
remote sensing  

Article

A Flexible Algorithm for Detecting Challenging
Moving Objects in Real-Time within IR
Video Sequences

Andrea Zingoni 1,*, Marco Diani 2 and Giovanni Corsini 1

1 Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy;
g.corsini@iet.unipi.it

2 Italian Naval Academy, Viale Italia 72, 57127 Livorno, Italy; m.diani@iet.unipi.it
* Correspondence: andrea.zingoni@for.unipi.it; Tel.: +39-50-221-7579

Received: 9 September 2017; Accepted: 1 November 2017; Published: 6 November 2017

Abstract: Real-time detecting moving objects in infrared video sequences may be particularly
challenging because of the characteristics of the objects, such as their size, contrast, velocity and
trajectory. Many proposed algorithms achieve good performances but only in the presence of some
specific kinds of objects, or by neglecting the computational time, becoming unsuitable for real-time
applications. To obtain more flexibility in different situations, we developed an algorithm capable of
successfully dealing with small and large objects, slow and fast objects, even if subjected to unusual
movements, and poorly-contrasted objects. The algorithm is also capable to handle the contemporary
presence of multiple objects within the scene and to work in real-time even using cheap hardware.
The implemented strategy is based on a fast but accurate background estimation and rejection,
performed pixel by pixel and updated frame by frame, which is robust to possible background
intensity changes and to noise. A control routine prevents the estimation from being biased by
the transit of moving objects, while two noise-adaptive thresholding stages, respectively, drive
the estimation control and allow extracting moving objects after the background removal, leading
to the desired detection map. For each step, attention has been paid to develop computationally
light solution to achieve the real-time requirement. The algorithm has been tested on a database of
infrared video sequences, obtaining promising results against different kinds of challenging moving
objects and outperforming other commonly adopted solutions. Its effectiveness in terms of detection
performance, flexibility and computational time make the algorithm particularly suitable for real-time
applications such as intrusion monitoring, activity control and detection of approaching objects,
which are fundamental task in the emerging research area of Smart City.

Keywords: video surveillance; intrusion monitoring; activity control; moving objects detection; small
objects detection; dim objects detection; infrared video sequences; detect-before-track; real-time

1. Introduction

Automatic detection of moving objects is a key task in numerous fields, such as video surveillance,
and computer vision. Using steady infrared (IR) cameras is one of the most effective and cheapest
ways to achieve it.

In many applications, detection may be particularly challenging, mainly due to the characteristics
of the moving objects. On the one hand, their size can be very small or can appear small because of
the distance from the camera, thus the information they provide is limited to the value of a few pixels [1].
On the other hand, the size can be rather large, generating problems for those algorithms that exploit
the variation of pixels intensity over time: if a portion of a large and not textured object overlaps in
two different frames, this is likely not to be detected (self-deletion problem) [2]. Moreover, the contrast
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of the moving objects with respect to the background can be low (dim objects) and, therefore, these
can be confused with it [3]. Even the movement of the objects can make the detection difficult,
especially for those algorithms based on tracking information [4]. For example, a slowly moving object
can be mistaken for a part of the background, whereas quick changes in its trajectory are likely to
affect the estimate of the future position from past detections. Furthermore, the characteristics of the
objects and their movements are often unknown, thus no additional information can be exploited to
circumscribe the problem. Another challenge is represented by time constraints. In numerous contexts,
real-time detection is required and low-performing processors are available. Thus, computationally
heavy solutions are not suitable even if efficient in terms of detection capability.

A flexible algorithm, capable to handle all these problems at the same time, would be very useful
in circumstances where great versatility is required. Unfortunately, even though many algorithms
for detecting moving objects from a steady camera have been proposed in the literature, either for
optical or for IR video sequences, these generally account only for some of the above-mentioned
problems, neglecting the others. Such algorithms can be classified in two broad categories,
the ones based on track-before-detect (TBD) strategies and the ones based on detect-before-track
(DBT) strategies. TBD strategies aim to track the candidate moving objects before declaring them
detected. Typical TBD approaches are spatial-temporal matched filters [5], particle filters [6], dynamic
programming [7], histogram probabilistic multi-hypothesis tracking [8], probabilistic data association [9]
and multidimensional Hough transform [10]. They generally reach better detection rates than DBT ones,
since they integrate data over space and time jointly, achieving a higher signal-to-noise ratio (SNR).
Nonetheless, some of these approaches succeed only if the moving objects satisfy specific conditions.
For example, some approaches [6,10] fail if the objects deviate from an initially assumed range of
velocity or from some hypothesized types of trajectory, whereas other approaches [8] suffer from
a deterioration of the performance in the presence of fast objects [11]. Moreover, TDB algorithms require
high computational time, thus they are generally not suitable for real-time applications using low cost
hardware [12].

DBT strategies are usually faster than TBD ones, since they do not attempt to integrate the signal
in the space-time domain. A further classification of the DBT strategies can be made by dividing
those that exploit the spatial domain from those that exploit the temporal domain. The ones based on
spatial analysis aim to detect salient features within every frame. Some of these techniques can also be
borrowed from works in the hyperspectral imagery [13], or even from sonar imagery [14,15]. However,
they are not optimal for the case in question, since they do not exploit the motion of the objects to
be detected [15–17], or exploit it only for validating and strengthening previous decisions [18,19].
Moreover, they require a significant contrast between the objects and their surrounding background,
thus they are not effective in the presence of dim objects.

Instead, strategies based on temporal analysis aim to evaluate if any significant change occurs
in the scene over time. They are particularly suitable to detect moving objects, since they inherently
exploit the motion of the objects. In addition, they do not strictly require a high object-background
contrast, because they are able to enhance it by integrating more frames together. However, many of
these strategies work correctly only under some prior assumptions and they can deal only with some
of the possible challenges that can be encountered in practical applications. In [20], the traditional
method of frame differencing is presented, together with some variants that aim to increase its
robustness to noise. These techniques are very simple and fast, but need to be adjusted with respect to
the size, the velocity and, in some cases, also the intensity of the objects. Thus, objects with different
characteristics from the expected ones are likely to not be detected. In [21], the bivariate cubic facet
fitting is used as a second stage, for refining the results of a first frame differencing stage. Instead,
in [22], frame differencing is used for removing false alarms, after an initial rough detection based on
Canny algorithm and morphological filtering. Both strategies have proven to achieve a considerable
increase of the detection rate with respect to the techniques solely based on frame differencing.
However, in [21], only small objects, hotter than the background, can be correctly detected, while,
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in [22], the Canny method assumes that the object-background contrast is high, making dim objects
difficult to be detected.

Other strategies differ from frame differencing, aiming at a robust estimation of the background,
based on multiple observations of the scene. The background is then subtracted from the original
frames to extract moving objects. Versatility and also reliability improve considerably. For example,
in [23–25] a Gaussian mixture model (GMM), whose parameters are adaptively estimated over time,
is used to describe the background. However, this approach has been specifically thought to solve
problems related to a multimodal background—as sea clutter, tree branches movements, flickering
lights etc.—thus its complexity it is not justified in a scenario such as the considered one, where
everything that moves has to be detected. In [26], instead, the background is estimated by using
an adaptive texture-based approach, in which the texture is described by the local binary patterns (LBP).
Such a strategy combines robustness to changes in the illumination of the scene and computational
simplicity, but it is more suitable for optical than for IR video sequences, since the latter are likely to
have less texture. Reliable estimations of the background, can be obtained also by applying common
and simple temporal filters to the video sequence, such as the average filter, the Gaussian filter,
the median filter, the maximum–minimum filter etc. Among these, the linear ones generally work
faster than the nonlinear (even if some fast implementations have been proposed [27,28]), but tend
to be more sensitive to the noise and to the lack of contrast and are often subjected to generation of
artifacts in the phase of background subtraction. An interesting approach of linear filtering has been
proposed in [29], where the background is estimated by means of a first order recursive filter, capable
to compensate illumination changes and highly performing in terms of computational time. However,
such an approach has been specifically designed for optical video sequences, for tracking the human
body when it is clearly visible in the scene, thus it has not been tested in the IR domain and with small
and dim objects.

Starting from the purpose of designing a widely versatile method to automatically detect moving
objects from a steady IR camera, we developed an algorithm capable to deal with all the previously
mentioned challenges, which are summarized in Table 1 for better convenience. The algorithm is
based on an accurate estimation and subsequent removal of the background, and on two different
adaptive thresholding stages applied to the residual. This allows preventing problems as background
intensity changes and self-deletion of the moving objects and, contemporarily, ensures robustness
to noise. By tuning a few parameters, the algorithm is capable to adapt to different scenarios and to
different kind of moving objects, so that it is not necessary to limit its applicability to some specific
conditions. Furthermore, time/memory-consuming solutions have been avoided in implementing
each phase of the algorithm to comply with the real-time and the low memory allocation requirements.

Table 1. List of the requirements the proposed algorithm should fit.

Algorithm Requirements

Work in real-time (using low-cost hardware)
Low memory allocation
Detect both small and large objects
Detect dim objects
Detect single or multiple objects
Detect both fast and slow objects
Detect objects that change their velocity/trajectory

The characteristics of the proposed algorithm make it particularly suitable for applications in
the emerging area of Smart City, such as intrusion detection, activity control and traffic monitoring.
In addition, its flexibility ensures good performances in a complex scenario such as the urban one.
The information provided by the algorithm can be profitably used in synergy with the information
from other sensors (radars, laser scanners, multiple cameras operating in different spectral ranges etc.),
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in a general framework that allows solving more advanced tasks. Exploiting Big Data techniques permits
managing the large amount of information, even using highly accurate devices, as for example high
resolution and high data depth cameras. This leads to a further improvement of the expected results.

The paper is organized as follows. In Section 2, the addressed problem is analyzed in depth,
defining a theoretical model to describe it and underlining those aspects that have led to the proposed
solution. In Section 3, the detection algorithm is presented and its functioning explained in detail.
In Section 4, the results obtained by running the algorithm on a dataset containing challenging IR
video sequences are exposed, in order to show its capability of satisfying all the requirements listed in
Table 1. Section 5 is left to the conclusions.

2. Problem Statement

Denote with I(i, j, n) the intensity of an IR video sequence acquired by a steady camera, where i
and j indicate the position within each frame and n indicates the instant of acquisition. The couple (i, j)
identifies a specific pixel, whereas n identifies a specific frame. A widely adopted model for I(i, j, n) [18]
considers three main contributions, namely the background IBG(i, j, n), the moving object(s) IMO(i, j, n)
and the noise IN(i, j, n). For those pixels in which no moving objects are present at a specific frame
(H0 hypothesis), I(i, j, n) is modeled as the sum of the background and the noise contributions. Instead,
for those pixels in which a moving object is present (H1 hypothesis), I(i, j, n) is modeled as the sum of
the moving object and the noise contributions. In formula:

H0 : I(i, j, n) = IBG(i, j, n) + IN(i, j, n)

H1 : I(i, j, n) = IMO(i, j, n) + IN(i, j, n)
(1)

As observed in Section 1, temporal analysis fits the purpose of real-time detecting moving objects
better than spatial analysis, which does not take into account objects motion, and than spatial-temporal
analysis, which is computationally heavier. Thus, in Equation (1), temporal analysis will be exploited
that is, each pixel will be considered singularly, by taking into account the variation of its intensity
over time.

The background contribution to I(i, j, n) should be constant with n, since the camera remains
stationary during the acquisition. However, gradual variations of the intensity are likely to occur, due
for example to changes in the illumination of the framed scene, which affect the reflectance component
of the sensed radiation. This makes the background contribution to vary slowly over time. Thus, it can
be modeled as a low-pass signal with very narrow bandwidth. The moving object contribution, instead,
can be modeled as a pulse signal whose duration depends on the object velocity. In the frequency
domain, this means that such a signal is low-pass with a bandwidth that increases as the object
velocity increases. Note that, since the changes in the intensity of the background are supposed to
be slow, the bandwidth of the background contribution is in general narrower than the bandwidth
of the moving object contribution. The noise contribution in electro-optical imagers consists of
a time-constant component, called fixed pattern noise (FPN) and a time-variant component [30]. Since
solely the variation of the intensity of each single pixel over time is considered, the effects of FPN
can be neglected and the global noise contribution can be seen as generated only by time-variant
components. This allows describing IN(i, j, n) as additive white Gaussian noise (AWGN) [31], and
leads to Equation (1), where, in fact, the contribution of noise is added to the others.

From the above considerations, it is reasonable to assume that the three contributions are quite
distinct in the frequency domain, as schematically depicted in Figure 1. In fact, IBG(i, j, n) is located
near zero frequency, whereas IMO(i, j, n) mostly spreads over low-medium frequencies (depending on
the object velocity) and IN(i, j, n), being white, is the only contribution at high frequencies. Therefore,
in principle, it is possible to separate each contribution by properly filtering I(i, j, n) along the time
dimension, in order to extract the desired IMO(i, j, n). Intuitively, through a low-pass filter, the noise
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contribution can be rejected, so that only the background contribution (in the case H0 hypothesis
occurs) or the moving object contribution (in the case H1 hypothesis occurs) are left. Then, through
a high-pass filter, also the background contribution can be eliminated, so that to have no contribution
if H0 occurs and only the moving object contribution if H1 occurs, which means to detect the presence
of moving objects.
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Figure 1. Schematic representation of the spectra of background (green), moving object (red) and noise
(blue) contribution to the total intensity of a pixel of the video sequence.

However, it should be noted that the spectra of the three contributions are partially overlapped.
Thus, if the overlap between IMO(i, j, n) and the other two components is large, a correct extraction
of the moving objects is not possible by simply filtering out background and noise. A large
overlap between IMO(i, j, n) and IN(i, j, n) occurs when the velocity of a moving object is so high
to generate significant high frequencies components in the spectra of IMO(i, j, n). In fact, in this case,
the two contributions have significant components at both the low and the high frequencies. (Note that
not only the velocity, but also the size and the texture of the moving object influence the bandwidth of
IMO(i, j, n). In fact, a fast but large and not texturized object makes the pixels interested by its transit
to maintain more less the same intensity for a long period, as if a slow object is passing. Analogously,
a not too fast but small object has the effect of a fast object on the pixels where it passes.) Since
it is asked to the proposed algorithm to detect also fast objects, the use a low-pass filter to extract
the desired IMO(i, j, n) is not possible. A large overlap between IMO(i, j, n) and IBG(i, j, n), instead, can
be experienced because of drift phenomena of the measured intensity that could occur in electro-optical
devices. For example, the response of the photodetectors in uncooled IR cameras is influenced by
the changes of the internal temperature of the device, which results in undesired modifications of
the actual pixel intensity over time [32]. Such drifts are in general more rapid than the changes of
the background, thus they make the bandwidth of IBG(i, j, n) to increase more than expected. This
is likely to generate great overlap between IMO(i, j, n) and IBG(i, j, n) in the presence of slow objects,
whose contribution has narrow bandwidth, making a clear separation of their spectra impossible to
perform with a simple high-pass filter.

Summarizing the concepts expressed in this section, it is possible to outline a method to properly
tackle the problem in exam. First, a strategy to prevent or compensate the possible drifts of the IR
camera should be applied to the video sequence, so as to reduce the bandwidth of IBG(i, j, n) and
decrease the overlap with the bandwidth of IMO(i, j, n). Then, working on each pixel singularly
over time, the video sequence can be high-pass filtered, to remove IBG(i, j, n). Finally, the separation
between IMO(i, j, n) and IN(i, j, n) can be obtained by exploiting only the statistical properties of
the two contributions, so as to avoid using a low-pass filter and prevent the above-mentioned
drawbacks. Possible refinements of the detection results should be performed only after IMO(i, j, n)
has been discriminated from the other two contributions.
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3. Proposed Solution

The proposed algorithm has been implemented from the considerations made in Section 2.
It takes an IR video sequence as input and gives as output a map showing the position of the detected
moving objects within each frame (detection map). To meet the requirement of working in real-time,
the detection map of any frame is produced before the next one has been read. A brief overview of
the algorithm functioning is presented below, whereas a detailed description of its single steps is
reported in the next sections.

After a pre-processing phase aimed at correcting the possible drifts present in the video sequence,
an estimation of the background, robust to global intensity changes, is computed pixel-by-pixel and
updated frame by frame by means of a controlled first order infinite impulse response (IIR) filter.
The control of the filter allows the background estimation not to be biased by the transit of an object.
Then, the estimated background is subtracted to the original frame and each pixel of the residual image
is processed through two thresholding stages. The first one provides the input to control the IIR filter.
The second one permits discriminating the moving objects from the false alarms due to noise, leading
to the generation of the detection map. The thresholds used in the two stages are calculated by means
of another controlled IIR filter. This performs an estimation of the power of the noise frame by frame,
allowing the thresholds to adapt to it. Again, the control of the filter avoids biased estimations due to
the transit of an object. A final post-processing phase permits the detection map to be refined through
some morphological operations, such as joining different parts of the same object and eliminating
residual false alarms. The block diagram of the algorithm is depicted in Figure 2.
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3.1. Prevention of Drifts of the Video Sequence Intensity

In Section 2, it has been pointed out how potential drifts of the intensity of the video sequence,
due to technical limits of IR imaging devices, could make the spectrum of IBG(i, j, n) to overlap greatly
with the spectrum of IMO(i, j, n), impeding a clear separation of the two contributions. Such drift
phenomena affect each frame uniformly over space [32], thus they can be modeled as an additive
parameter to the video sequence intensity, variable over time and constant over space.

In order to remove its effects, the spatial average of the intensity, µ(n), is calculated over all
the pixels of each acquired frame as

µ(n) =
1

Nr Nc

Nr ,Nc

∑
i=1,j=1

I(i, j, n) (2)

where Nr and Nc are, respectively, the number of rows and columns of the video sequence frames.
Then, µ(n) is subtracted from each pixel of I(i, j, n), obtaining an image, Icor(i, j, n), which will be
referred to as corrected image or, in general, as corrected video sequence, no longer affected by the drift
problem. It is worth noting that, after this operation, the intensity value of the pixels loses any physical
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meaning (Icor(i, j, n) could even be negative). However, the relative value among different pixels,
which is the quantity of interest, remains the same.

3.2. Background Estimation and Removal

Once a video sequence Icor(i, j, n) not affected by drift phenomena has been obtained, it is
possible to remove the background contribution by exploiting the separation between its spectrum
and the moving object spectrum. Thus first, for each pixel, Icor(i, j, n), is low-pass filtered over time, in
order to estimate the background contribution. Then, the result is subtracted from Icor(i, j, n), obtaining
the global effect of high-pass filtering the corrected video sequence.

The background estimation filter is implemented by means of an IIR filter, using an approach
similar to [29]. Starting from the estimation at the n-th iteration, IBG(i, j, n), each pixel of the background
is updated frame by frame utilizing the recursive rule

IBG(i, j, n + 1) = αIBG(i, j, n) + (1− α)Icor(i, j, n + 1) (3)

where the parameter α, which assumes values between 0 and 1, controls the effective length
of the impulse response of the filter or, equivalently, its bandwidth. In fact, by increasing α,
the effective number of previously acquired frames used to estimate the background increases and,
thus, the incoming frame Icor(i, j, n) weighs less on the estimation. This is equivalent to reduce
the bandwidth of the filter. Vice versa, by decreasing α, the effective number of frames used to estimate
the background decreases and Icor(i, j, n) weights more on the new estimation, which is equivalent
to enlarge the bandwidth of the filter. The possibility to tune the bandwidth of the filter through
the parameter α allows the algorithm to be adjusted to the expected variability of the background,
ensuring flexibility to different scenarios.

In general, α should assume values close to the unity, since the background contribution has
a very narrow bandwidth. The proper value of α should be chosen by relating the effective length of
the filter impulse response to the expected rapidity of the changes in the background. Several methods
have been proposed to make such a choice [33–35]. In [35], authors suggest the following formula to
relate α to the effective length, NP, of the impulse response of a first order IIR filter:

α = exp
(

ln(1− P)− 1
2NP

)
(4)

where P is the fraction of energy associated to the first NP samples. Then, setting NP to the value of
the time interval in which the background is almost stationary and does not undergo considerable
changes, α can be computed accordingly, using Equation (4). If, for example, NP = 150 frames, then
α ∼= 0.987.

The proposed background estimation filter is both easy-to-implement and effective in terms of
time consumption and memory allocation. In fact, at each step, only two multiplications for a constant
and one sum of two matrices are performed, resulting in linear time-complexity. In addition, data
storage is limited to one matrix per frame, since only the estimation of the background at the previous
step needs to be saved.

Using a linear filter instead of a nonlinear one is crucial for the algorithm to fit the real-time
requirement without adopting expensive hardware. In fact, typical nonlinear filters for background
estimation, such as the median [28] and the min–max [36], need to sort the values that each pixel
assumes at every acquired frame, resulting in quadratic time-complexity. However, nonlinear filters
permit intensity peaks, which occur for example when an object passes in a specific pixel, to be removed
from the estimation of the background, so as not to bias the background estimation. Instead, the used
filter is not capable to deal with this situation, resulting in possible missing detections. In order to
solve this problem a control strategy is implemented in the filter. It works by stopping the updating of
IBG(i, j, n) for those pixels whose amplitude deviates from the previous estimation more than a certain
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threshold. Then, when the amplitude drops again below the threshold, the updating restarts. (It is
worth noting that the updating control strategy makes the filter to become nonlinear. However, its
computational efficiency is practically the same of a linear filter.) The strategy can be expressed in
formula as 

IBG(i, j, n + 1) = αIBG(i, j, n) + (1− α)Icor(i, j, n + 1)
i f |Icor(i, j, n + 1)− IBG(i, j, n)| < T1(i, j, n)

IBG(i, j, n + 1) = IBG(i, j, n) otherwise

(5)

In Equation (5), T1(i, j, n) is the threshold, which is calculated frame by frame and for each pixel as

T1(i, j, n) = t1σ(i, j, n) (6)

where σ(i, j, n) is the standard deviation of Icor(i, j, n)—whose calculation is object of Section 3.3—and
t1 is a parameter tunable by the user. From the model in Equation (1), if the H0 hypothesis is verified
then Icor(i, j, n) is given by the sum of IBG(i, j, n) and IN(i, j, n). Considering that IBG(i, j, n) is almost
constant in limited time intervals, then the time variability of Icor(i, j, n) is mostly due to the IN(i, j, n)
contribution. Thus, σ(i, j, n) is a good approximation of the standard deviation of the noise. Being
T1(i, j, n) a function of σ(i, j, n), then the threshold is adaptive to the noise, ensuring robustness against
it. The parameter t1 allows tuning the control of the filter, so as to make the user free to decide whether
to tolerate more the transit of low-contrasted moving objects (higher values of t1) or the noise (lower
values of t1), depending on the specific application.

After estimating the background contribution at frame n− 1, the result is subtracted from the next
incoming frame, previously corrected, Icor(i, j, n). A residual image, Ires(i, j, n), is obtained, which is
expected to contain only the contributions of the noise (H0 hypothesis) or the contribution of both
the moving objects and the noise (H1 hypothesis).

Initialization of the Background Estimation Filter

The background estimation filter needs to be initialized, namely the value IBG(i, j, 0) should
be found. The most intuitive initialization method is to use the first acquired frame as the initial
background estimation [29]. However, this method is too prone to the presence of noise, thus it is
likely to generate inaccurate estimations, especially in the first iterations. To overcome this problem,
a more robust calculation of IBG(i, j, 0) is performed by integrating the information of more frames
together. This is done by averaging the first NI acquired frames pixel by pixel over time, namely

IBG(i, j, 0) =
1

NI

NI

∑
q=1

Icor(i, j, q) (7)

where the index q refers to the frames acquired before beginning to run the controlled filtering in
Equation (5). NI should be increased as the SNR of the video sequence images decreases. In practical
cases, setting it to some tens (i.e., 30 or 40 frames) should ensure a robust estimation. In order to avoid
storing NI images, which would violate the requirement of low memory allocation, Equation (7) is
calculated recursively, by adding the last acquired frame to the sum of the previous ones and storing
only the result of this operation at each step. Thus, the same memory necessary to store a single image
is occupied.

To avoid possible bias of IBG(i, j, 0), no objects should pass through the scene during the first
NI frames are being acquired. However, in the unfortunate case in which a moving object crosses
the scene in this time interval, the strategy that allows refreshing the frozen estimations, explained in
Section 3.5, ensures a new correct background estimation after a few frames.
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3.3. Estimation of the Standard Deviation of Noise

As seen in Section 3.2, the standard deviation, σ(i, j, n), of Icor(i, j, n) is a good approximation of
the standard deviation of the noise, which has to be estimated in order to calculate T1 in Equation (7).
The estimation of σ(i, j, n), is performed similarly to the estimation of the background that is, using
a first order IIR filter, as in Equation (3). Actually, not directly σ(i, j, n) but the variance of Icor(i, j, n),
σ2(i, j, n), is estimated. This allows using a linear filter instead of a nonlinear one. σ(i, j, n) can then
be obtained by simply computing the square root of σ2(i, j, n). Hence, starting from the estimation at
the n-th iteration, the variance of each pixels is updated frame by frame through

σ2(i, j, n + 1) = βσ2(i, j, n) + (1− β)[ Icor(i, j, n + 1)− IBG(i, j, n + 1)]2 (8)

where β, which assumes values between 0 and 1, plays the same role of α in Equation (3), namely it
allows controlling the rapidity of the updating by increasing (lower values of β) or decreasing (higher
values of β) the bandwidth of the filter. Like IBG(i, j, n), also σ2(i, j, n) is expected to vary slowly,
since it depends on the power of the noise process, which suffers slight variations in the presence
of background intensity changes, due to the shot noise phenomenon [37]. Thus, as α, also β should
assume values close to 1. Similar considerations to those made in Section 3.2 for the choice of α can be
made also for β.

The estimation of σ2(i, j, n) is also likely to be biased by the transit of a moving object in the pixel
(i, j). This results in wrongly estimated values of T1(i, j, n), which can affect the updating control
of IBG(i, j, n) in Equation (5). Therefore, the control strategy in Equation (5) is applied also to
the estimation of σ2(i, j, n) in Equation (8):

σ2(i, j, n + 1) = βσ2(i, j, n) + (1− β)[ Icor(i, j, n + 1)− IBG(i, j, n + 1)]2

i f |Icor(i, j, n + 1)− IBG(i, j, n)| < T1(i, j, n)

σ2(i, j, n + 1) = σ2(i, j, n) otherwise

(9)

The updating of σ2(i, j, n) is thus performed only when Icor(i, j, n) does not deviate significantly
from the estimated background value (absence of moving objects), and interrupted otherwise (presence
of a moving object).

Initialization of the Variance Estimation Filter

As for the background estimation filter, the variance estimation filter also needs to be initialized.
Again, to avoid results corrupted by the noise, a robust calculation of the initial variance, σ2(i, j, 0),
based on the integration of the information relative to more frames, is preferred instead of using only
the first acquired frame. Thus, σ(i, j, 0) is derived through the formula:

σ2(i, j, 0) =
1

NI

NI

∑
q=1

[Icor(i, j, q)−M(i, j, q)]2 (10)

where the index q refers to the frames acquired before beginning to run the controlled filtering in
Equation (9), NI is the same number of frames used to calculate IBG(i, j, 0) in Equation (7) and M(i, j, q)
is the average of the pixel (i, j) calculated over the first q frames, which can be directly taken from
the q-th step of the recursive procedure for estimating IBG(i, j, 0). To avoid storing NI matrices, also
Equation (10) is calculated recursively.

3.4. Adaptive Thresholding Detection

As said in Section 3.2, the residual image after background removal, Ires(i, j, n), is composed by
the contribution of the noise solely, if H0 hypothesis is verified, and by the contribution of the noise
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added to that of the moving objects, if H1 hypothesis is verified instead. In Section 2, it has been
pointed out that, even if, in general, the spectra of IMO(i, j, 0) and IN(i, j, 0) should be separable, this
hypothesis may be wrong in the presence of fast and/or small objects. For this reason, low-pass
filtering Ires(i, j, n) to isolate IMO(i, j, n), is not advisable.

Thus, an alternative strategy has been implemented. It consists in comparing the absolute value of
Ires(i, j, n) with a threshold, calculated for each pixel (i, j) and updated frame by frame, which depends
on the power of the noise. If |Ires(i, j, n) | is lower than the threshold, this is probably due to the absence
of moving objects, since the residual intensity is composed only by the noise (H0 hypothesis), which
slightly variates around zero. Instead, if |Ires(i, j, n) | exceeds the threshold, this is probably due to
the presence of a moving object (H1 hypothesis), whose intensity is added to the noise contribution,
making the total intensity to increase. The decision strategy can be expressed as{

|Ires(i, j, n)| > T2(i, j, n− 1) ⇒ IMO(i, j, n) 6= 0 (H1 hyp.⇒ moving object present)

|Ires(i, j, n)| ≤ T2(i, j, n− 1) ⇒ IMO(i, j, n) = 0 (H0 hyp.⇒ moving object not present)
(11)

where T2(i, j, n− 1) is the threshold for the pixel (i, j), calculated after (n− 1) frames have been
acquired, by using the equation:

T2(i, j, n) = t2σ(i, j, n) (12)

where t2 is a parameter tunable by the user and σ(i, j, n) is the standard deviation of Icor(i, j, n),
calculated and updated as in Equation (9). As T1(i, j, n), also T2(i, j, n) is a function of σ(i, j, n) and,
thus, it is adaptive to the noise. The possibility to tune t2 allows the user to decide the behavior of
the algorithm in terms of sensitivity to dim objects and false alarm rate, so as to be suitable for different
applications and different scenarios. In fact, setting t2 to lower values permits tolerating a higher false
alarm rate, due to the peaks of noise, in order to improve the capability of detecting poorly-contrasted
objects. Vice versa, setting t2 to higher values permits decreasing the sensitivity to dim objects in
order to limit the false alarms. It is worth noting that the two thresholds used for the controlled filters
Equations (5) and (9), respectively, differ for a scale parameter (t1 in Equation (5) and t2 in Equation (9)).
The choice of using different thresholds, instead of the same one for the two control routines, has been
made because the presence of peaks of noise that exceed the threshold is more critical in Equation (9)
than in Equation (5). In fact, if the threshold T1(i, j, n) is exceeded for one frame, only an undesired stop
of the background estimation updating occurs, which is likely to be irrelevant on the global calculation.
Conversely, when the threshold T2(i, j, n) is exceeded, a wrong detection is reported. For this reason,
T2(i, j, n) should be higher than T1(i, j, n) that is t1 < t2.

The output of the thresholding operation in (11) is a binary map, D(i, j, n), that shows which
pixels (i, j) contains a moving object or a part of it in the n-th frame (D(i, j, n) = 1) and which not
(D(i, j, n) = 0). Actually, D(i, j, n) is just a rough detection map, which needs to be refined to be better
interpreted, as shown in Section 3.6.

3.5. Refresh of the Frozen Estimations

The control strategy applied in Equations (5) and (9) has a major drawback. If a steady object
present within the scene begins to move and leaves its initial position, significant deviations of
Icor(i, j, n) from the background intensity value are expected both for the pixels currently occupied
and for the pixels initially occupied by the object. This results in high values of |Ires(i, j, n)| which
are likely to exceed the threshold T2(i, j, n− 1) in Equation (11) and, hence, to make a detection to be
reported. While this behavior is the one desired for the pixels currently occupied by the object, it is
undesired for the pixels initially occupied, where the intensity of the object is misinterpreted as the one
of the background and, consequently, the real background is detected as a moving object. Moreover,
considering that the quantity |Icor(i, j, n + 1)− IBG(i, j, n)| in Equations (5) and (9) is equivalent to
|Ires(i, j, n)|, and that T2(i, j, n) should be higher than T1(i, j, n), as said in Section 3.4, the update of
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the estimations of IBG(i, j, n) and σ(i, j, n) is likely to be stopped. Thus, the erroneous estimation of
the background does not change, making the problem of the wrong detection to persist indefinitely.

To avoid the freezing of the estimations, another control is applied to Equations (5) and (9). It works
by deleting the values of IBG(i, j, n) and σ(i, j, n) for those pixels for which IBG(i, j, n) has not updated
in the last ν− NI frames, and by calculating new estimations through Equations (7) and (10). Such
estimations will then be updated normally, by using Equations (5) and (9). Considering that NI is
the number of frame necessary to calculate the initial estimations (see Section 3.2), ν frame are needed,
in total, to restore the regular functioning of the filters. The parameter ν can be choose by the user
according with the minimum velocity of the objects to be detected. If such velocity is VMOmin pixels per
frame, then

ν− NI >
1

VMOmin

⇒ ν >
1

VMOmin

+ NI (13)

To avoid imposing a limit to the minimum velocity of the objects, allowing more flexibility,
the quantity 1/VMOmin can be set close to the expected rapidity of the background changes measured in
frames, NP, so as to be constrained only by physical limits. As an example, referring to the calculation
of α made in Section 3.2 in which it has been supposed that NP = 150, setting NI = 40 (Section 3.2.1)
and subtracting a margin of error of 75 frames, from Equation (13) we obtain ν = 115.

3.6. Refinement of the Detection Map

The last stage of the algorithm consists in refining the binary map, D(i, j, n), in order to obtain
the final detection map, D f in(i, j, n). This is performed through some morphological operation.
The first operation is optional and consists in eliminating all the single-pixel isolated detections that is,
to set to zero the pixels of D(i, j, n) equal to one and surrounded by pixel all equal to zero. If performed,
it permits the false alarm rate to decrease strongly, since, being the noise process independent for each
pixel, the probability of having more than one false alarm in a 3-pixels side square region around
(i, j) is in the order of the square of the probability of having a false alarm in one single pixel. This
operation is left as optional since it could be required to detect also single-pixel objects, which would
be eliminated otherwise.

The second operation consists in a sequential application of a dilation followed by an erosion [38].
It permits joining different connected groups of pixels (blobs) equal to one that are close to each other.
This operation is particularly useful in the presence of a non-uniform moving object, since only some
parts of it may be successfully detected, resulting in separated blobs in the detection map that could be
mistaken for several different objects. Joining these blobs together should make the detected object to
be a single body, also helping to recognize its shape.

4. Results and Discussion

An experimental analysis has been carried out to verify the effectiveness of the proposed algorithm
on the cases listed in Table 1, and to compare it with other commonly used moving object detection
algorithms. For this purpose, a database of 24 IR video sequences has been created. The main
specifications of the IR camera employed to acquire the video sequences are reported in Table 2.
The video sequences contain 13 small objects and 11 large objects with different sizes, 18 dim objects
with different contrasts with respect to the background, 12 fast objects and 12 slow objects with
different velocities and 7 objects that change their trajectory (some objects have more than one of these
characteristics at the same time). In 10 video sequences multiple objects are present. An accurate
ground truth has been constructed for each video sequence, by both planning and controlling
the movements of the objects while crossing the scene and by visual inspecting the acquired videos.
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Table 2. Main specifications of the IR camera used to acquire the video sequences of the dataset.

IR Camera Specifications

Resolution 640 × 512 pixels
Detector pitch 15 µm
Spectral range 3.7 ÷ 5.15 µm

Temperature range −20 ÷ 300 ◦C
NETD 20 mK

Focal length 50 mm
F# f/2

FOV 11◦ × 8.8◦

Frame rate 25 Hz
Data depth 14 bit

The algorithm assessment has been carried out for each different kind of moving objects singularly,
by considering only the video sequences in which they appear. Then, also the global performance
has been evaluated. Three performance indexes have been used for the assessment. First, the object
detection rate, R(obj)

D , intended as the number of frames in which the moving objects have been correctly
detected over the total number of frames. An object is declared as detected if at least one of its pixels
is detected. Second, the pixel detection rate, R(pix)

D , intended as the percentage of detected pixels of
each moving object in each frame, given a correct detection, averaged over the total number of moving
objects and over the total number of frames. R(pix)

D has been expressed in percentage to distinguish

it more clearly from R(obj)
D , which is expressed in decimals instead. Note that R(pix)

D gives an idea of
the capability of the algorithm to return the correct shape of the detected objects, since high values
of R(pix)

D indicate that most of the object pixels have been properly detected. Third, the false alarm
rate, RFA, calculated as the number of pixels in which a false alarm is reported over the total number
of pixel of all the frames considered together. In addition to these three indexes, the computational
time, τit, defined as the average time needed for the algorithm to run a single iteration, has also been
measured to evaluate if the real-time requirement can be achieved even using low cost hardware.

The performance of the proposed algorithm has been compared against other three algorithms,
which implement some of the most commonly adopted DBT strategies. The considered approaches
are the one described in [21], which is a refined version of frame differencing (let us indicate
it as FD for the sake of brevity), the GMM-based approach described in [25] (indicated here as
GMM), and an approach based on the median filter applied to each pixel singularly over time,
and speeded-up as in [28] (indicated as MED). Each of these algorithms has been properly tuned
according with the expected characteristics of the moving objects present in the considered video
sequence. The same has been done with the proposed algorithm, by adjusting the parameters, α in
Equation (5), t1 in Equation (6), β in Equation (9) and t2 in Equation (12), following the guidelines
exposed in Sections 3.2–3.4. However, in order to recreate a more realistic situation and also to evaluate
the flexibility of the algorithms to adapt to different cases, the exact size, contrast and velocity of
the moving objects have been considered as unknown. Thus, the tuning has been made only on
the expected qualities of the moving objects, without relying on actual quantities.

4.1. Algorithm Assessment in the Presence of Small Objects

Small objects have been defined as objects covering an area between 1 and 16 pixels within
a frame. The video sequences containing such kind of objects have been analyzed jointly to assess
the performance of the proposed algorithm in the presence of small moving objects. Figure 3a shows
an example frame of one of such video sequences. It contains a little stone, hotter than the background,
which has been thrown from a side of the scene to the other. The stone occupies 8 pixels, thus it can be
considered as a small moving object (due to its average velocity of 16 pixels per frame, the stone can
be also considered as a fast object, as it will be explained in Section 4.5). In the zoomed box, the object
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is highlighted with a green line contouring its shape for better clarity. The detection map output by
the proposed algorithm at the considered frame is shown in Figure 3b, with a zoom of the region
containing the detected pixels. A comparison between the video sequence frame and the detection
map clearly reveals the effectiveness of the algorithm, which has been capable to detect correctly all
the pixels belonging to the moving objects. In addition, no false alarms are present.

The three performance indexes described in Section 4 has been calculated over all the video
sequences containing small moving objects. The obtained object detection rate and pixel detection rate,
which are generally the most critical parameters when dealing with small objects are, respectively,
R(obj)

D = 0.973 and R(pix)
D = 92.9%. Such a result confirms that the algorithm is able to detect moving

objects with small size successfully. Good results have been achieved also in terms of false alarm rate,
which is RFA = 2.02× 10−7. In fact, considering that the camera resolution is 640 × 512 pixels, this
means that more or less 0.062 false alarms per frame are expected that is, about one single-pixel false
alarm every 16 frames.Remote Sens. 2017, 9, 1128  13 of 21 
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Figure 3. Example frame of a video sequence containing a small and fast moving object, contoured in
green in the zoomed box (a); and corresponding detection map output by the proposed algorithm (b).

4.2. Algorithm Assessment in the Presence of Large Objects

Large objects have been defined as objects covering an area wider than 2500 pixels with at least
10 pixels in the smallest dimension (namely 10× 250 pixels or higher in both dimensions), and occupying
more than 1/100 of the frame size. In Figure 4a, an example frame of a video sequence containing a large
moving object is presented. It consists in a van that is approaching the camera. The corresponding
detection map produced by the proposed algorithm is shown in Figure 4b. The goodness of the result
stands out clearly by noting that it is possible to guess the shape of the vehicle directly by looking at
the map, since the detection has been successfully performed even for the details, such as the wheels
and the rearview mirrors.

The three chosen indexes of performance have been calculated over all the video sequences
containing large moving objects, confirming the effectiveness of the algorithm in dealing also with this
situation: R(obj)

D = 0.997, R(pix)
D = 96.1% and RFA = 2.13× 10−7. In particular, whereas a high value of

R(obj)
D was expected, since large objects are composed by many pixels and just detecting one of them

results in a correct detection, the index R(pix)
D could have been critical, since, as seen in Section 1, large

objects are prone to the self-deletion problem. Nevertheless, the algorithm has performed very well
also in terms of R(pix)

D , with an average percentage higher than 95% of correctly detected pixels of each
object. The false alarm rate is similar to the one obtained in the case of small objects.
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4.3. Algorithm Assessment in the Presence of Dim Objects

The behavior of the algorithm in the presence of dim moving objects has been evaluated by
computing the three performance indexes over all the video sequences containing moving objects
whose contrast with respect to the background is lower than 1% of the dynamic range of the considered
frames, calculated when no moving objects are present. The following definition has been adopted for
the contrast:

∆C =
1

N
(̃i,j)

∑
(̃i,j)

IMO(nin) −
1

N
(̃i,j)

∑
(̃i,j)

IBG(nout) (14)

where (̃i, j) is the group of pixels occupied by the moving object at the frame nin and by the background
at the frame nout, and N

(̃i,j) is the number of pixels of such a group. The obtained results are

R(obj)
D = 0.938, R(pix)

D = 86.1% and RFA = 2.81× 10−7. With respect to the cases in which more

highly-contrasted objects are present, the two detection rate indexes are lower, especially R(pix)
D . This

was expected, since the intensity values of the moving objects are close to the threshold T2 and, thus,
are likely to drop below it because of noise peaks and blurring effect, resulting in missed detections.
Despite this, the achieved performance is reasonably good, as the objects has been correctly detected
in more than 90% of the frames and for more than 80% of their area, in average. The slightly higher
false alarm rate can be explained by the lower values chosen for t1 and, mainly, t2, which have been
decreased to permit dim objects to be detected. However, the result is still tolerable, considering that
less than 0.1 false alarms per frame are expected.

Figure 5a reports an example frame containing two moving objects, namely a person and a little
truck, covered with a tarpaulin with low emissivity, passing close and away from the camera,
respectively. The truck is a dim object, as visible in the zoomed box (green contour), where it is
indistinguishable from the background. Despite this, it has been successfully detected as well as
the person walking, as the detection map of the considered frame shows in Figure 5b. It is worth noting
that, even if not all of the pixels belonging to the dim object are detected, especially the edge ones due
to blurring effects, the percentage of detected pixels is sufficient to guess the shape of a vehicle.
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Figure 5. Example frame of a video sequence containing two moving objects one of which is dim 
pointed out by the green contour in the zoomed box (a); and corresponding detection map output by 
the proposed algorithm (b) again the region containing the dim object is pointed out in a zoomed box. 

4.4. Algorithm Assessment in the Presence of Fast Objects 

Fast moving objects has been defined as objects with a higher velocity than 10 pixels per frame. 
An example frame of a video sequence in which a fast object is present has been shown previously in 
Figure 3a, jointly with the corresponding detection map (Figure 3b). In such an example, indeed, the 
object moves at about 16 pixels per frame. 

Figure 5. Example frame of a video sequence containing two moving objects one of which is dim
pointed out by the green contour in the zoomed box (a); and corresponding detection map output by
the proposed algorithm (b) again the region containing the dim object is pointed out in a zoomed box.

4.4. Algorithm Assessment in the Presence of Fast Objects

Fast moving objects has been defined as objects with a higher velocity than 10 pixels per frame.
An example frame of a video sequence in which a fast object is present has been shown previously
in Figure 3a, jointly with the corresponding detection map (Figure 3b). In such an example, indeed,
the object moves at about 16 pixels per frame.

The performance indexes obtained in the presence of fast moving objects are R(obj)
D = 0.974,

R(pix)
D = 93.6% and RFA = 2.16× 10−7. Even in this case, promising results have been obtained in

terms of both detection and false alarm rate.

4.5. Algorithm Assessment in the Presence of Slow Objects

An object has been defined as slow if it moves at a velocity lower than 0.08 pixels per frames,
namely one pixel every half a second, considering the 25 Hz camera frame rate. Figure 6a shows an
example frame of a video sequence in which a terrestrial rescue vehicle, partially covered by a small
dip of the road, is crossing the scene far from the camera at about 0.015 pixels per frame. The vehicle
is pointed out by a green contour in the zoomed box. Since its velocity is lower than 0.08 pixels per
frame it is considered as slow. The detection map output by the algorithm at the selected frame,
shown in Figure 6b, reports a correct detection of all the pixels belonging to the moving object. To
better show the algorithm functioning, it is meaningful to report the plot over time of the intensity
of a pixel

(
i, j
)

crossed by the moving object, after the removal of µ(n) (Equation (2)), jointly with
the background estimation, IBG

(
i, j, n

)
, and the two thresholds, T1

(
i, j, n

)
and T2

(
i, j, n

)
, (Figure 7).

The transit of the object through the considered pixel occurs between frames 122 and 784, as it is
evident from the increase of the intensity. As soon as this overcomes T1

(
i, j, n

)
, the background and

standard deviation estimation are halted (Equations (5) and (9)). Thus, the updating of IBG
(
i, j, n

)
,

T1
(
i, j, n

)
and T2

(
i, j, n

)
(which depend on σ

(
i, j, n

)
) stops, as revealed by the flatness of the curves of

such quantities in the frame interval in which the object is passing. This permits the estimations not to
be biased by the intensity of the moving object.

The capability of the algorithm to detect slow objects is proven by the performance indexes,
which are R(obj)

D = 0.922, R(pix)
D = 94.2% and RFA = 2.12× 10−7. It is worth noting that R(obj)

D is
slightly lower than in the previous cases. This because, in a pixel affected by the transit of the target,
the transition of the intensity from the background to the object level is slow, thus it takes some more
for the intensity to overcome T2(i, j, n), resulting in some missing detections. The false alarm rate is in
line with the other cases.
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crossed by a moving object between frames 122 and 784.

4.6. Algorithm Assessment in the Presence of Objects That Change Their Trajectory

The presence of moving objects that change their trajectory while crossing the scene generally
affects those strategies based on spatial-temporal analysis, such as TDB ones. Since the proposed
algorithm is based on a DBT strategy, which does not require any assumption about the object path
and velocity, it is not expected to be affected by this issue. Indeed, the results obtained by running
the algorithm on the 7 video sequences that contains trajectory changing objects demonstrate its
effectiveness: R(obj)

D = 0.980, R(pix)
D = 95.8% and RFA = 2.11× 10−7.
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4.7. Algorithm Assessment in the Presence of Multiple Objects

The last case study concerns the contemporary presence of more than one moving object in the scene,
as it occurs, for example, in the frame shown in Figure 5a. To assess the capability of the proposed
algorithm to deal with this situation, the performance indexes have been calculated over the 10 video
sequences in which multiple objects are present. The obtained results again demonstrate the effectiveness
of the algorithm, both in terms of high detection rate (R(obj)

D = 0.967 and R(pix)
D = 93.3%) and in terms

of low false alarm rate (RFA = 2.18× 10−7).

4.8. Global Assessment of the Proposed Algorithm

The global performances of the algorithm have been calculated by computing the three indexes
over all of the video sequences. The global detection rate of the proposed algorithm is R(obj)

D = 0.962,
with a maximum of 0.997 for the case of large objects and a minimum of 0.922 for the case of slow objects.
Such a result proves the capability of the algorithm to detect moving objects in all the challenging
situations typical of the addressed issue. A further proof of the effectiveness of the algorithm is given
by the percentage of correctly detected pixels of the moving objects, which is 91.8% in average. This
should allow a user to recognize the shape of the detected objects by directly looking at the detection
map. The algorithm is also robust to false alarms, whose rate is approximately the same in every case
and, globally, it is RFA = 2.21×10−7. At the resolution of the employed camera, this means that about
one single false alarm every 14 frames is expected.

Finally, the average time needed for the algorithm to perform a single iteration has been calculated
over all the frames of all the video sequences to verify if the real-time requirement is satisfied.
As mentioned in Section 3, we consider the real-time performance achieved if the output of a single
iteration—namely, the detection map of a single frame—is produced in less than 1/25 s, which is
the typical frame rate of a low-cost video acquisition system and also the one of the used camera.
Such a condition ensures that the detection map at a certain frame is produced before the successive
frame is acquired. The algorithm has been run on a commercial low-cost hardware, consisting in
a 1.7 GHz CPU board and a 4 GB RAM. An average time per iteration τit = 17.5 ms has been
obtained, which is less than half the maximum tolerated value. Thus, the algorithm is compliant with
the real-time requirement.

For the sake of clarity, all the results obtained by running the proposed algorithm are summarized
in the first column of Table 3. These have been compared with the results obtained by running
the three detection algorithms mentioned in Section 4, both considering each different kind of moving
object singularly (the cases of objects that change their trajectory and multiple objects have been
omitted in Table 3, since they are less significant for a comparison among DBT algorithm exploiting
temporal domain, which are generally not affected by such issues) and all the objects together.
Such results are also reported in Table 3, where, in addition, the top performance among the four
algorithms has been highlighted, for each index and for each different kind of object. At a global level,
the proposed algorithm outperforms the other three, except for the index τit. The FD algorithm, in
fact, runs about three time faster. However, it demonstrates to perform poorly concerning the other
three indexes, in particular for R(obj)

D and R(pix)
D . The former index suffers the presence of objects less

hot than the background, which cannot be detected at all. The second, instead, is strongly affected by
the self-deletion problem. In fact, in the presence of large and slow object, for which the problem is
more critical, R(pix)

D = 56.3% and 58.4%, respectively; that is, only about half of the pixels of the objects
are detected. The MED algorithm performs similarly to the proposed algorithm in terms of detection
rate, even achieving better results in the presence of small and fast objects. However, its computational
time is dramatically high, being the global τit more than 15 times greater than the time required by
the proposed algorithm and more than 6 time greater the maximum tolerated value. Thus, the MED
algorithm is not suitable for real-time applications. The problem is particularly critical in the presence
of large and slow objects, since more frames must be buffered to allow the median of the intensity to be
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equal to the background intensity and not to the object one, for those pixels interested by the transit of
an object. In these cases, to limit τit, a lower number of stored frames should be chosen. Unfortunately,
for the reason just now mentioned, this is likely to produce an estimation of the background intensity
equal to the object one, resulting in missing detections, as the low values of R(obj)

D and mainly R(pix)
D

in the presence of large and slow objects demonstrates. Moreover, artifacts are likely to appear in
those pixels where an object is passed a few frames before, making the false alarm rate to increase
(RFA = 8.37× 10−7 and 11.73 × 10−7 for the large and slow objects cases, respectively). The GMM
algorithm not only performs slightly worse than the proposed algorithm in terms of R(obj)

D , R(pix)
D and

RFA, but also has a global τit = 41.1 ms that is, a bit higher than the maximum tolerable value to
work in real-time. Summarizing the results of the comparison, it is possible to state that the proposed
algorithm is more capable to deal with challenging moving objects than the other algorithms, showing
a greater flexibility to different situations, while ensuring the real-time performance also when low-cost
hardware is utilized.

As a final assessment, all the detections reported in one of the video sequences of the dataset
have been plotted on a frame chosen as reference (a marker has been placed on the centroid of each
detected blob in each frame). The result is shown in Figure 8. The presence of a moving object is clearly
visible from the trail left by the markers, which also proves the detection capability of the algorithm.
Such an example suggests that the algorithm can be profitably employed as a first stage of a tracking
system. In fact, the reported positions of the objects detected by it can be used to feed a tracker, which
should simply calculate the spatial-temporal correlation among them in order to extract their tracks.
In the reference frame, a few false alarms have been reported, which are represented by the isolated
markers. Their presence does not affect the final result significantly, proving that the obtained false
alarm rate is low enough.

Table 3. Performance of the proposed algorithm in the presence of different kinds of moving objects
singularly and globally, and comparison with other commonly used DBT algorithms.

Proposed Algorithm FD GMM MED

Small objects

R(obj)
D

0.973 0.724 0.971 0.974

R(pix)
D

92.9% 79.2% 92.5% 93.3%
RFA (×10−7) 2.02 2.92 2.86 3.05

τit (ms) 18.3 7.3 42.1 116.7

Large objects

R(obj)
D

0.997 0.963 0.992 0.995

R(pix)
D

96.1% 56.3% 96.4% 71.2%
RFA (×10−7) 2.13 3.02 2.58 8.37

τit (ms) 17.9 7.0 38.2 483.3

Dim objects

R(obj)
D

0.938 0.708 0.875 0.937

R(pix)
D

83.1% 73.6% 75.5% 78.0%
RFA (×10−7) 2.81 2.90 3.15 4.61

τit (ms) 16.4 6.6 39.9 206.4

Fast objects

R(obj)
D

0.974 0.819 0.955 0.974

R(pix)
D

93.6% 90.8% 93.0% 94.0%
RFA (×10−7) 2.16 3.11 3.08 2.94

τit (ms) 17.3 7.1 39.2 173.8

Slow objects

R(obj)
D

0.922 0.628 0.918 0.898

R(pix)
D

94.2% 58.4% 91.5% 78.6%
RFA (×10−7) 2.18 2.84 3.19 11.73

τit (ms) 17.9 7.1 41.8 441.7

Global result

R(obj)
D

0.962 0.759 0.931 0.954

R(pix)
D

91.8% 70.4% 89.6% 87.5%
RFA (×10−7) 2.21 2.94 2.99 5.92

τit (ms) 17.5 6.89 41.4 271.7
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Figure 8. Plot on a single frame of all the detections reported in one of the video sequences of
the dataset.

5. Conclusions

We presented an algorithm for automatically detecting moving objects in video sequences acquired
with IR steady cameras, designed with the purpose of dealing with different challenging situations,
typical of this task, such as the presence of small, large, dim, fast and slow objects, multiple objects
and objects that change their trajectory. Furthermore, the constraints of working in real-time on cheap
hardware and avoiding occupying a great amount of memory have been imposed.

The algorithm has been tested on a database of IR video sequences that contains all the above-
mentioned kinds of moving objects, demonstrating to be very effective both globally and against each
different kind of object. An overall detection rate higher than 96% has been achieved against a false
alarm rate of 2.21 × 10−7, which means that only a single false alarm every 14 frames is likely to occur.
Furthermore, 91.8% of the pixels of the moving objects have been correctly detected on average, allowing
one to guess the shape of the detected objects directly from the detection map. Even in the most critical
cases, the algorithm has shown reasonably good performances. The minimum object detection is 92.2%
(in the presence of slow objects), whereas the minimum percentage of detected pixel per object is 83.1%
and the maximum false alarm rate is 2.81 × 10−7 (in the presence of dim objects). The algorithm has also
respected plenty the real-time requirement, being 17.5 ms the average time needed to run an iteration,
which is less than half the typical camera frame rate of 1/25 s. This means that the detection map at
a certain frame is output before the next frame is acquired. Compared against other commonly used
moving detection algorithms, the proposed one has achieved better overall performances, showing
a greater flexibility to different situations.

Given its reliability and flexibility, the algorithm can be successfully employed in a wide variety
of video-surveillance applications, such as intrusion monitoring, activity control and detection of
approaching objects, especially when real-time processing is mandatory, as in the case of rescue or
defense purposes. It can also be profitably used as a first stage of a detection and tracking system,
since it provides the plot of the moving objects position independently of their size and velocity, which
is a crucial information to feed a tracker with.
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