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Abstract: Three Dimension (3D) laser scanners enable the acquisition of millions of points of a visible
object. Terrestrial laser scanners (TLS) are ground-based scanners, and nowadays the available instruments
have the ability of rotating their sensor in two axes, capturing almost any point. Since many sensors can
only operate in a vertical position, they cannot capture points located beneath themselves. Consequently,
these instruments are generally unable to capture data in a vertical descending direction. Moreover,
since the device positioning has certain requirements of space and terrain stability, it is possible that
specific regions of interest are outside the reach of the laser. A possible solution is to address the laser
beam towards the desired direction by means of a mirror. Common mirrors are very cheap; therefore,
they are easy to manipulate and to substitute in case they get broken. However, due to their careless
fabrication process, it seems reasonable to think that they are unprecise. In contrast, front-end mirrors
are more expensive and delicate, and consequently, deflecting angles are more precise. In this research,
we designed a laboratory test to analyze the arising noise when standard and high-quality mirrors are
used during the TLS scanning process. The results show that the noise introduced when scanning through
a standard mirror is higher than that produced when using a high-quality mirror. However, both cases
show that this introduced error is lower than the instrumental error. As a result, this study concludes that
it is reasonable to use standard mirrors when scanning in similar conditions to this laboratory test.
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1. Introduction

Remote sensing techniques enable the acquisition of 3D information of objects or surfaces with
high accuracy and high spatial resolution [1]. 3D laser scanners (3DLS) are light detection and ranging
(LiDAR)-based instruments that consist basically of a transmitter/receiver of a laser beam and a
scanning device [2]. These instruments employ a laser that produces or emits a light beam. They are
used to determine ranges in two methods: phase (phase-based) and pulse (time-of-flight). Phase-based
devices generally allow better accuracy but lower range, while time-of-flight devices allow greater
range [3]. Both sensors send laser pulses to objects. The signal returns to the sensor and it is recorded.
Some instruments orient the laser through a set of mirrors that enable it to know the orientation of
the laser in a local reference system. Time-of-flight instruments measure the time (∆t) employed by
the signal to return, and as the speed of signal is known (the speed of light c), the distance (d) can
be calculated (1). Phase-based instruments measure the number of phases (N), which along with the
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wavelength (λ) allow the calculation of the distance [4]. As the orientation is known, the coordinates
relative to the scanning point of the reflective surface can be calculated (2).

2× d = c× ∆t (1)

d = λ×N (2)

3DLS devices have been widely analyzed and researchers have tested the quality of
measurements [5], the luminance of the laser radiation for the classification of materials [6], the effect
of the angle of incidence to the target surface [7–9] or the color of the scanned surface [9]. 3DLS devices
are classified according to the position of the sensor, such as aerial laser scanners (ALS) referred to
as airborne-based scanners [10,11]; mobile laser scanners that are installed on vehicles (MLS) [12];
personal laser scanners that are carried in a backpack [13,14]; offshore laser scanners used for boats
(OLS) [15,16], and terrestrial laser scanners (TLS), which are ground-based scanners [3,17]. Nowadays
these techniques are widely used for a number of applications, such as agriculture [18], archaeology [19],
autonomous vehicles [20], robotics [21], geology [22], mining [23], rock mechanics [3], etc.

When using ground-based instruments, the laser can only register points that are along its line-of-sight.
The areas behind visible objects are shadow areas (occlusions) [24]. This issue is usually solved combining
different scanning stations or even combining different techniques [3]. Some models of 3D laser scanners
are fixed devices, so they can only scan a portion of the space while other can rotate around a vertical
axis, so its maximum horizontal field of view is 360◦. However, as TLS are usually fixed on a tripod,
their maximum vertical field-of-view is limited by the system’s physical support. For instance, Figure 1a
shows a 3D laser scanner model Leica C10 with a maximum vertical field-of-view of 270◦ when the
sensor is horizontally leveled. This means that there is a shadow area beneath the device due to its
framework and the supporting system. This problem could be solved by changing the orientation of the
device; that is, anchoring the device in a wall (for example) in order to have a90◦ shadow on the wall.
Unfortunately, the TLS manufacturer recommends that the base of the sensor only be horizontal in order
for good functioning. Figure 1b shows the scanning of a laboratory. It can be observed that there is a
circular shadowed area under the device, and others behind the piles or other objects.
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Images of the 3DLS modified from www.leica-geosystems.com. 

The shadowing problem is not limited to the region under the scanner. Notice that in some 
applications there is no possibility to trace a straight line between the sensor and the region of interest. 
This is the case when one is scanning into a vertical tube, such as the bottom of open-ended piles or 
when there are occluded areas that shadow part of the space [24]. In all these cases, a possible solution 
is to use external mirrors to address the beam in the desired direction. 

The use or presence of mirrors in the scanning process has been already analyzed in the 
literature. Actually, it is a popular topic in simultaneous localization and mapping (SLAM) [25]. 

Figure 1. (a) Horizontal and vertical field-of-view of a 3D laser scanner (3DLS) model Leica C10;
(b) example of a full scan using that scanner, where the area under the scanner cannot be captured.
Images of the 3DLS modified from www.leica-geosystems.com.

The shadowing problem is not limited to the region under the scanner. Notice that in some
applications there is no possibility to trace a straight line between the sensor and the region of interest.
This is the case when one is scanning into a vertical tube, such as the bottom of open-ended piles or

www.leica-geosystems.com


Remote Sens. 2017, 9, 1152 3 of 13

when there are occluded areas that shadow part of the space [24]. In all these cases, a possible solution
is to use external mirrors to address the beam in the desired direction.

The use or presence of mirrors in the scanning process has been already analyzed in the literature.
Actually, it is a popular topic in simultaneous localization and mapping (SLAM) [25]. Efforts have been
made to automate the detection of mirror frames and to correct mirror reflection when using a laser
sensor in robotics [25]. Additionally, mirrors have also been used for enhancing the 3D scanning of
objects (i.e., cultural heritage) [26]. Some works have used small front-surface mirrors (250 × 100 mm
and 400 × 400 mm) [26], which are more accurate than common commercial mirrors but they are
delicate to handle, have limited sizes and are not very cost-effective. However, to the best of our
knowledge, the accuracy obtained using common mirrors has not been analyzed until now, despite their
availability and low cost.

The objective of this work is to determine whether common and front-end mirrors can be
employed to address the laser beam and how their use affects to the dataset with respect to a direct
scan. To answer this question, we analyze the accuracy of a close-range (~300 m) TLS when the beam is
deflected by a planar mirror. We also analyze the influence of the mirror surface quality in the results.
To this end we designed an experiment in which a planar surface was scanned using a TLS model Leica
ScanStation C10 at 10 m. The direct measurements were compared with those obtained after having
the beam reflected in two different planar mirrors: one common mirror and one front-end mirror.

2. Materials and Methods

To evaluate how the scanning process through a mirror affects the accuracy, a laboratory
experiment was designed. Basically, the test consisted of the scanning of a whiteboard in three
ways: (1) direct scanning, (2) through a high-quality front-surface mirror and (3) through a common
commercial mirror. The comparison of the measurements done directly with those obtained through the
mirror provides the error obtained when the measurement is taken through an intermediate reflection.

The test was conducted in a laboratory under controlled illumination conditions. Figure 2a shows
a scheme of the laboratory with the location of the TLS, the mirror and the whiteboard. A 3D laser
scanner model Leica C10 was used. Its angular accuracy is 12′ ′, the distance accuracy is 4 mm and the
noise is 2 mm at 50 m [27].
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Figure 2. Laboratory where the test is conducted. (a) Scheme of the laboratory and location of the TLS,
the mirror and the scanned whiteboard; (b) bubble view of the 3D point cloud centered in the TLS
scan station.

The scan station was located at 7.5 m from the whiteboard. The distance from the station and
the mirror was 1 m (Figure 2b). The mirrors were mounted on an adjustable plate so they could be
accurately oriented. Finally, the direct scanning ray reached the test surface almost in the normal
direction. For the indirect configuration, the angle between the laser beam and the normal to the
mirror surface was 45◦, while the reflected beam arrived to the surface test at an incidence angle of
around 8◦. In order to enable a success scanning process, all existing objects between all elements
involved (the whiteboard, the TLS and the mirror) were removed. The scanned surface was a portion
of a common whiteboard placed on a wall. Four black and white HDS targets were distributed,
delimiting the area of interest (Figure 3). The scan was conducted both directly and through two
different mirrors. The first mirror was a planar front-surface silica mirror of 50.8 mm of diameter and
15.9 mm of thickness, with a surface accuracy of λ/20 for a λ (wavelength) of 633 nm. This means that
the maximum deviation from a planar surface that can be found in this mirror is 31.65 nm. The second
mirror was a standard old planar second front mirror with some scratches in the surface.

Remote Sens. 2017, 9, 1152  4 of 13 

 

The scan station was located at 7.5 m from the whiteboard. The distance from the station and the 
mirror was 1 m (Figure 2b). The mirrors were mounted on an adjustable plate so they could be 
accurately oriented. Finally, the direct scanning ray reached the test surface almost in the normal 
direction. For the indirect configuration, the angle between the laser beam and the normal to the 
mirror surface was 45°, while the reflected beam arrived to the surface test at an incidence angle of 
around 8°. In order to enable a success scanning process, all existing objects between all elements 
involved (the whiteboard, the TLS and the mirror) were removed. The scanned surface was a portion 
of a common whiteboard placed on a wall. Four black and white HDS targets were distributed, 
delimiting the area of interest (Figure 3). The scan was conducted both directly and through two 
different mirrors. The first mirror was a planar front-surface silica mirror of 50.8 mm of diameter and 
15.9 mm of thickness, with a surface accuracy of λ/20 for a λ (wavelength) of 633 nm. This means that 
the maximum deviation from a planar surface that can be found in this mirror is 31.65 nm. The second 
mirror was a standard old planar second front mirror with some scratches in the surface. 

 
Figure 3. Scanned whiteboard, with four black and white targets. The area of interest is between the 
four targets, and the albedo is approximately 50%. 

The methodology is shown in the chart depicted in Figure 4 and is described as follows. Stage 
one consists of the scanning of the whiteboard. Firstly, the area of interest was scanned in a single 
scan station and three different steps. The scanning resolution was set to the highest (i.e., separation 
between points of 2.5 cm at 100 m). In the first step of scanning, the whiteboard was scanned three 
times directly, without the use of any mirror. As a result, three point clouds were obtained: R1, R2 
and R3. In the second step, a high-quality mirror was installed at 1 m from the TLS and it was oriented 
so that the laser beam reached the points of the area of interest. The area of interest was scanned three 
times, obtaining the point clouds Mh1, Mh2 and Mh3. In the last step, the previous mirror was 
substituted by a common mirror, oriented as before. Then, the area of interest was again scanned 
three times obtaining the point clouds Mc1, Mc2 and Mc3. During the full process, the TLS was not 
moved from its original location. 

Stage two consists of a basic transformation of the 3D point clouds acquired through the mirrors. 
Due to the specular reflection, the law of reflection states that the obtained image is symmetrical to 
the original. Due to this, a transformation is required [28] in order to enable the comparison of the 
different point clouds. As it is a planar transformation, it is addressed by changing the sign of one 
coordinates; in our particular case the coordinate changed was x. As the result of this transformation, 
the point clouds Mh1′, Mh2′, Mh3′, Mc1′, Mc2′ and Mc3′ were obtained. 
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four targets, and the albedo is approximately 50%.

The methodology is shown in the chart depicted in Figure 4 and is described as follows. Stage one
consists of the scanning of the whiteboard. Firstly, the area of interest was scanned in a single scan
station and three different steps. The scanning resolution was set to the highest (i.e., separation
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between points of 2.5 cm at 100 m). In the first step of scanning, the whiteboard was scanned three
times directly, without the use of any mirror. As a result, three point clouds were obtained: R1, R2 and
R3. In the second step, a high-quality mirror was installed at 1 m from the TLS and it was oriented
so that the laser beam reached the points of the area of interest. The area of interest was scanned
three times, obtaining the point clouds Mh1, Mh2 and Mh3. In the last step, the previous mirror was
substituted by a common mirror, oriented as before. Then, the area of interest was again scanned three
times obtaining the point clouds Mc1, Mc2 and Mc3. During the full process, the TLS was not moved
from its original location.

Stage two consists of a basic transformation of the 3D point clouds acquired through the mirrors.
Due to the specular reflection, the law of reflection states that the obtained image is symmetrical to
the original. Due to this, a transformation is required [28] in order to enable the comparison of the
different point clouds. As it is a planar transformation, it is addressed by changing the sign of one
coordinates; in our particular case the coordinate changed was x. As the result of this transformation,
the point clouds Mh1′, Mh2′, Mh3′, Mc1′, Mc2′ and Mc3′ were obtained.Remote Sens. 2017, 9, 1152  5 of 13 
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Stage three consists of the alignment of all the clouds to enable the comparison within the
same reference system. Firstly, all the coordinates of the targets of the point clouds R1, Mh1′ and
Mc1′ were extracted. Targets consist of four circular sectors (Figure 3) with two different colors.
By means of edge detection, the line between sectors was detected. This enabled the calculation
of the coordinates of the center of the targets. More details about this procedure can be found
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in [29]. Then, using those coordinates the transformation of Mh1′ and Mc1′ to R1 was calculated,
obtaining the rigid transformation matrices Kh and Kc, respectively, through the least square method.
The rigid transformation matrices are defined by a translation vector (Tx, Ty, Tz) and the Euler angles.
The transformation Kh was applied to the group of point clouds Mh1′, Mh2′ and Mh3′, obtaining
the point clouds Mh1′ ′, Mh2′ ′ and Mh3′ ′. The same procedure was performed with Mc1′, Mc2′ and
Mc3′, applying the transformation Kc and obtaining the point clouds Mc1′ ′, Mc2′ ′ and Mc3′ ′. As the
transformation matrices were obtained in order to minimize the error for the first measurement
(for both mirrors), using these matrices in the rest of measurements will provide information about
the errors obtained through different scans from the same station, which is a common practice.

Finally, stage four consists of the comparison of the point clouds scanned directly (R1, R2 and
R3) with those scanned through the mirrors (Mh1′ ′, Mh2′ ′, Mh3′ ′, Mc1′ ′, Mc2′ ′ and Mc3′ ′) (Figure 4).
First, a rectangular area (0.66 × 0.78 m) was cropped to all the point clouds simultaneously. Prior to
further analysis, each point cloud was fitted to a planar surface in order to confirm that all of them
were statistically equivalent. These calculations showed that all the clouds fit to the same plane within
95% of confidence bounds, with equivalent mean squared errors. After this preliminary analysis,
all the clouds where compared in pairs.

The compared point clouds are shown in Figure 4 (Stage 4) The comparison was performed
calculating the normal distance between the point clouds through the method multiscale model
to model cloud comparison (M3C2, [30]). The M3C2 method computes the signed distances
directly between two point clouds, unlike other methods that compute the nearest neighbor distance
(cloud-to-cloud distance) or the normal distance of a meshed surface to a point cloud (cloud-to-mesh
distance). In this work, the computed distance is an estimation of the noise and the deformation
introduced by the conventional scanning process using different kinds of mirrors. The result of each
comparison is a cloud, which is the reference cloud (i.e., R1, R2 or R3), with the estimated error
assigned to each point. For each set of points, the mean and standard deviation was calculated.

3. Results

3.1. Comparison of Direct Scans

Figure 5 shows the point cloud scanned directly (R1, R2 and R3). For each point, the color
shows the M3C2 distance. The observation of Figure 5 indicates that there is a common error pattern
in the vertical bands. Figure 6 shows the histograms of those sets with their calculated mean and
standard deviation in mm. The absolute mean values of these distributions range from 0.12 to 0.44 mm,
which provide an idea of the instrumental error. Additionally, the standard deviation of the error is
around 0.58 mm for all the three cases.
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Figure 5. Multiscale Model to Model Cloud Comparison (M3C2) distance of the self-compared point
clouds for direct scanning (R1, R2 and R3). (a) Distances between clouds R1 and R2; (b) distances
between clouds R1 and R3 and (c) distances between clouds R2 and R3.
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Units are shown in mm.

3.2. Errors Found When Scanning through a High-Quality Mirror

The transformation matrix Kh for this case is shown in (3). The obtained root mean square (RMS)
of the least square method was 0.00111955 m.

Kh =


−0.8203 −0.5719 0.0001 6.4759
0.5719 −0.8203 −0.0014 20.6141
0.0009 −0.0011 1 0.0150

0 0 0 1

 (3)

Figure 7 shows the point cloud scanned directly (R1, R2 and R3) compared to the data acquired
through the high-quality mirror. For each point, the color shows the M3C2 distance. Figure 8 shows
the histograms of those sets with their calculated mean and standard deviation in mm.
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through a high-quality mirror (Mh1′ ′, Mh2′ ′ and Mh3′ ′).
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The vertical band errors presented in the previous section appear again in the case R1-Mh1′′. This effect
is attenuated in the rest of the comparisons. Mean and standard deviations are shown in Figure 8.
The absolute minimum mean value is found in the case R1-Mh1′′ (0.06 mm), as was expected, because the
Mh1′′ cloud was registered to the R1 cloud using the least square method. The rest of the absolute mean
values range from 0.11 to 0.36 mm. The standard deviation remains stable, ranging from 0.62 to 0.81 mm,
which is a slightly higher result than in the previous case with the direct scanning. It is noteworthy that the
registration matrix applies a rigid transformation, so the clouds are only translated and rotated, and no
deformation is applied. Therefore, the standard deviation should not be affected.Remote Sens. 2017, 9, 1152  8 of 13 
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3.3. Errors Found When Scanning through a Common Mirror

The transformation matrix Kc is shown in (4). The root mean square (RMS) of the least square
method was 0.00201807 m.

Kc =


−0.8205 −0.5717 0.0002 6.4726
0.5717 −0.8205 −0.0019 20.6148
0.0013 −0.0015 1 0.0193

0 0 0 1

 (4)
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In Figure 9, the presence of the vertical band errors can be observed. Despite the use of the
common mirror when scanning the reference surface, a visual inspection of the errors does not show
apparently dramatic deformations compared to the previous results. Mean and standard deviations
are shown in Figure 10 with the histograms of the errors. As in the previous section, the absolute
minimum mean value is found in the R1-Mc1′ ′ case (0.03 mm). The explanation of this fact is due
to the least-square adjustment of the Mc1′ ′ cloud to R1, which minimizes the mean. The rest of the
absolute means range from 0.02 to 0.46 mm. This interval is slightly higher than the one found when
using the high-quality mirrors (i.e., 0.11 to 0.36 mm). However, it is noteworthy that the order of
magnitude of this error is 0.1 mm and the absolute mean error found when comparing direct scans
ranged from 0.12 to 0.44 mm. This means that the absolute mean errors are under the instrumental
error. The standard deviations ranged from 0.5 to 0.72 mm, which are again higher than those obtained
with the direct scan but of the same order as those calculated with the high-quality mirror.
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Table 1 summarizes the means and standard deviations calculated for the M3C2 distances between
the compared models.

Table 1. Mean and standard deviation of the comparison between point clouds in mm.

Compared to R1 R2 R3

Mh1′ ′ −0.06/0.81 0.36/0.76 0.25/0.67
Mh2′ ′ −0.2/0.8 0.23/0.67 0.11/0.79
Mh3′ ′ −0.16/0.74 0.26/0.68 0.11/0.62
Mc1′ ′ 0.03/0.72 0.46/0.68 0.35/0.5
Mc2′ ′ 0.02/0.65 0.44/0.63 0.32/0.68
Mc3′ ′ −0.24/0.72 0.18/0.69 0.06/0.53

R1 - −0.44/0.59 −0.31/0.58
R2 −0.44/0.59 - 0.12/0.56
R3 −0.31/0.58 0.12/0.56 -

4. Discussion

4.1. Indentification of Error Sources

Different errors are expected to be found in different stages. In stage one, the point clouds R1, R2 and
R3 would present only instrumental errors. Table 1 shows that the absolute mean instrumental error,
when scanning an object situated closer than 10 m, ranged from 0.1 to 0.45 mm. In our case, we found
that the standard deviation ranged from 0.56 to 0.59 mm. This noise is smaller than that presented in the
instrument specifications, which is 2 mm at a distance of 50 m [27]. However, other studies have shown
that similar instruments (Leica ScanStation P20) have an error minor than 1 mm at 50 m [9].

Additionally, this stage would also introduce deformations due to scanning through the mirrors
in the analysis of points clouds Mh and Mc. Not only the deformation introduced by the mirror will
appear, but other secondary issues like scratches could have an effect. Notice also that uneven mirror
thickness may affect the laser time-of-flight, thus inducing errors in the measurements.

In stage two, truncation errors could be found due to the import–export process. However, this error
is expected to be insignificant.

In stage three, another error could appear due to the use of the same transformation matrix for
different measurements. Transformation matrices were calculated in order to minimize the error between
measurement R1 with respect to Mh1′ and Mc1′; therefore, all other comparisons should have higher errors
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because they are not ‘optimized’. Accordingly, the absolute mean errors found in R1-Mh1′′ and R1-Mc1′′

are 0.06 and 0.03 mm. The rest of the clouds show absolute mean values from 0.02 to 0.46 mm. However,
the standard deviation in all cases range between 0.5 and 0.81 and no significant differences were found
between measurement number one and the rest. This means that the error for different measurements
using the same transformation matrices, usually done, is not significant.

4.2. Errors Due to the Scanning through Mirrors

The scan through a high-quality mirror presented an absolute mean error that ranged from 0.06 to
0.36 mm, and its standard deviation ranged from 0.62 to 0.81 mm. However, when scanning through a
common mirror, the absolute mean ranged from 0.02 to 0.46 mm, and the standard deviation ranged from
0.5 to 0.72 mm. It is observed that when using a common mirror, the absolute mean value was slightly
superior to those values obtained when using a high-quality mirror most times. Surprisingly, the contrary
effect was found when the standard deviation was analyzed. In this case, the standard deviation was
reduced approximately by 0.1 mm.

Nevertheless, the errors obtained by comparing measurements without mirrors (R1, R2 and R3
between them) do not have significant differences to those obtained using mirrors, both in absolute value
and in standard deviation. Therefore, it must be considered that the order of magnitude of the errors
obtained using mirrors is under the accuracy of the instrument. As a result of this, no objective conclusion
about the convenience of using one or another kind of mirror can be stated. Therefore, our results show
that the use of a common mirror does not worsen the quality of the scanning with respect to the standard
process under the considered conditions. Therefore, configurations introducing beam deflections are
feasible and may provide accurate results without adding much complexity and cost to the system.

5. Conclusions

In this work, we presented an experimental test analyzing the feasibility of scanning a surface
through a mirror in order to allow scans with truncated beams using TLS instruments. The interest of
this test lies in the fact that TLS instruments cannot scan in a descending vertical direction or behind an
object because of its geometry and its working principles. The test was performed in a laboratory and a
whiteboard was scanned in three phases, three times per phase: direct scanning, through a high-quality
mirror and through a common mirror. All scans were properly transformed and compared with the
direct scanning point clouds. This analysis showed that the use of mirrors, regardless their quality,
affect the noise less than the instrument error.

This work shows the possibility of scanning through a mirror with confidence when the requirements
do not exceed the accuracy specifications. Future works of scanning the inside of vertical tubes will be
enabled thanks to the findings presented in this work.
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