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Abstract: As the latest L-band mission to date, evaluation of the Soil Moisture Active Passive (SMAP)
products is one of its post-launch objectives. However, almost all previous studies have been
conducted at the core validation sites (CVS) of the SMAP mission. This paper presents an evaluation
of the SMAP soil moisture Level 3 (L3) and Level 4 (L4) products under different vegetation types at
multiple tempo-spatial scales over the upper reach of the Heihe River Watershed, a topographically
complex mountainous area in Northwest China. This was done through comparisons of the L3
and L4 products with ground-based observations from a sparse in situ network of permanent and
temporary stations from 1 April 2015 to 22 June 2017. Results show that, compared with in situ
observations at point scale, both the L3 and L4 products represent the temporal trends of the in
situ observations in the study area well, with R values of 0.601 and 0.538 for the L3 ascending
and descending products, respectively, and ranging from 0.353 to 0.410 for the L4 product at eight
overpassing moments. However, because of the uncertainties of brightness temperature TBp and
effective temperature Teff as well as their propagations in the inversion algorithm, both products did
not achieve the accuracy of 0.04 m3/m3 in mountainous area. These uncertainties also result in the
“dry bias” of the SMAP products in almost all the evaluations to date. Compared with areal average
values at the watershed scale, the L3 product is far beyond the accuracy of 0.04 m3/m3 and the L4
product basically achieves the accuracy. In vegetation-covered land, the suitability and the variability
of the coefficient bp result in both products performing best in cropland, then coniferous forest, sparse
grassland, dense grassland, and alpine meadow, and worst in shrub. In barren land, the errors in
estimating surface roughness h caused by the complex topography lead to poor performance of the
SMAP products. With the relative errors of the SMAP brightness temperature observations and
the corresponding land model forecast in the assimilation; the L3 and L4 products show different
performance at both temporal and spatial scales; and the L3 product provides more reliable soil
moisture estimates in the study area. Based on the results of this study, we propose: quantifying
the uncertainties in estimating brightness temperature TBp and effective temperature Teff; determine
coefficient bp and surface roughness h factor under various conditions; improving Goddard Earth
Observing Model System Version 5 (GEOS-5) model; and deriving the SMAP-only climatology to
improve the SMAP soil moisture estimates in the future.
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1. Introduction

Soil moisture is a key variable in the global energy and water cycle, and is also important in many
land surface disciplines such as agriculture, hydrology and environmental sciences [1,2]. In recent
years, it has been considered as an Essential Climate Variable (ECV) by the World Meteorological
Organization [3]. Although in situ measurements have been considered as the most accurate methods
for obtaining soil moisture at point scale, it is impossible to represent the spatial distribution of
highly variant soil moisture at large scale from in situ measurement networks [4,5]. In recent decades,
satellite products of soil moisture at large scale have become available via different active and passive
microwave remote sensing techniques [6–10]. Compared with C-band and X-band products, L-band
products are much more suitable for the estimation of soil moisture because of their higher soil
penetration depth, higher frequency and better vegetation penetration [11], especially for regions
where soil moisture is a controlling factor on land-atmosphere exchanges [9].

Employing both an L-band radar and an L-band radiometer, the National Aeronautics and
Space Administrati (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched
on 31 January 2015. Both radar and radiometer instruments shared a rotating 6-m mesh reflector
antenna on a platform in a 685-km sunsynchronous near-polar orbit, viewing the Earth’s surface at
a constant incidence angle of 40◦ with swath width of 1000 km [12]. However, the radar instrument
encountered an irrecoverable hardware failure on 7 July 2015, and the production of soil moisture data
products continues using the radiometer data alone [12,13]. The SMAP mission delivers data products
of four levels, including the instrument measurements (Level 1), geophysical retrievals (swath based,
Level 2, and daily composite, Level 3), and land surface models assimilating SMAP measurements
(Level 4) [12,14]. The SMAP mission aims to provide soil moisture estimates in the top 5 cm of soil over
the global land area with an unbiased root mean square error (ubRMSE) less than 0.04 m3/m3 [14,15].
To meet the science requirements, one of its post-launch objectives is to validate the accuracy of the
science data products [14]. However, so far, only a few validations of the SMAP products have been
conducted, and almost all of them have been carried out at the core validation sites (CVS) [12,16–22].
Because observations from the CVS have been used to refine and validate retrieval algorithms, it is
important to validate the SMAP products over other regions beyond the CVS [12,14,21,23].

The objectives of this work are first to validate the SMAP soil moisture Level 3 and Level 4
products under different vegetation types at multiple tempo-spatial scales over the upper reach of
the Heihe River Watershed, a topographically complex, high mountainous area in Northwest China,
then to quantify the differences between both products, and subsequently determine their suitability in
mountainous areas. These were done through comparisons with ground-based measurements from a
sparse in situ network of permanent and temporary stations from 1 April 2015 to 22 June 2017. Finally,
the suitability of both products is analyzed and the future improvements are suggested.

2. Study Area and Datasets

2.1. Study Area

The Heihe River, with a drainage area of 128,000 km2, is the second largest inland river (or
terminal lake) in China [24]. The upper reach of the Heihe River Watershed is located in the Qilian
Mountain ranges (Figure 1), with a length of 313 km and a drainage area of 10,009 km2, producing the
majority of runoff for the entire Heihe River Watershed [25]. The local climate is influenced by both the
continental climate and the Qinghai-Tibet plateau climate [26], the mean annual temperature ranges
from −3.1 to 3.6 ◦C with the minimum temperature of −28 ◦C. Mean annual precipitation ranges from
250 mm below 1900 m asl (meters above sea level) to 700 mm above 3600 m asl, and most precipitation
(over 60%) falls between June and September. The elevation in the region ranges from 1674 to 5584 m
asl [25,27].
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Figure 1. The Study area (a) The Heihe River Watershed in Northwest China; (b) The upper reach of 
the Hehe River Watershed. 

In the upper reach of the Heihe River Watershed, the major vegetation types include coniferous 
forest (Picea crassifolia), shrub (Potentilla fruticosa), steppe (Stipa purpurea Griseb), alpine meadow 
(Kobresia pygmaea Clarke), alpine sparse vegetation (Saussurea medusa Maxim), and desert (Sympegma 
regelii Bunge) [28]. There are various soil types in the study area, e.g., aeolian sandy soil, cold desert 
soil, alpine meadow soil, mountain swamp chestnut soil and mountain marshy soil [26]. Because of 
the complex terrain surface, it is difficult to accurately estimate soil moisture at watershed scale in 
the study area [29]. 

2.2. The SMAP Product 

The NASA’s SMAP satellite mission, was designed to provide global mapping of soil moisture 
and landscape freeze/thaw state with high resolution [9]. It aims to provide soil moisture estimates 
in the top 5 cm of soil over the global land area, excluding surfaces with permanent ice and snow, 
urban areas, wetlands, and vegetated areas with vegetation water content greater than 5 kg/m2 [14]. 

Figure 1. The Study area (a) The Heihe River Watershed in Northwest China; (b) The upper reach of
the Hehe River Watershed.

In the upper reach of the Heihe River Watershed, the major vegetation types include coniferous forest
(Picea crassifolia), shrub (Potentilla fruticosa), steppe (Stipa purpurea Griseb), alpine meadow (Kobresia pygmaea
Clarke), alpine sparse vegetation (Saussurea medusa Maxim), and desert (Sympegma regelii Bunge) [28].
There are various soil types in the study area, e.g., aeolian sandy soil, cold desert soil, alpine meadow soil,
mountain swamp chestnut soil and mountain marshy soil [26]. Because of the complex terrain surface,
it is difficult to accurately estimate soil moisture at watershed scale in the study area [29].

2.2. The SMAP Product

The NASA’s SMAP satellite mission, was designed to provide global mapping of soil moisture
and landscape freeze/thaw state with high resolution [9]. It aims to provide soil moisture estimates
in the top 5 cm of soil over the global land area, excluding surfaces with permanent ice and snow,
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urban areas, wetlands, and vegetated areas with vegetation water content greater than 5 kg/m2 [14].
The mission requirement is ubRMSE less than 0.04 m3/m3 for the surface soil moisture for the 36 km
and 9 km gridded products within the retrieval domain.

The SMAP L3_SM_P_E and L4_SM_gph products from 1 April 2015 to 22 July 2017 over the
study area are selected for validation in this research. Given the failure of the SMAP radar in July
2015 and the short measurement period, the L3_SM_P_E product (hereinafter referred to as “the L3
product”) is daily geophysical retrieval at 9 km by 9 km of half orbits based on the downscaling results
of the observed brightness temperature with a resolution of 36 km by 36 km. The L4_SM_gph product
(hereinafter referred to as “the L4 product”) is modeling value-added surface soil moisture product
at a 3-h interval based on the SMAP retrievals and simulations by Goddard Earth Observing Model
System Version 5 (GEOS-5) [14]. Both the SMAP L3 and L4 products are available with equally spaced
grid at ~9 km by 9 km, known as the Discrete Global Grid (DGG) [30]. The entire study area is covered
by roughly 410 DGGs of the SMAP products. Both products have been distributed by NASA National
Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) and the NASA Alaska
Satellite Facility Distributed Active Archive Center (ASF DAAC). Data and further details are available
at http://nsidc.org/.

2.3. Sparse In situ Network

Sparse network measurements can be used as additional resources to expand the spatial and
temporal scopes of the validation [12,23]. In this study, the sparse in situ soil moisture network
was established in June 2013 by authors’ team over the upper reach of the Heihe River Watershed.
It includes 35 nodes, which were established based on the combinations of vegetation and soil types in
the study area (Figure 1, Table 1). Although with only 35 nodes, the sparse in situ network provides
observations on the main characteristics of vegetation-soil types, making it representative to compare
with the dense in-situ networks [31].

Through experimental analysis, soil textures of the in situ nodes are silt loam, silt, and sandy loam
according to the United States Department of Agriculture (USDA) soil classification system, with the
silt loam being the dominant texture (Table 1). For each node, soil moisture at depths of 5, 15, 25, 40
and 60 cm was measured at 30-min intervals by soil moisture sensor (Decagon’s 5TE), and the data at
depths of 5 cm were used as the surface soil moisture data in this study. The measurements by the
soil moisture sensor were calibrated using field collected soil samples [32,33]. Soil samples were first
weighed in the field and then weighed again after oven dried for 24 h at 105 ◦C. The details of the
field sampling and analysis can be found in [33,34]. According to the manual provided by Decagon
Company [35], the soil moisture at each in situ point was subsequently calculated based on the weight
difference between the wet and dry soil and volume of the container.

http://nsidc.org/
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Table 1. The in-situ observation points in the study area.

Station Longitude Latitude Altitude (m asl) Vegetation Sand (%) Silt (%) Clay (%) Soil Types

D1 99.758 38.910 2151 Sparse grassland 33.890 58.970 7.140 Typical Sierozems
D2 99.520 38.781 2556 Sparse grassland 32.330 60.020 7.650 Light Castanozems
D3 99.988 38.955 1827 Sparse grassland 38.030 55.880 6.090 Clay gray desert soils
D4 100.013 38.455 2370 Sparse grassland 27.819 65.997 6.184 Typical Castanozems
D5 101.350 38.095 2558 Dense grassland 57.845 37.866 4.289 Light Castanozems
D6 99.186 39.146 2604 Sparse grassland 25.207 66.891 7.902 Light Castanozems
D7 98.329 38.899 3317 Sparse grassland 22.072 69.032 8.896 Calcareous Frigid frozen soils
D8 98.805 39.323 2170 Sparse grassland 20.128 72.581 7.291 Saturated Frigid frozen felt soils
D9 99.232 38.724 3622 Dense grassland 34.464 58.182 7.354 Saturated Frigid frozen felt soils

D10 97.824 39.338 3117 Sparse grassland 9.774 82.888 7.337 Calcareous Frigid frozen soils
D11 100.220 38.560 2890 Coniferous forest 11.134 81.961 6.905 Typical Castanozems
D12 99.711 38.789 2498 Coniferous forest 19.863 73.599 6.538 Typical Grey-cinnamon soils
D13 101.048 38.189 2977 Shrub 13.816 78.380 7.804 Peat Frigid felt soils
D14 100.418 38.480 2676 Coniferous forest 44.335 50.187 5.478 Light Castanozems
D15 101.050 38.160 3146 Shrub 9.022 83.357 7.621 Peat Frigid felt soils
D16 100.616 38.031 3105 Dense grassland 28.634 65.963 5.403 Saturated Frigid frozen felt soils
D17 100.929 38.065 3300 Sparse grassland 25.191 67.730 7.079 Typical Chernozems
D18 101.378 38.125 2787 Dense grassland 27.410 65.161 7.429 Dry farming Chernozems
D19 100.908 38.274 2697 Cropland 14.628 78.103 7.268 Typical Castanozems
D20 99.670 39.119 2147 Barren land 20.753 71.602 7.644 Calcareous Frigid calcic soils
D21 97.866 39.633 2770 Sparse grassland 25.212 68.056 6.732 Calcareous Frigid calcic soils
D22 97.971 39.535 2303 Sparse grassland 27.226 66.467 6.307 Saturated Frigid frozen felt soils
D23 98.351 39.472 2390 Sparse grassland 41.253 53.508 5.239 Typical Frigid frozen calcic soils
D24 98.756 38.788 4109 Barren land 41.699 52.654 5.648 Typical Frigid desert soils
D25 99.475 38.611 4155 Barren land 54.860 40.260 4.880 Saturated Frigid frozen felt soils
D26 100.237 38.184 3252 Sparse grassland 29.832 61.556 8.612 Typical Castanozems
D27 100.147 38.585 2465 Dense grassland 8.744 81.255 10.002 Light Castanozems
D28 101.269 38.299 2601 Dense grassland 14.337 73.138 12.524 Typical Castanozems
D29 99.623 38.409 3249 Dense grassland 22.241 69.842 7.917 Peat Frigid felt soils
D30 101.050 38.165 3109 Dense grassland 20.356 73.725 5.920 Saturated Frigid frozen felt soils
D31 99.969 38.241 2920 Dense grassland 24.748 69.119 6.133 Saturated Frigid frozen felt soils
D32 99.485 38.592 3800 Alpine meadow 26.737 63.807 9.455 Typical Gray calcic soils
D33 100.286 38.554 2698 Dense grassland 19.860 73.600 6.540 Typical Castanozems
D34 100.937 38.215 2886 Dense grassland 9.480 84.390 6.130 Typical Chernozems
D35 99.915 38.833 2839 Dense grassland 27.930 67.160 4.910 Typical Castanozems
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3. Methods

3.1. Evaluation Metrics

Both the SMAP L3 and L4 products, as well as the in situ observations are in units of m3/m3.
In order to facilitate comparisons with other evaluation studies, we used the following three metrics
for the validation in this study. The formula of three statistical indicators, correlation coefficient (R),
root-mean-square errors (RMSE) and the mean bias (bias) are as follows [5,9,36,37].

R =
∑n

t=1 (SMobs
t − SMobs

)(SMsat
t − SMsat

)√
∑n

t=1 (SMobs
t − SMobs

)
2
√

∑n
t=1 (SMsat

t − SMsat
)

2
(1)

RMSE =

√
∑n

t=1 (SMobs
t − SMsat

t )
2

n
(2)

bias = SMsat − SMobs (3)

where, SMobs
t and SMsat

t are the soil moisture values of ground sites and satellite-based products on tth

day, SMobs and SMsat are the average values of ground sites and satellite-based products during the
evaluation period, n is the number of days. As the target accuracy of the SMAP product is expressed
by ubRMSE (unbiased RMSE) [14,15], ubRMSE has also been analyzed in this study. It is related to
RMSE through RMSE2= ubRMSE2 + bias2.

3.2. Temporal Stability Analysis

The temporal stability analysis has been conducted to compare the similarity of the spatial
distributions of soil moisture data between the L3 and L4 products, over the same period from 1 April
2015 to 22 June 2017 [11,38–40]. For each grid x, the stability of soil moisture estimates from one time
step to another is evaluated by mean relative difference (MRD) δx and standard deviation σ(δx).

δx =
1
n

n

∑
t=1

δxt (4)

σ(δx) =

√
1

n − 1

n

∑
t=1

(δxt − δx)
2

(5)

where, n is the number of days during the evaluation period, δxt is the relative difference of grid x at
tth day,

δxt =
SMsat

xt − SMsat
t

SMsat
t

(6)

and, SMsat
t is the areal mean value for all m grids at tth day and calculated as Formula (7),

SMsat
t =

1
m

m

∑
x=1

SMsat
xt (7)

and, SMsat
xt is the soil moisture estimates of the SMAP product for grid x at tth day.

The MRD and standard deviation were calculated for each grid to illustrate tempo-spatial
distributions of both the L3 and L4 products in the study area. Generally, higher standard deviations
of MRDs indicate a lower persistence of soil moisture distribution in time, and drier (wetter) areas will
get a low (high) MRD and with a low (high) rank [11]. Therefore, the similarity of MRD ranks of the
L3 and L4 products is a measure of the similarity of their spatial distribution.
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4. Results

4.1. Evaluation of the SMAP L3 and L4 Products at Each Overpassing Moment

The differences between the retrievals of the SMAP products at different overpassing moments
remain unclear [14]. Therefore, the SMAP L3 and L4 products, at each overpassing moment from
1 April 2015 to 22 June 2017, were compared with the corresponding observations at all the in situ sites.
As shown in Table 2, the L3 product of both the ascending and descending orbits, catches the trend
of the observations well with R values of 0.601 and 0.538, respectively, with significance of α = 0.001.
The bias values are negative, indicating that the L3 product underestimated soil moisture, so called
“dry bias” [11]. The RMSE values are 0.062 and 0.065 m3/m3, while the ubRMSE values are 0.054 and
0.053 m3/m3 for the ascending and descending products, respectively. Thus, compared with in situ
observations at point scale, the SMAP L3 product did not achieve the accuracy of 0.04 m3/m3 in the
study area. With larger R values, smaller RMSE and absolute bias values, and almost the same ubRMSE
values, the L3 ascending product performed better than the L3 descending product.

Table 2. Evaluation of the Soil Moisture Active Passive (SMAP) L3 and L4 products in the study area.

Product Overpassing Moments R RMSE (m3/m3) Bias (m3/m3) ubRMSE (m3/m3) n

The L3 Product
Ascending 0.601 * 0.062 −0.031 0.054 6706
Descending 0.538 * 0.065 −0.037 0.053 7467

The L4 Product

01:30 0.402 * 0.076 0.027 0.071 26,770
04:30 0.376 * 0.077 0.028 0.072 26,768
07:30 0.355 * 0.077 0.028 0.072 26,764
10:30 0.353 * 0.077 0.028 0.072 26,735
13:30 0.371 * 0.076 0.025 0.072 26,777
16:30 0.387 * 0.074 0.024 0.070 26,777
19:30 0.400 * 0.075 0.024 0.071 26,778
22:30 0.410 * 0.076 0.026 0.071 26,976

Note: * refers to passing significance test of 0.001.

The evaluation indices of the L4 product at all the eight overpassing moments are shown in
Table 2. With R values ranging from 0.353 to 0.410 (at significant level of α = 0.001), the L4 product
at all the eight overpassing moments catches the trend of the observations well. The bias values are
positive ranging from 0.024 to 0.028, thus the L4 product overestimated soil moisture data in the study
area. As the RMSE values range from 0.074 to 0.077 m3/m3, and ubRMSE values range from 0.070
to 0.072 m3/m3, the SMAP L4 product did not achieve the accuracy of 0.04 m3/m3 in the study area
compared with in situ observations at point scale. Although R values slightly vary with overpassing
moments, both RMSE and bias values are nearly the same with overpassing moments, indicating that
the L4 product has systemic errors in the study area. Furthermore, the L3 product fits the observation
better than the L4 product with larger R values, and smaller RMSE and ubRMSE values (Table 2).

4.2. Evaluation of the SMAP L3 and L4 Products under Different Vegetation Types

Soil heterogeneity contributes less than 0.7% volumetric soil-moisture error for L-band
product [41]. Moreover, soil textures of the in situ nodes show little difference in this study (Table 1).
Thus, clustered in situ soil moisture time series by vegetation type were compared with the SMAP
estimates to investigate the differences of soil moisture estimates under different vegetation types.
As shown in Table 3, the L3 product catches the trend of the observations well with R values ranging
from 0.160 to 0.752 with all at α = 0.001 significant level. The bias values are negative, indicating that
the L3 product also shows “dry bias” for all the vegetation types. As the RMSE values range from 0.047
to 0.208 m3/m3, while the ubRMSE values range from 0.025 to 0.079 m3/m3, the L3 product did not
achieve the accuracy of 0.04 m3/m3 for all the vegetation types except cropland and coniferous forest.

Regarding to the L4 product, with R values ranging from 0.218 to 0.546 (all of them pass
significance test of 0.001), it catches the trend of the observations well at all the eight overpassing
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moments, but also exhibits a substantial bias (Table 3). The L4 product underestimated soil moisture
in alpine meadow and shrub with negative bias values, overestimated soil moisture in sparse and
dense grasslands, coniferous forest and cropland with positive bias values, while showing negligible
bias in barren land with values near zero. As the RMSE values range from 0.048 to 0.163 m3/m3,
and ubRMSE values range from 0.046 to 0.117 m3/m3, the SMAP L4 product did not achieve the
accuracy of 0.04 m3/m3 for all the vegetation types in the study area.

Table 3. Evaluation of the SMAP L3 and L4 products under different vegetation types.

Vegetation
Types

The L3 Product The L4 Product

R RMSE
(m3/m3)

Bias
(m3/m3)

ubRMSE
(m3/m3) n R RMSE

(m3/m3)
Bias

(m3/m3)
ubRMSE
(m3/m3) n

Alpine
Meadow 0.752 * 0.149 −0.140 0.052 363 0.546 * 0.131 −0.095 0.090 6201

Sparse
Grassland 0.555 * 0.047 −0.012 0.045 5018 0.382 * 0.075 0.057 0.048 80,093

Dense
Grassland 0.578 * 0.054 −0.023 0.049 5146 0.362 * 0.063 0.027 0.057 75,880

Shrub 0.160 * 0.208 −0.192 0.079 768 0.218 * 0.163 −0.113 0.117 9022

Coniferous
forest 0.698 * 0.049 −0.037 0.033 1192 0.480 * 0.076 0.059 0.048 16,837

Cropland 0.733 * 0.067 −0.062 0.025 475 0.394 * 0.048 0.013 0.046 6509

Barren land 0.632 * 0.066 −0.019 0.063 1211 0.412 * 0.064 −0.006 0.064 19,803

Note: * refers to passing significance test of 0.001. The indices are average values of all the overpassing moments for
each product.

Because R values are strongly affected by the data amount, and RMSE values are strongly affected
by the value range, ubRMSE is used as the main index to evaluate the differences of the soil moisture
estimates between vegetation types when R values pass significance test of 0.001. As shown in Table 3,
both the L3 and L4 products match the observations best in cropland, then coniferous forest, sparse
grassland, dense grassland, alpine meadow, barren land and shrub. With larger R values and smaller
ubRMSE values, the L3 product shows better performance than the L4 product for all the vegetation
types except shrub. In shrub, the L4 product shows larger R value and larger ubRMSE value.

4.3. Comparison of the SMAP L3 and L4 Products at Watershed Scale

The SMAP L3 and L4 products, as well as in situ observations, were processed into daily areal
average values for fair comparison at the watershed scale. The comparison of time series variance
is shown in Figure 2. At the watershed scale, the R values are 0.810 and 0.411 for the L3 and L4
products, respectively, indicating that both products capture soil moisture dynamics very well and
the L3 product performed better. The ubRMSE values are 0.027 and 0.042 m3/m3 for the L3 and
L4 products, thus the L3 product is far beyond the accuracy of 0.040 m3/m3 at the watershed scale,
while the L4 product basically achieves the accuracy. The bias values are −0.024 and 0.019 m3/m3,
indicating that the L3 product underestimates soil moisture data and the L4 product overestimates soil
moisture data in the study area.
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observation in the study area.

It is worth mentioning that, in winter (from December to March), the L3 product lacked data and
the L4 product provided unreliable estimates with a linear trend showing significantly overestimations.
The details of seasonal differences are shown in Table 4. Both the L3 and L4 products performed best
in autumn, then followed by summer and spring. Evaluated by the combination of R, RMSE, absolute
bias and ubRMSE values, the L3 product fits the observation better than the L4 product in spring,
summer and autumn.

Table 4. Evaluation of daily average values from the SMAP L3 and L4 products at seasonal scale.

Seasons
The L3 Product The L4 Product

R RMSE
(m3/m3)

Bias
(m3/m3)

ubRMSE
(m3/m3) n R RMSE

(m3/m3)
Bias

(m3/m3)
ubRMSE
(m3/m3) n

Spring 0.712 0.045 −0.039 0.022 216 0.052 0.033 0.001 0.033 245
Summer 0.735 0.028 −0.011 0.026 198 0.634 0.026 −0.010 0.024 205
Autumn 0.878 0.030 −0.022 0.020 168 0.522 0.039 0.022 0.032 182
Winter -- -- -- 0 −0.062 0.075 0.074 0.012 181

4.4. Temporal Stability Analysis

The temporal stability analysis is applied in this study because it is less influenced by sampling
size and not so much dependent on the absolute values of soil moisture, but rather accounts for the
tempo-spatial distributions of soil moisture [11]. The MRDs and their standard deviations of both
the L3 and L4 products are shown in Figure 3. The L3 product has MRDs between −0.489 and 0.902,
and for the L4 product the range of MRDs is from −0.438 to 0.945. The standard deviations of the L3
MRDs are quite high, ranging from 0.099 to 0.371 with mean value over all pixels of 0.184. For the L4
product, the standard deviations of MRDs range from 0.027 to 0.137 with an areal mean value of 0.072.
Compared to the L4 product, the higher ranges of MRDs and higher standard deviations of the L3
product imply more dynamic in its tempo-spatial distributions.

For the L3 product, the MRDs are presented as smaller in the northwest and larger in the southeast,
indicating that the estimates are drier in the northwest and wetter in the southeast. For the L4 product,
the MRDs are smaller in the west and slightly larger in the east, which means that the estimates are drier
in the west and wetter in the east. The precipitation in the study area shows increasing trends from
northwest to southeast [42,43], leading to same spatial pattern of soil moisture. Thus, the L3 product
better catches the spatial pattern of soil moisture in the study area. For both products, the standard
deviations are smaller in central areas and larger in outlying areas. This implies lower persistence of soil
moisture distributions over time in outlying areas than in central areas for both products. Nevertheless,
the standard deviations of the L4 product show significantly smaller range, indicating that the L4
product had greater persistence of soil moisture distributions over time than the L3 product (Figure 3).
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Figure 3. Temporal stability analysis of the SMAP L3 and L4 products. (a) mean relative differences
(MRDs) of the L3 product; (b) standard deviation of the L3 product; (c) MRDs of the L4 product;
(d) standard deviation of the L4 product.

5. Discussion

5.1. Impacts of Uncertainties in Retrieval Algorithms

In the SMAP mission, the tau-omega model has been applied to describe the components from
the soil, and the vegetation canopy contributes to the L-band brightness temperature [9,14]. If the air,
vegetation, and near surface soil can be assumed to be in thermal equilibrium, then the vegetation
temperature (TC) is approximately equal to soil effective temperature (Ts), and both temperatures TC
and Ts can be replaced by the single effective temperature for the scene (Teff) in the radiative transfer
equation. To retrieve soil moisture data, it is necessary to isolate the soil surface emissivity ep in
Formula (8) by inversion of the tau-omega model.

ep =
e − (1 − ωp)(1 − γ2)

(1 − ωp)γ2 + ωpγ
(8)

where

e =
TBp

Te f f
(9)

and
γ = exp(−τp sec θ) (10)

and TBp is the brightness temperature of each SMAP grid cell, τp is the nadir vegetation opacity, ωp

is the vegetation effective scattering albedo, θ is the surface incidence angle of 40◦. Based on the
derived value of ep, the smooth surface soil emissivity is determined by removing the roughness
effects, and then soil moisture can be retrieved based on Fresnel equation and dielectric mixing model.
Therefore, the accuracy of TBp and Teff, as well as the suitability of τp and ωp are crucial for the retrieval
of soil moisture data [9,14].

There are uncertainties in estimating both TBp and Teff in the SMAP mission. In mountainous areas,
angles of incidence in the target area could not be derived solely from the radiometer observation
angle, and the surrounding reflection significantly affects brightness temperature simulation [44].
Nevertheless, both of them have been ignored in the SMAP mission [14]. Meanwhile, the L3_SM_P_E
product with a resolution of 9 km by 9 km, has been retrieved from the downscaled brightness
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temperatures in the L2_SM_P product [45]. The downscaling algorithms would cause uncertainties
in TBp estimates, especially in areas with complex land surface conditions [45,46]. In the SMAP
mission, the effective temperature Teff has been provided by the GMAO (GSFC Global Modeling and
Assimilation Office) model, also with unclear uncertainty. Moreover, the uncertainties of both TBp and
Teff would propagate through the soil moisture inversion algorithm [45], which is still unclear and
requires further investigations in the future. Therefore, although well catching the temporal trend of in
situ observations, both the L3 and L4 products did not achieve the accuracy of 0.04 m3/m3 at each
overpassing moment in the study area.

The L3 product shows “dry bias” for all the vegetation types at each overpassing moment in
this study, which has also been revealed at both footprint scale and global scale in previous studies,
especially in mountainous areas (Table 5). Colliander et al. [12] attributed the “dry bias” to growth
effects of vegetation. However, as shown in Table 6, both the L3 ascending and descending products
underestimated soil moisture for all the vegetation types in both growing seasons (summer and
autumn) and non-growing season (spring), with even larger underestimation in non-growing season.
It implies that the “dry bias” is more related to the system structure of retrieval algorithms rather
than the growth effects. Both τp and ωp are the factors describing vegetation effects, and the retrieval
parameters of them have been trained or validated by observations from the CVS [12], thus they can
be assumed approximately precise at the CVS. However, the evaluations of the SMAP product at the
CVS also show the “dry bias” [12]. Therefore, the “dry bias” of the SMAP L3 product is mainly caused
by the uncertainties of the TBp and Teff estimates rather than other factors. Furthermore, because the
assumptions of thermal equilibrium are more likely to be true at the 6 a.m. SMAP overpass [9,14],
the L3 ascending product fits the observation better than the L3 descending product.

Table 5. Evaluations of the SMAP products with in situ observations in previous studies.

Satellite
Products Study Area Validation Period R RMSE (m3/m3) Bias (m3/m3)

ubRMSE
(m3/m3) Reference

SMAP L2
product (9km) Around the globe 13 April~6 July

2015 0.286~0.981 0.022~0.113 −0.070~0.075 0.018~0.084 [12]

SMAP L2
product (36 km)

the SMAP Validation
Experiment 2015 in
Southeast Arizona

1~18 August 2015 0.49 0.037 0.029 ---- [21]

SMAP L2
product (36 km) CVS 31 March~26

October 2015 0.719~0.781 0.061~0.071 −0.040~0.008 0.038~0.044 [13]

SMAP L3
product (9 km) Genhe in China 15 July 2013~23

September 2016 0.498~0.713 0.039~0.063 −0.022~−0.050 ---- [47]

SMAP L4
product (9 km)

the Great Plains region
of the United States

1 April~1
December 2015 0.901 0.027 −0.001 ---- [48]

SMAP L4
product (9 km)

Two in situ networks
over the United States

April 2015~March
2016 0.54~0.8 0.09~0.15 ---- 0.09~0.12 [49]

SMAP L3
product (36 km) Over China 1 April 2015~31

August 2016 0.44 0.108 0.058 0.059 [50]

SMAP L3_A
product (3 km)

Cold and Arid Regions
in Northwestern China

13 April~7 July
2015

0.214 0.17 −0.116 0.124

[51]SMAP L3_AP
product (9 km) 0.385 0.213 −0.203 0.067

SMAP L3_P
product (36 km)

2 April~31
December 2015 0.498 0.098 −0.087 0.045

SMAP L3_P
product (36 km)

Three networks over
United States
and Europe

1 April~1
December 2015 0.764 0.052 0.016 0.036 [52]
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Table 6. Evaluation of the SMAP L3 products of both ascending and descending orbits at seasonal scale.

Vegetation Types Seasons
Ascending Descending

R RMSE
(m3/m3)

bias
(m3/m3) n R RMSE

(m3/m3)
bias

(m3/m3) n

Alpine meadow

Spring 0.568 * 0.133 −0.112 34 0.275 0.118 −0.094 55
Summer 0.740 * 0.159 −0.154 81 0.766 * 0.160 −0.154 90
Autumn 0.953 * 0.148 −0.145 46 0.834 * 0.152 −0.149 57
Winter -- -- -- 0 -- -- -- 0

Sparse grassland

Spring 0.466 * 0.045 −0.008 688 0.394 * 0.050 −0.013 816
Summer 0.655 * 0.044 −0.002 1042 0.515 * 0.052 −0.017 1050
Autumn 0.644 * 0.040 −0.013 672 0.520 * 0.045 −0.021 721
Winter -- -- -- 0 -- -- -- 0

Dense grassland

Spring 0.489 * 0.055 −0.041 701 0.460 * 0.052 −0.036 853
Summer 0.659 * 0.052 −0.010 1096 0.611 * 0.058 −0.022 1142
Autumn 0.689 * 0.051 −0.019 624 0.682 * 0.048 −0.016 728
Winter -- -- -- 0 -- -- -- 0

Shrub

Spring 0.016 0.268 −0.263 102 0.439 * 0.272 −0.268 112
Summer 0.487 * 0.171 −0.159 176 0.514 * 0.176 −0.166 182
Autumn 0.020 0.185 −0.167 94 0.096 0.179 −0.165 102
Winter -- -- -- 0 -- -- -- 0

Coniferous forest

Spring 0.579 * 0.053 −0.038 151 0.436 * 0.053 −0.032 192
Summer 0.808 * 0.046 −0.037 218 0.728 * 0.056 −0.046 228
Autumn 0.785 * 0.043 −0.036 181 0.741 * 0.040 −0.029 222
Winter -- -- -- 0 -- -- -- 0

Cropland

Spring 0.719 * 0.080 −0.078 69 0.710 * 0.076 −0.073 83
Summer 0.817 * 0.055 −0.049 101 0.773 * 0.067 −0.061 100
Autumn 0.722 * 0.066 −0.062 59 0.666 * 0.056 −0.052 63
Winter -- -- -- 0 -- -- -- 0

Barren land

Spring 0.496 * 0.077 −0.029 135 0.426 * 0.08 −0.040 167
Summer 0.688 * 0.058 −0.012 275 0.661 * 0.065 −0.024 301
Autumn 0.782 * 0.058 −0.005 153 0.662 * 0.059 −0.015 179
Winter -- -- -- 0 -- -- -- 0

In total

Spring 0.470 * 0.068 −0.043 1880 0.431 * 0.069 −0.044 2278
Summer 0.670 * 0.059 −0.023 2989 0.593 * 0.066 −0.035 3093
Autumn 0.659 * 0.058 −0.030 1829 0.596 * 0.058 −0.032 2072
Winter -- -- -- 0 -- -- -- 0

Note: No data of the SMAP product in winter. * refers to passing significance test of 0.001.

5.2. Impacts of Parameters bp and h under Different Vegetation Types

According to Formula (8), τp and ωp are two important factors related to vegetation effects [9,14].
In the SMAP mission, the nadir vegetation opacity τp is related to the total columnar vegetation water
content W (kg/m2) by τp = bpW with the coefficient bp dependent on vegetation type [9,14]. Both bp

and ωp have been determined before launch [12,14]. Meanwhile, surface soil reflectivity rp, related

to the soil emissivity ep by ep = 1−rp, has been smoothed by rsmooth
p = rrough

p / exp(−h) in the SMAP
retrieval. As a linear function of the root mean square of surface heights, surface roughness h is also an
important factor for soil moisture estimation in mountainous area [51,53].

As the parameters ωp and bp are functions of vegetation geometry and vegetation water
content, both of them are important factors affecting the performance under vegetation conditions.
Better characterizing parameter ωp is important in soil moisture retrievals from space-borne
observations [54–57]. However, as shown in Table 7, differing significantly in the values of ωp, both
the SMAP L3 and L4 products show same performance trends under different vegetation types in the
study area. Thus, the effects of ωp on the performance differences of both products under different
vegetation types are not discussed in this study.
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Table 7. Values of ωp used in both the SMAP L3 and L4 products under different vegetation types in
the study area.

Vegetation Types The L3 Product The L4 Product

Alpine meadow 0.050 0.07
Sparse grassland 0.050 0.07
Dense grassland 0.050 0.07

Shrub 0.050 0.12
Coniferous forest 0.050 0.12

Cropland 0.050 0.12
Barren land 0.000 ----

The bp factor is more sensitive than surface roughness h in vegetated condition, thus the bp factor is
the most important parameter in soil moisture retrieval of the SMAP product for vegetation [58]. In the
study area, the main crop is corn in cropland, which has been considered in the SMAP mission [14,59],
thus leading to best performance in cropland in the study area far beyond the accuracy of 0.04 m3/m3.
For coniferous forest, the parameters of evergreen needle leaf have been calibrated and validated
by the CanExSM10 (The Canadian Experiment for Soil Moisture in 2010) measurements [14,60,61].
The main tree types are pine and spruce over the BERMS (Boreal Ecosystem Research and Monitoring
Sites) forested sites in CanExSM10 [61], both of them are coniferae as well as picea crassifolia in our
study area. Thus, the parameters of forest are suitable in the study area because of the similarity of
tree species, resulting in better performance of the SMAP products in coniferous forest far beyond the
accuracy of 0.04 m3/m3.

The parameters of grasslands have also been considered in the SMAP mission [14,62],
but performed not as well as in coniferous forest. This is because the bp factor varies depending
on different soil and vegetation conditions [58], but only average values for each type have been
applied in the SMAP mission [14,62]. Compared with the coniferous forest, the invariable bp factor
results in worse performance because of stronger intra-annual variation in grasslands (alpine meadow,
sparse and dense grasslands). Since the brightness temperature shows higher sensitivity to vegetation
under wet soil conditions [9,63], the misevaluation impacts of the bp factor are much more significant
in wet conditions [61,64]. Because of the wetness conditions of three grasslands (Table 8 and Figure 4),
the L3 product shows best performance in sparse grassland under the driest condition, then dense
grassland, and alpine meadow under the wettest condition.

Table 8. Statistics of in-situ observation under different vegetation types.

Statistics
(m3/m3)

Alpine
Meadow

Sparse
Grassland

Dense
Grassland Shrub Coniferous

Forest Cropland Barren
Land

Minimum 0.018 0.002 0.052 0.177 0.048 0.137 0.026
Maximum 0.477 0.370 0.424 0.627 0.294 0.295 0.339
Average 0.295 0.112 0.174 0.355 0.145 0.204 0.151

CV 0.254 0.587 0.311 0.243 0.319 0.143 0.474
Stdev 0.075 0.066 0.054 0.086 0.046 0.029 0.072

Note: CV refers to coefficient of variation.
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Figure 4. Scatterplots of the SMAP L3 and L4 products and in situ observation in the study area.
(a) alpine meadow; (b) sparse grassland; (c) dense grassland; (d) shrub; (e) coniferous forest; (f)
cropland; (g) barren land.
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The SMAP L3 product shows poor performance in estimating soil moisture in shrub land. This is
because the dominant species is potentilla fruticosa in the shrub land in the upper reach of the Heihe
River Watershed, which belongs to the vegetation class of open shrublands in the SMAP mission.
However, in the study area, the shrubland is often mixed with grassland, which leads to complexity
in soil moisture retrieval. Moreover, potentilla fruticosa shows strong intra-annual variations because
of growth effects. Thus, the invariable bp factor results in errors of soil moisture retrievals in the
shrubland. Meanwhile, the brightness temperature is much more sensitive to vegetation under wet
soil conditions [9,63]. Under the wettest condition with higher soil moisture data in the shrub (Table 8
and Figure 4), the misevaluation impacts of the bp factor is most significant and thus leading to worst
performance in the shrub in the study area.

The L4 product is the assimilation results of the SMAP retrievals and the GEOS-5 model
simulations, thus it shows similar performance with the L3 product under different vegetation types.
Overall, the suitability as well as the variability of the bp factor result in the performance differences of
both the L3 and L4 products under different vegetation types in the study area. The impacts of the
bp factor is more significant under wet conditions, resulting in performance differences in the three
grasslands with a declining order of sparse grassland, dense grassland and alpine meadow.

For barren land, compared to surface roughness and soil moisture, the backscatter weakly
depends on soil type [65]. The uncertainties of surface roughness h dominate the error budget of TBp
modeling over barren soil surface [53]. Meanwhile, although depending on surface soil moisture,
the parameterization of h performs better when soil surface is relatively smooth than when the
soil surface gets rougher [53]. Because of the complex topography in the study area, the errors in
parameterization of h lead to poor performance of the SMAP products in barren land in the study area.

5.3. Impacts of Seasonal Frozen Soil

In the SMAP mission, the soil moisture data are retrieved by the relationship between soil moisture
and dielectric constant. As soil moisture increases, the soil dielectric constant increases, which leads
to an increase in soil reflectivity or a decrease in soil emissivity [14]. However, besides dry soil, low
dielectric constant can also be associated with frozen soil which has a similar dielectric constant to dry
soil independent of water content [14]. Thus, landscape freeze/thaw state is important in soil moisture
data retrieval in the SMAP mission [66].

In the upper reach of the Heihe River Watershed, seasonal frozen soils account for about 65% of the
study area [67], which strongly affects the soil moisture retrieval in the SMAP mission. In winter, the
freeze_thaw_fraction values of all grids are near 1.0, leading to missing estimates, thus there is no data
from the L3 product in the study area. For those frozen grids with estimates in the study area, the SMAP
mission estimates unfrozen soil water, and the freeze_thaw_fraction values range from 0.008 to 0.892,
the R values are 0.464 and 0.334 for the ascending and descending products, respectively, while the
ubRMSE values are 0.051 and 0.053 m3/m3, respectively. Because the in situ soil moisture sensor 5TE
can measure free water in frozen soil [68], the L3 product well catches the trend of observations under
the frozen states. Under the unfrozen state, the R values are 0.624 and 0.555 for the ascending and
descending products, respectively, and the corresponding ubRMSE values are 0.054 m3/m3 for both
products. With slight differences in bias, the L3 product better catches the temporal trend of the in situ
observations under the unfrozen state than the frozen state. Meanwhile, because of the soil frozen/thaw
processes in spring in the study area, both the L3 and L4 products showed better performance in
summer and autumn than in spring. However, the better performance of both products in autumn than
in summer is caused by growth effects of the vegetation during the growing season.

5.4. Impacts of Assimilation System

The L4 product is soil moisture estimate by assimilating the SMAP observation (downscaled
brightness temperature from L2 product) with simulation by a catchment land surface model,
GEOS-5 [14]. The assimilation causes the performance differences in the L3 and L4 products.
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Because the L-band brightness temperatures generated by the GEOS-5 model and its associated
microwave radiative transfer model have been calibrated to match the climatology of satellite
observations, the GEOS-5 model provides unbiased modeled brightness temperatures in long-term
mean ignoring seasonal variations in bias [17]. Meanwhile, the brightness temperature by the SMAP
observations is converted to anomalies for assimilation by removing the climatology of satellite
observations [17]. With lacking of SMAP-only climatology, the aforementioned climatology of satellite
observations has been derived by the Soil Moisture and Ocean Salinity (SMOS) product, thus leading
to the systemic errors of soil moisture estimates by the SMAP L4 product.

The calibration of the GEOS-5 model makes its simulation results more capable in reflecting the
climatological trends with smaller variation. In winter, as there is no SMAP observed brightness
temperature because of frozen states as for the L3 product, the estimates of the L4 product are all the
simulation results by the GEOS-5 model, thus leading to linear temporal trends of the L4 product in
winter. Also because of the better reflection in the climatological trends by the GEOS-5 model, the L4
product shows smaller variations with significantly smaller coefficient of variation (CV) values than
the L3 product (Figure 4), thus the L3 product is more dynamic than the L4 product in catching the
tempo-spatial distributions of soil moisture at the watershed scale.

In winter, the larger areal average values of soil moisture indicate that the GEOS-5 model
overestimates soil moisture in the study area. This is because the GEOS-5 model has been calibrated
over unfrozen land to simulate all the water in the soils [69]. However, the observed soil moisture
is free water in the frozen soils, thus the values would be much smaller than the model simulations.
Meanwhile, as shown in Table 4 and Figure 4, compared to the L3 product, the L4 product shows
larger soil moisture estimates in all the seasons and under all the vegetation types. In the SMAP
mission, the L3 product is the retrieval of downscaled (9-km) brightness temperatures, and the L4
product is assimilation result by retrieval of downscaled (9-km) brightness temperatures and GEOS-5
simulation. Because the same algorithm has been applied to retrieve soil moisture from brightness
temperatures in both the L3 and L4 products, the larger estimates of the L4 product are mainly caused
by the GEOS-5 model simulations. Moreover, the L3 product underestimates soil moisture in the study
area, the overestimation of the L4 product indicates that the GEOS-5 model overestimates soil moisture
in the study area. In summary, the assimilation makes the L4 product show similar temporal trends
with the L3 product, but significantly differ in tempo-spatial distributions. Because of the relative
errors of the SMAP brightness temperature observations and the corresponding land model forecast in
the assimilation [14], the L3 product shows better performance than the L4 product in the study area
under all the evaluation cases.

6. Conclusions

This paper presents evaluation of the SMAP L3 and L4 products under different vegetation types
at multiple tempo-spatial scales over the upper reach of the Heihe River Watershed, Northwest China.
The results are expected to increase the understanding of the suitability and the future improvements
of the SMAP soil moisture products. Both products were compared with ground-based observations
from a sparse in situ network from 1 April 2015 to 22 June 2017. Results show that both the L3 and
L4 products well catch the temporal trend of the in situ observations in the study area. However,
compared with in situ observations at point scale, both of them did not achieve the accuracy of
0.04 m3/m3 because of the uncertainties of brightness temperature TBp and effective temperature Teff
as well as their propagations in the inversion algorithm. Compared with areal average values at the
watershed scale, the L3 product is far beyond the accuracy of 0.04 m3/m3 and the L4 product basically
achieves the accuracy. The performance differences of both products at point scale and at watershed
scale are caused by the scale mismatch in the evaluations, which is not discussed here because this
study focuses on the impacts of vegetation types on the soil moisture estimates.

Almost all the evaluations show the “dry bias” of the SMAP product, it is more related to the
aforementioned uncertainties of TBp and Teff rather than the growth effects stated by Colliander et al.
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(2017a). Under different vegetation types, although both the L3 and L4 products catch the temporal
trend of the observations well, the suitability and the variability of the bp factor result in that both
products performed best in cropland, then coniferous forest, sparse grassland, dense grassland, alpine
meadow and worst in shrub. In barren land, the errors in estimating surface roughness h caused by
the complex topography lead to poor performance of the SMAP product.

Although with similar temporal trends, the L3 and L4 products show different performance at
both temporal and spatial scales, which are mainly caused by the assimilation system. Because the
climatology of satellite observations used in the assimilation system has been derived by the SMOS
product, the SMAP L4 product has systemic errors in soil moisture estimates. The calibration of
the GEOS-5 model makes its simulation results more capable in reflecting the climatological trends
with smaller variations, leading to larger variations of the L3 product than the L4 product in both
temporal variations and spatial distributions. Moreover, the overestimations of soil moisture by the
GEOS-5 model cause the overestimations of the L4 product. Although lacking data in winter, the L3
product well estimated the free soil water under both unfrozen state and frozen state. However, the L4
product provides unreliable estimates with a linear trend showing significantly overestimations in
winter. Overall, because of the relative errors of the SMAP brightness temperature observations and
the corresponding land model forecast in the assimilation, the L3 product provides more reliable soil
moisture estimates with more dynamic spatial patterns than the L4 product in the study area.

Based on the results of this study, the following suggestions are proposed for the future
improvements of the SMAP products. First, it is necessary to quantify the uncertainties of the estimates
of brightness temperature TBp and effective temperature Teff to retrieve more reliable soil moisture data.
Second, the suitable values of coefficient bp and surface roughness h are crucial in soil moisture retrievals,
it is essential to determine bp factor and h factor under various conditions in the future, especially for
vegetation types with strong intra-annual variations. Finally, both the SMAP-only climatology and
improvements of the GEOS-5 model are needed to improve the SMAP soil moisture estimates.
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