 

Keywords: soil moisture and ocean salinity satellite (SMOS); DISPATCH; radar; Sentinel-1; 
disaggregation; soil moisture 
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1. Introduction 

Soil moisture (sm) is a land state variable governing the interaction between the land surface 
and atmosphere through playing its role in various components of the water and energy cycle, such 
as evapotranspiration, groundwater recharge, and surface runoff. Thus, comprehensive monitoring 
programs providing high quality soil moisture information are needed for precisely modeling the 
exchange of water, energy, and carbon fluxes between land and atmosphere. Given that in situ 
measurements are labor intensive, site specific and represent tiny soil fractions, remotely sensed 
imagery is a unique alternative for providing frequent soil moisture estimates at integrated spatial 
scales, which can also be used for augmenting sparsely distributed measurements [1]. The high 
sensitivity of microwave imagery to soil moisture and its ability to work under all weather 
conditions make it a suitable candidate for capturing the spatial and temporal variability of soil 
moisture [2]. In particular, L-band radiometry is favorable due to an optimal signal to noise ratio 
[3,4]. The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, utilizes an 
L-band interferometric radiometer for providing topsoil (3–5 cm) moisture maps at 30–55 km 
resolution [5,6]. Although, SMOS soil moisture products have been regularly validated [7,8] and 
evaluated as appropriate for hydro-climate applications [9], higher spatial resolutions detailing the 
soil moisture distribution within the passive microwave pixel is highly required, especially for 
agricultural applications [10]. 

A range of disaggregation methods of coarse resolution passive microwave-based soil moisture 
products rely on active microwave observations acquired at high (several tens of meters) resolution 
by synthetic aperture radars (SAR) [10]. Chauhan et al. [11] and O’Neill et al. [12] showed that 
physically-based radiative transfer modeling approaches can be used for exploiting potential 
synergy between active and passive observations within the context of data disaggregation. 
Statistical and hydrological models were also vastly used to describe the temporal and spatial 
characteristics of soil moisture within catchments [10,13–16]. Other approaches based on the change 
detection technique were developed. For instance, Njoku et al. [1] retrieved soil moisture by 
applying an approach based on the change detection on passive/active L-band system data acquired 
during the Southern Great Plains Experiment in 1999. The algorithm was further matured by Piles et 
al. [17] through using an observation system simulation experiment, which led to provide absolute 
values of moisture content. In the same vein, Das et al. [18] improved the change detection algorithm 
for providing absolute values of soil moisture, which resulted in developing the baseline algorithm 
for Soil Moisture Active and Passive mission (SMAP) combined active/passive soil moisture 
product. The baseline algorithm was then modified [19] for overcoming the disadvantage of being 
highly dependent on the accuracy of the retrieved passive microwave soil moisture [10]. 

Alternatively, optical/thermal observations, especially the 1 km resolution MODIS (MODerate 
resolution Imaging Spectroradiometer) data, have been widely used for disaggregation of SMOS like 
soil moisture data. In general, an assumed relationship between land surface temperature (LST), 
normalized difference vegetation index (NDVI) and near-surface soil moisture is employed for 
disaggregation [9] based on the triangle [20,21] or trapezoid [22] approaches [10]. Such a relationship 
can be described in a regression form specific to the surface conditions encountered over the study 
region at the time of satellite overpass. The link between LST and near-surface soil moisture can also 
be formalized more physically using an evaporation model as it is done in the DISPATCH 
(DISaggregation based on Physical And Theoretical scale Change) method [23,24]. 

In general, the combination of multi-source data is recommended for disaggregating SMOS 
data to finer resolutions, especially when using data acquired over a swath width (for instance 185 
km for Landsat and 60 km for ASTER, Advanced Scanning Thermal Emission and Reflection 
Radiometer) much narrower than that (~1000 km) of SMOS. Merlin et al. [25] used MODIS and 
ASTER data for sequentially disaggregating SMOS product to 4 km resolution (using MODIS) and 
500 m (using ASTER) resolution. The results showed that using an intermediate resolution of 4 km 
led to improved results than when ASTER was used for disaggregating SMOS directly to the 
targeted (500 m) resolution. That is notably because MODIS reduced the non-linearity influences 
across scales between the soil evaporation rate and soil moisture [23]. 
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Note that the temporal resolution of the observations used for disaggregation is of great 
importance for providing disaggregated soil moisture at suitable time intervals. Since MODIS data 
are available twice a day, the availability (on clear sky days) of the 1 km resolution DISPATCH 
product over time depends solely on the SMOS revisit time, which is three days. ASTER and Landsat 
data can be used for disaggregating the 1 km DISPATCH products to finer resolution [23,25]. 
However, the availability of ASTER and Landsat data over time (16 days) makes the use of the 
disaggregated soil moisture in agriculture questionable. In fact, more frequent (few days) 
disaggregated soil moisture estimates are required in order to monitor the water availability for 
plants and, hence, to schedule the time and water amount of irrigation [26]. The C-band backscatter 
data acquired by the synthetic aperture radar (SAR) sensor aboard Sentinel-1 satellite is a potential 
candidate for disaggregating the 1 km DISPATCH products to 100 m resolution due to the shorter 
revisit time and the free availability to public users. 

In this context, this work aims at employing the C-SAR data acquired every six days by 
Sentinel-1 for disaggregating SMOS products to 100 m resolution using the 1 km DISPATCH 
product as a reference at an intermediate resolution. In this work, three different methods are 
investigated: (1) the 100 m to 1 km resolution backscatter ratio is used as an indicator for soil 
moisture spatial variability; (2) the regression form of the near linear relationship between soil 
moisture and backscatter is used for disaggregation; and (3) the cumulative probability (CDF) of the 
backscatter is used for estimate 100 m resolution soil moisture given the maximum and minimum 
soil moisture difference captured by the 1 km DISPATCH product. Given that vegetation 
characteristics (water content and structure) influence C-SAR data, the three methods are 
inter-compared over a bare soil site as a first step before more generic approaches could be 
developed in the future. The three methods are evaluated against in situ measurements in terms of 
mean, bias, coefficient of determination (R2), root mean square difference (RMSD) and mean 
absolute difference (MAD). 

2. Study Area and Data Sets 

2.1. Study Area 

Figure 1a shows the study area known as Sidi Rahal site which is 5 km2 located 60 km east of 
Marrakesh city, Morocco (31°40′27.06′′–31°43′9.06′′N, 7°20′0.76′′–7°22′42.76′′W). Figure 1b is a land 
use map for the study area showing that the main uses are trees, bare soil and agricultural fields in 
addition to urban area. Based on the Köppen climate classification [27], the area is characterized by 
Mediterranean semi-arid climate with an average annual rainfall of 250 mm. The terrain is flat with 
elevation of 550 m above sea level and. The agricultural fields remained under bare soil conditions 
between 1 January 2016 and 1 November 2016 [28]. 

2.2. DISPATCH Soil Moisture Product 

DISPATCH soil moisture maps were produced over the study area for the period between 1 
January 2016 and 11 October 2016. The SMOS level-3 soil moisture data were disaggregated to 1 km 
resolution using the new SMOS level-4 processor (C4DIS) developed as part of the French ground 
segment for SMOS level-3 and level-4 data (Centre Aval de Traitment des Donnees SMOS). Details 
about the C4DIS processor and product can be found in Molero et al. [29]. Briefly, the C4DIS 
processor implements the DISPATCH method [23,24,30] at the quasi global scale for each selected 
MODIS tile separately. The DISPATCH method expresses the 1 km resolution soil moisture as a 
function of the ~40 km resolution SMOS level-3 soil moisture and the soil evaporation efficiency 
estimated at 1 km resolution from MODIS LST and NDVI data. 
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Figure 1. (a) The study area located at the east of Marrakech city, Morocco; (b) land cover/land use 
map of the study area (5 km2); and (c) Google map of nine pixels (100 m resolution) of the study area 
where pixel (1, 1) includes the station for the in situ measurements. 

2.3. SAR Data 

Forty-six level-1 Ground Range Detected (GRD) C-band SAR scenes acquired by Sentinel-1 
between 1 January 2016 and 11 October 2016 in ascending pass direction at a nominal time of 18:33 
UTC are employed for this study. Note that the descending pass direction never matches the 
DISPATCH product over the study area. Sentinel-1 has four operating modes; however, over land, it 
is nominally in the interferometric wide swath (IW) mode and measures at dual (VV and VH) 
polarization with a 250 km swath at a 5 m by 20 m spatial resolution. The VH data are not used for 
this study since a significantly better correlation between radar and in situ soil moisture was found 
for VV than for VH over the study area [28]. However, the VH data can be employed for quantifying 
the vegetation contribution to the backscatter acquired by the satellite since VH is more sensitive to 
the vegetation properties [31]. 

2.4. In Situ Measurements 

The Sidi Rahal site was equipped by a monitoring station (Figure 1b,c) in December 2013 in the 
frame work of the Joint International Laboratory TREMA (a French acronym for Remote Sensing 
and Water Resources in the Semi-Arid Mediterranean [32,33]. The monitoring station includes: (1) 
micro-meteorological instruments for estimating the latent and sensible heat fluxes at the 
soil–vegetation–atmosphere interface; (2) sensors for measuring rainfall, global radiation, 
temperature, relative humidity, and wind speed at a half-hourly time step; and (3) probes for 
measuring soil water content at different depths and at the time interval of 30 min. For this study, 
only the in situ measurements of the topsoil (5 cm) moisture content are used. Data were extracted 
on the 28 dates when both DISPATCH and C-SAR Sentinel-1 data were available. 

3. Methodology 

Processing the C-band SAR data is an essential step before applying the proposed methods. In 
particular, the data processing consisted of:(1) converting radar reflectivity into physical units 
(calibration); (2) reducing the spatial resolution by producing square pixels to improve the 
radiometric resolution (noise reduction); (3) using a median filter of a 7 by 7 window to alleviate the 
speckle effect (speckle filtering); and (4) converting the data from ground range geometry to 
backscatter using the Shuttle Radar Topography Mission (SRTM) 30 m digital elevation model 
(terrain correction). 

It is worth mentioning that regions covered by evergreen trees were employed for testing 
various speckle filters since the backscatter show temporal stability over these trees. The median 
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filter resulted in the most stable backscatter over time and, hence, it was selected for alleviating 
speckle in this study. 

The above processing steps can be performed using the Sentinel Application Platform (SNAP) 
[34]. 

The vertical polarized backscatter noted σ° is first aggregated to 100 m and 1 km resolutions, 
and then normalized to vary between 0 and 1 for each i 1 km pixel and each j 100 m pixel, 
respectively. Formally, the normalized 1 km resolution σ° at pixel i and date t is defined as: ° , , = ° , − ° ,° , − ° ,  (1) 

where	 ° , , 	is the normalized backscatter calculated from the backscatter σ° observed at time t 
and aggregated at the 1 km pixel i while max and min stand respectively for the maximum and 
minimum backscatter values reached at pixel i over the considered time series. Similarly, the 
normalized 100 m resolution σ° at pixel j and date t is defined as: ° , , = ° , − ° ,° , − ° ,  (2) 

where ° , ,  is the normalized backscatter calculated from the backscatter σ° observed at time t 
and aggregated at the 100 m pixel j while max and min stand, respectively, for the maximum and 
minimum backscatter values reached at pixel j over the considered time series. 

The following subsections along with Figure 2 describe the three applied methods for 
disaggregating the 1 km DISPATCH product to a resolution of 100 m using Sentinel-1data. The radar 
backscatter acquired over bare soil is a complex function of the sensor parameters (frequency, 
polarization and incidence angle) and the dielectric and geometric properties of the soil represented 
by soil moisture and surface roughness, respectively [2,35]. The sensor parameters are always 
known while intensive measurements are required for characterizing soil roughness due to its 
variable nature over space and time. However, Alvarez-Mozos et al. [36] and Baghdadi et al. [37] 
argued that soil roughness can be considered as a single scale stationary random process. Therefore, 
the variability in space and time of moisture content of bare soil can be, respectively, linked to the 
spatial and temporal patterns of the acquired backscatter. Various studies show the existence of a 
near linear relationship between sm and σ° over bare soils [38,39] which is addressed by: ° , , = 1 , × , , + 3 ,  (3) 

with P1, P2and P3being parameters that are variable in space (j) and time (t) [40]. 
The three proposed radar-based disaggregation methods are mainly based on the quasi-linear 

relationship between sm and σ° (Equation (3) with P2 close to (1)) where sm is estimated as a function 
of σ°. In particular, estimating soil moisture is controlled by the backscatter variability in: (1) space; 
(2) time; or (3) space and time. In general, Table 1 briefly compares the main assumption of each 
disaggregation method while detailed descriptions are provided in the following subsections. 

Table 1. Main assumptions of the applied methods for disaggregating the 1 km DISPATCH product 
to 100 m resolution. 

Method Assumption

Weight 
100 m resolution radar backscatter and soil moisture are related within a 1 km pixel 
and for a given date. 

Regression 
Parameters (e.g., intercept and slope) controlling the temporal relationship between 
radar backscatter and soil moisture are variable in space only (not in time). 

CDF 
The cumulative distribution function controls the temporal relationship between 
radar backscatter and soil moisture and varies in space only. 
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Figure 2. Disaggregating the 1 km DISPATCH product to 100 m resolution with methods referred to as: (a) weight; (b) regresskm; (c) regress100m; (d) CDFevery; and (e) CDFall. 
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3.1. Weight Method 

For the weight method depicted by Figure 2a, we assume that the relative variabilities within 1 
km pixels of 100 m resolution sm and 100 m resolution σ° are the same [41], meaning that: 

, , − , ,, , = , ,° − , ,°
, ,°  (4) 

Hence, the 100 m resolution sm disaggregated by the weight method can be written as:  

, , = , , × , ,°
, ,°  (5) 

where j refers to the location of the 100 m resolution pixel within the i 1 km resolution DISPATCH 
pixel. 

3.2. Regression Method 

The second radar-based disaggregation approach employed in this study rests on finding the 
parameters describing the near-linear relation between soil moisture and backscatter (Equation (3)). 
By assuming that such a relationship is scale-invariant across the 100 m to 1 km scales, the 100 m 
resolution parameters are estimated by deriving the best fit between the 1 km resolution backscatter 
and DISPATCH sm data. Thus, the parameters of Equation (3) become variable in space (at the 1 km 
resolution) only. The best fit can be constructed in two distinct ways. The first, which is referred to as 
regresskm and addressed by Equation (6), employs the time series of the 1 km DISPATCH product 
and the time series of the backscatter aggregated to 1 km resolution (Figure 2b). For each 1 km 
resolution pixel, the obtained parameters are used at 100 m resolution to construct the relation 
between 100 m resolution backscatter and soil moisture (Equation (7)). Hence, Equation (7) is 
reformed to Equation (8) to calculate the 100 m resolution disaggregated sm. The second referred to 
as regress100m and represented by Equation (9) employs the time series of the 1 km DISPATCH 
product and the time series of the backscatter aggregated to 100 m resolution. In particular, each 
pixel of the 1 km DISPATCH product is correlated to the corresponding 100 m resolution backscatter 
(Figure 2c). In return, an ensemble of 100 parameter sets is obtained within each 1 km DISPATCH 
pixel. For each ensemble, values of each parameter are averaged as shown by Equation (10) which is 
reformed to calculate the 100 m resolution disaggregated sm as expressed in Equation (11). 

,° = 1 × , + 3  (6) 

,° = 1 × , + 3  (7) 

, = ,° − 31  (8) 

,° = 1 × , + 3  (9) 

,° 	= 1 , × ,, + 3 ,  (10) 

, = ,° − 3 ,1 ,,
 (11) 

where mean refers to the arithmetic mean in case of averaging the parameters P1, P2, and P3 of the 
100 m resolution pixels within each 1 km DISPATCH pixel. 
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3.3. Cumulative Distribution Function (CDF) Method 

Tomer et al. [40] and Eweys et al. [31] proposed an approach for transforming the near linear 
relation between backscatter and sm into a linear function based on the cumulative distribution 
function (CDF). In particular, the CDF transformation of a long time series of backscatter results in 
values ranging between 0 and 1, corresponding to the minimum and maximum soil moisture 
respectively. The relative soil moisture at any location at a certain time is hence considered as a 
function of the cumulative probability of the backscatter acquired over the same location and at the 
same time. Equation (11) was revealed by Tomer et al. [40] for retrieving sm based on the CDF of the 
backscatter: 

, 	= 	 , + , − , × ° ,  (12) 

where , , ,  and ° ,  refer, respectively, to the minimum and maximum soil 
moisture at i DISPATCH pixel during a given period, and the cumulative probability of the 
backscatter acquired at pixel i and time t. Note that Tomer et al. [40] considered field capacity and 
wilting point as maximum and minimum soil moisture, respectively. 

Ranking radar backscatter time series acquired at a certain location (i or j) is an essential step for 
constructing the CDF. In particular, the backscatter values are ranked in an ascending order where 
each value is assigned a serial rank number (r) ranging from 1 to n (number of signals). 
Subsequently, the probability (P) is determined for each backscatter through applying the Equation 
(12) (Weibull method, cited by Raes [42]). = ( + 1) 100 (13) 

This study tests Tomer et al. [40] and Eweys et al. [31] approach for disaggregating the 1 km 
DISPATCH product to 100 m resolution using Sentinel-1 data, where the maximum and minimum 
soil moisture ( , ,  and , , , respectively) are estimated from the time series of 
DISPATCH data. To that end, the CDF of the backscatter is built in two distinct ways. The first 
method, known hereinafter as CDFall, builds a single CDF from the 100 time series of 100 m 
resolution backscatter corresponding to each 1 km DISPATCH pixel (Figure 2d). The second 
method, known hereunder as CDFevery, builds a backscatter CDF for each 100 m resolution pixel. 
Thus, 100 distinct backscatter CDFs are built for each 1 km DISPATCH pixel (Figure 2e). 

Finally, the 100 m resolution disaggregated soil moisture is estimated as: CDFall or CDFevery 

, , = , , + , , − , , × , ,°  (14) 

where , ,°  is the cumulative probability of the backscatter obtained from CDFall or CDFevery. 

4. Results 

4.1. Data Analysis 

Given that the applied approaches differ in considering the spatial and temporal variability of 
the soil properties, it is necessary to investigate the relevance between the used data (DISPATCH 
and SAR data) and in situ measurements as an essential step for investigating the use of C-SAR data 
for disaggregation as well as the performance of each method. Three main aspects are analyzed 
focusing on: (1) the accuracy of the 1 km DISPATCH product; (2) the sensitivity of backscatter to in 
situ measurements; and (3) the dependence between backscatter and the 1 km DISPATCH product. 

Figure 3 is a graphical evaluation of the 1 km DISPATCH product in comparison to the in situ 
measurements. The figure shows that some of the 1 km DISPATCH product highly deviates from 
the measurements causing a wide spread of the matchups among the fitted line. Hence, a relatively 
weak correlation is detected between the matchups recording a determination coefficient (R2) of 
0.311. The mismatch in the spatial extent between the 1 km resolution DISPATCH product and the 
localized in situ measurements might explain part of the observed weak correlation. The in situ 
measurement is based on the dielectric constant estimated within a soil volume of a few squared 
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decimeters, which may not be well representative of the soil moisture at the field scale. By contrast, 
DISPATCH product presents a soil moisture value integrated over a much larger area (1 km2), which 
tends to smooth the soil moisture variability in both space and time. Although the 1 km DISPATCH 
product highly deviates from the measurements, the associated error of the 1 km DISPATCH 
product is relatively low (RMSD = 0.033 m3 m−3. In addition, the calculated overall bias is negligible 
(0.0003 m3 m−3).  

 
Figure 3. Evaluation of SMOS products (1 km DISPATCH) against the in situ measurements. 

Similarly, the sensitivity of the 1 km resolution aggregated backscatter to the in situ 
measurements is graphically investigated by Figure 4a. The correlation is slightly increased (R2 = 
0.335) in comparison to the correlation detected in Figure 3, indicating that the vertical polarized 
backscatter could be used for improving the spatial resolution of DISPATCH soil moisture. The 
spread of the data among the fitted line is lower but has similar pattern to that observed between the 
1 km DISPATCH product and the measurements indicating that the spatial scale difference 
influences the 1 km backscatter and DISPATCH product similarly. Evaluating the sensitivity of the 
100 m resolution aggregated backscatter to the in situ measurement (Figure 4b) shows relatively 
higher R2 (~0.36). The matchups show high consistency among the fitted line reflecting that the 
spatial pattern of the moisture content is captured by Sentinel-1 data. The dependence between the 
backscatter and the 1 km DISPATCH product is also investigated. Figure 5a shows that the 1 km 
resolution backscatter has a very weak dependence on the 1 km DISPATCH product with R2 of 0.253 
while there is no dependence found between the DISPATCH product and the 100 m resolution 
backscatter (Figure 5b). 

The no dependence between the backscatter and DISPATCH data and the correlation between 
both data and the in situ measurements confirm that Sentinel-1 data area new source of information 
by can be used for disaggregation. 
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Figure 4. The backscatter aggregated to (a) 1 km and to (b) 100 m resolutions versus the in situ 
measurements. 

Figure 5. Dependence of the backscatter aggregated to: (a) 1 km; and (b) 100 m resolutions on the 1 
km DISPATCH product. 

4.2. Evaluation of Disaggregated Soil Moisture Data Sets 

The disaggregated soil moisture obtained from each method is assessed through the 
comparison with the in situ measurements. The graphical evaluation presented by Figures 6–8 
depicts that R2 values vary across the range 0.292–0.515. Figure 6 shows that the weight method 
gives the highest R2 value (0.515) improving the R2 value resulted from evaluating the 1 km 
DISPATCH product against the in situ measurements (Figure 3). The spread of the matchups among 
the fitted line shows that soil moisture are relatively well estimated. However, the figure shows that 
disaggregated soil moisture corresponding to in situ measurements of ~0.12 m3 m−3 has higher 
dispersion along y axis. The detected dispersion is a direct result of the disaggregation method 
where the spatial variability of the backscatter (100 m resolution) is the main influencing factor. Both 
options (regresskm and regress100m) of the second method are evaluated in Figure 7. The figure shows 
that regress100m method extremely underestimates soil moisture. This may be due to the averaging of 
the regression coefficients, which integrate the effects of soil roughness. Indeed, calculating the 
average over 1 km suppresses the roughness variability from a pixel of 100 m resolution to another 
leading to an inaccurate representation of the roughness when correlating soil moisture to the 
backscatter. 
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Figure 6. Evaluation of disaggregated soil moisture products by the weight method against the in 
situ measurements. 

  

Figure 7. Evaluation of disaggregated soil moisture products by: (a) the regresskm; and (b) the 
regress100m against the in situ measurements. 

Figure 8. Evaluation of disaggregated soil moisture products by: (a) the CDFall; and (b) the CDFevery 
against the in situ measurements. 

The lowest R2 values are detected from the both options (CDFall and CDFevery) of the third 
method recording an R2 of 0.334 and 0.292, respectively. Figure 8a,b, respectively, shows that the 
CDFall method gives highly underestimated soil moisture with small range along y axis and the 
CDFevery leads to estimates of wide spread with overestimation of soil moisture under the 0.13 m3 m−3 
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and wider range along y axis. This is explained by the number of backscatter used for constructing 
the cumulative distribution function. In particular, the number of backscatter values affects the 
ranking process, which is the basis for calculating the cumulative probabilities [42]. In return, the soil 
moisture range captured by DISPATCH product is disaggregated based on huge number of 
backscatter in case of the CDFall method while it is disaggregated among much smaller number of 
backscatter (1/100) in case of the CDFevery method. 

In addition, the superiority of the weight method to the regress and CDF methods is explained 
by the nature of the applied algorithm where the weight method depends on the backscatter spatial 
distribution while the strength of the backscatter–soil moisture relationship controls improvements 
of the other two methods. 

Table 2 listing statistics calculated for quantitatively evaluating the applied methods assures 
results shown in Figures 6–8. The weight and regresskm methods give the best soil moisture estimates 
(RMSD of 0.032 m3 m−3 and 0.034 m3 m−3, respectively). However, the weight approach gives better 
MAD (Figure 6).The regresskm has unstable performance over the study period where soil moisture 
is overestimated during dry spells and underestimated during the wet ones. This explains the lower 
bias obtained from the weight method. Although regress100m, CDFall and CDFevery give acceptable 
errors varying across the range 0.042–0.055 m3 m−3, large MAD and bias are obtained due to the 
underestimation of soil moisture by the first and the second (Figures 7b and 8a) method, while the 
third method overestimates soil moisture under the 0.13 m3 m−3 level (Figure 8b). 

Table 2. Statistical evaluation of the 1 km DISPATCH product and the applied methods against the 
in situ measurements. 

 R2 MAD(m3 m−3) RMSD(m3 m−3) Bias(m3 m−3) 
DISPATCH 0.311 0.025 0.033 0.0003 

weight 0.515 0.021 0.032 −0.009 
regresskm 0.335 0.023 0.034 −0.019 

regress100m 0.335 0.044 0.055 −0.044 
CDFall 0.334 0.040 0.049 −0.040 

CDFevery 0.292 0.036 0.042 0.019 

4.3. Temporal and Spatial Pattern 

In general, the dry spells occur in summer and fall due to the high evaporative demand with no 
rainfall. A series of rain events are detected during winter and spring with large temporal variation 
and various intensities. Maximum and minimum rainfall intensities are observed during the onset 
and end of May respectively. In this context, Figures 9 and 10 represent the spatial distribution of 
both the 1 km resolution DISPATCH product and the 100 m resolution disaggregated soil moisture 
derived from each method over the study area of 5 km2 shown in Figure 2b. The 1 km DISPATCH 
product (Figures 9a and 10a) and the weight method results (Figure 9b) perfectly capture the dry and 
wet conditions of the study period with experienced soil moisture levels reaching 0.3 m3 m−3. Results of 
the regresskm method show similar temporal pattern with lower moisture levels (0.2 m3 m−3) during the 
wet conditions. In contrast, results of the regress100m, CDFall and CDFevery methods do not represent 
the soil moisture temporal pattern where maps of regress100m and CDFall correctly represent the dry 
spells only, while maps of CDFevery show high soil moisture during the whole study period. 

In addition, all DISPATCH images show that the northern region of the study area is 
apparently wetter than the southern one. The land use and land cover variation is the main cause of 
the detected spatial pattern since the DISPATCH algorithm used for producing the 1 km product 
relies on the evaporative demand along with the relationship between the thermal signature and the 
land cover. Figure 1b shows that trees are located at the northern region of the study area and at few 
scattered spots of small areas at the southern east one. Thus, these areas have higher NDVI in 
comparison to bare soils which represent the highest percentage of the study area [43]. In addition, 
Figure 1c shows that urban areas are located at the east of the soil moisture station which has 
different thermal signatures affecting the DISPATCH product. Results of the weight method show 
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the same spatial pattern as for the DISPATCH product (Figure 9b). The weight method gives 
identical soil moisture levels of both the northern and southern regions representing wet and dry 
areas, respectively. That is because of the systematic higher backscattering coefficient associated to 
trees and urban areas located in the northern region in comparison to the southern one. The 
regresskm method gives similar spatial pattern as for the DISPATCH product but with dryer 
conditions at the northern region (Figure 9c). 

Although results of regress100m and CDFall show that the northern region is of relatively higher 
soil moisture levels than those of the southern one (Figures 9d and 10b), the spatial pattern within 
each region is not captured. Instead, regress100m leads to a systematic decrement of soil moisture 
levels from the north to the south direction while CDFall gives higher moisture levels for the southern 
region compared to those represented by DISPATCH. Furthermore, Figure 10c shows that CDFevery 
leads to similar soil moisture levels over the whole study area to the level represented by the 
DISPATCH product, but the spatial pattern within both the southern and the northern regions is 
distorted. 

 
Figure 9. Spatial distribution of the 1 km DISPATCH product and disaggregated soil moisture over 
of the study area (5 km2). 
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Figure10. Spatial distribution of the 1 km DISPATCH product and disaggregated soil moisture over 
of the study area (5 km2). 

4.4. Consistency with DISPATCH Data at the 1 km Resolution 

As an inception for analyzing their spatial pattern, the consistency between DISPATCH and 100 
m resolution disaggregated products is evaluated. This consistency evaluation is performed over 
pixels of the study area representing bare soil conditions only since considering the vegetation 
contribution to the C-SAR backscatter is not a straight forward operation [31]. 

Figure 11 is scatter plots comparing between the disaggregated soil moisture by each method 
and the 1 km DISPATCH products where values of all pixels of all maps; 46 pairs of maps of both 
disaggregated soil moisture and DISPATCH products are used with excluding those values 
estimated over vegetated regions. Figure 11a shows that the weight method is the only one that 
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provides disaggregated estimates consistent with the DISPATCH product at all soil moisture levels. 
That is because the weight method rests on considering the instantaneous spatial variability of the 
backscatter as indicator for the variability of soil moisture in space. In contrast, estimates of the 
regresskm method (Figure 11b) are consistence with the DISPATCH products at soil moisture levels 
lower than 0.05 m3 m−3 while the consistency distorts at higher levels. In addition, Figure 11c shows 
that estimates of the regress100m have no consistence with the DISPATCH products since the former 
is of much lower values than the latter. That is attributed to the non-linear relationship between soil 
moisture and backscatter which does not fully capture the temporal variability of soil moisture. 
Furthermore, Furthermore, Figure 11d and e show that the CDF method has low consistency with 
the DISPATCH product especially the CDFevery which highly overestimates soil moisture. That is 
because the CDF methods is greatly affected by smmin and smmax which depend on the accuracy of the 
1 km DISPATCH product on the particular dates used for estimated sm end members, and also by 
the number of the backscatter values used for calculating the cumulative probabilities. 

Table 3 listing the evaluation statistics assessing the concurrence between 100 m resolution 
disaggregated and DISPATCH products after masking out pixels of vegetated areas assures results 
of Figure 11. Disaggregated soil moisture of the weight method is the highest correlated to 
DISPATCH product with the lowest associated error and negligible bias. Much weaker correlation is 
detected for estimates of the regresskm and regressall with higher associated error and bias while the 
lowest correlation is observed for estimates of CDFall and CDFevery with the highest associated error 
and bias. 

 
Figure 11. Scatter plots of disaggregated soil moisture (all pixels values of all disaggregated soil 
moisture maps after masking out values of vegetated areas) produced by: (a) weight; (b) regresskm; 
(c) regress100; (d) CDFall; and (e) CDFevery methods against the corresponding 1 km DISPACTH 
products 

Table 3. Statistical evaluation of the concurrence between 100 m resolution disaggregated and 
DISPATCH products after masking out pixels of vegetated areas. 

 R2 MAD (m3 m−3) RMSD (m3 m−3) Bias (m3 m−3) 
weight 0.740 0.017 0.030 −0.0001 

regresskm 0.442 0.030 0.047 −0.0235 
regress100m 0.337 0.029 0.043 −0.0008 

CDFall 0.218 0.054 0.069 0.0368 
CDFevery 0.159 0.267 0.337 −0.2634 



Remote Sens. 2017, 9, 1155  16 of 20 

 

4.5. Spatial Relevancy of Disaggregated Soil Moisture by the Weight Method 

The disaggregated soil moisture resulted from the weight method is the best estimates in 
comparison to other methods results. That is mainly because the weight method distributes soil 
moisture according to the 100 m to 1 km resolution (aggregated) backscatter ratio. 

Thus, nine pixels are selected for investigating the spatial relevancy of the weight method 
estimates. In particular, the relevancy of disaggregated soil moisture value of the center pixel to 
those values of the surrounding pixels is investigated. Figure 1c is a Google map image showing the 
location of the nine pixels and the dominant features. The center pixel; known hereinafter as (1, 1); is 
selected because: (1) it represents bare soil conditions during the whole study period; (2) it is not 
affected by any other feature such as building, roads and/or water bodies; and (3) the location of in 
situ measurements is within this pixel. 

Table 4 details the evaluation statistics used for comparison along with the bare soil percentage 
of each pixel, which show that the relevancy is dependent on the main features existing within each 
pixel. The higher R2 (0.650) is detected for pixel (2, 1) with very small RMSE (0.028) where the whole 
pixel represents bare soils. Similar behavior is detected for pixels (2, 0), (2, 2), (1, 2), and (1, 0). The 
pixels have lower bare soil percentages (90% > bare soil >100%) than that detected in pixel (2, 1) 
because of the roads and small buildings give lower R2 and RMSD. The effect of buildings and roads 
clearly appears in pixel (0, 0) and (0, 1) since around 50% and 80% of the two pixels, respectively, 
represent urban area. Consequently, the spatial patterns shown in maps produced by the weight 
method are trustworthy (Figure 9b). 

Table 4. Evaluation statistics calculated for comparing the disaggregated soil moisture of pixel (1, 1) 
shown in Figure 1c to the disaggregated soil moisture of the surrounding pixels. 

 (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) 
Bare soil % 40–50 20–30 90–95 >95 100 90–95 >95 100 >95 

R2 0.161 0.045 0.255 0.368 1 0.320 0.484 0.650 0.388 
RMSD 0.041 0.062 0.047 0.050 0 0.057 0.044 0.028 0.034 
MAD 0.030 0.035 0.032 0.039 0 0.041 0.031 0.020 0.025 
Bias −0.004 0.004 0.001 0.015 0 0.026 0.023 −0.014 −0.001 

5. Discussion 

A relatively poor correlation is detected between the DISPATCH product and in situ 
measurements. This is probably due, at least in part, to the mismatch in the spatial extent between 
the 1 km resolution DISPATCH pixel and the soil moisture probes representative of a tiny soil 
volume (several squared decimeters). The input datasets used by the DISPATCH algorithm are the 
main constraints of the spatial and temporal resolution of DISPATCH data. Indeed, the DISPATCH 
product is obtained from the daily global maps of soil moisture, land surface temperature and 
vegetation index and its associated parameters over a three-day moving window [29] while the in 
situ measurements are obtained from the instantaneous measurements of the dielectric constant. 

The weight method leads to high improvement in the correlation between sm estimates and 
measurements because of linking sm variability in space to the backscatter spatial variability 
regardless roughness effect. In fact, the weight method considers no differences of the roughness 
parameters between the original (1 km) and targeted (100 m) resolution because: (1) the agricultural 
fields of the study area usually receive the same farming practices and, in addition, no crop was 
planted during the period of study (due to an unusual lack of precipitation during the months 
preceding and during the sowing period); and (2) the magnitudes of root mean square height and 
correlation length vary in very narrow scales (few centimeters and meters respectively) in 
comparison to the huge areas over which the backscatter is aggregated. 

On the other hand, results of the other methods treating the backscatter-sm near linear 
relationship differently [18,19,44] is based mainly on the strength of: (1) backscatter sensitivity to soil 
moisture; (2) DISPATCH product-backscatter correlation; and (3) DISPATCH product–soil moisture 
correlation [45]. The backscatter sensitivity to soil moisture is slightly stronger than both the 
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DISPATCH product-backscatter and DISPATCH product–soil moisture correlations (Figures 3–5) 
indicating that Sentinel-1 data area new source of information. Nonetheless, the 100 m sm product 
resulted from all methods based on the backscatter-sm near linear relationship do not show 
significant improvement. 

The spatial and temporal soil moisture patterns provided by the weight method are similar to 
those of the DISPATCH product. This is due to the fact that the weight method relies on the 
instantaneous backscatter–soil moisture relationship only, while the other methods are based on the 
near-linear (temporal) relation between backscatter and soil moisture time series. 

6. Conclusions 

The 40 km resolution SMOS level 3 product is first disaggregated to 1 km resolution using 
C4DIS processor, which employs the DISPATCH algorithm and ancillary 1 km resolution MODIS 
data. Then, different methods are applied for disaggregating the 1 km DISPATCH product to 100 m 
resolution using Sentinel-1 data as an independent source of information. The methods are 
identified as weight, regresskm, regress100m, CDFall and CDFevery methods, and evaluated against in 
situ measurements collected between 1 January 2016 and 11 October 2016 over a bare soil site in 
central Morocco. The first (weight) method focuses on the spatial variability of soil moisture while 
the second and third (regresskm and regress100m) accounts for the soil roughness as constant over time. 
The fourth and fifth (CDFall and CDFevery) methods are based on employing the cumulative 
probabilities of the backscatter to calculate soil moisture through building cumulative distribution 
functions. 

Based on the obtained results, we firstly conclude that DISPATCH soil moisture weakly 
correlates with the in situ measurements, notably due to the spatial scale mismatch between the 1 
km resolution DISPATCH pixel and the representativeness scale (several squared decimeters) of in 
situ sensors, despite the satisfying accuracy of the DISPATCH product (RMSD = 0.033 m3 m−3). 
Secondly, C-SAR data are an independent source of information where the backscatter–soil moisture 
correlation is slightly larger than the DISPATCH product–soil moisture correlation, while the 
DISPATCH product-backscatter correlation is very low. 

Among the applied methods, the weight method leads to superior results preserving the soil 
moisture spatial and temporal patterns over the study area. Moreover, one significant aspect of the 
validation exercise is that the correlation between 100 m resolution disaggregated and in situsoil 
moisture is much improved compared to the 1 km resolution DISPATCH data case, with an 
associated lower error (RMSD = 0.032 m3 m−3). That is because the weight method correlates the soil 
moisture spatial variability to the backscatter spatial variability within the 1 km resolution 
DISPATCH pixel, regardless of roughness effects. The roughness parameters are assumed to be 
similar at both the 1 km and 100 m resolution since no farming practice has been undertaken during 
the study period. The other methods vary in improving/distorting the correlation between remotely 
sensed and in situ measurements since they depend on the backscatter sensitivity to soil moisture 
along with the DISPATCH product-backscatter and the DISPATCH product–soil moisture 
correlations. In general, the regresskm and regress100m slightly improves the correlation (R2 = 0.335) 
with a RMSD of 0.034 and 0.055, respectively. Similarly, the CDFall method records a R2 value of 
0.0334 with a RMSD of 0.040 m3 m−3 while the CDFevery method records the lowest R2 value (0.292) 
with a RMSD of 0.051 m3 m−3. 

Further efforts should be made in the future to test the applicability of the approach to a larger 
range of surface conditions including vegetated soils, and soils with various roughness and textural 
characteristics. In fact, the proposed disaggregation methods are tested during bare soil conditions 
with insufficient rain intensities for agriculture. Hence, further efforts should be made to investigate 
the behavior of the applied methods during a year with precipitation that better resembles historical 
patterns. That is because rain affects significantly change soil roughness through breaking the soil 
crust in a process known as splash erosion. The regress and CDF methods are generally expected to 
be highly influenced since they inherently consider soil roughness within the parameters controlling 
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the backscatter–soil moisture relationship. In addition, the backscatter–soil moisture relationship is 
highly influenced by the vegetation cover which highly contributes to the acquired backscatter. 
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