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Abstract: Atmospheric effects, especially aerosols, are a significant source of uncertainty for
optical remote sensing of surface parameters, such as albedo. Also to achieve a homogeneous
surface albedo time series, the atmospheric correction has to be homogeneous. However, a global
homogeneous aerosol optical depth (AOD) time series covering several decades did not previously
exist. Therefore, we have constructed an AOD time series 1982–2014 using aerosol index (AI) data
from the satellite measurements of the Total Ozone Mapping Spectrometer (TOMS) and the Ozone
Monitoring Instrument (OMI), together with the Solar zenith angle and land use classification data.
It is used as input for the Simplified Method for Atmospheric Correction (SMAC) algorithm when
processing the surface albedo time series CLARA-A2 SAL (the Surface ALbedo from the Satellite
Application Facility on Climate Monitoring project cLoud, Albedo and RAdiation data record, the
second release). The surface reflectance simulations using the SMAC algorithm for different sets of
satellite-based AOD data show that the aerosol-effect correction using the constructed TOMS/OMI
based AOD data is comparable to using other satellite-based AOD data available for a shorter
time range. Moreover, using the constructed TOMS/OMI based AOD as input for the atmospheric
correction typically produces surface reflectance values closer to those obtained using in situ AOD
values than when using other satellite-based AOD data.
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1. Introduction

The surface albedo, defined as the fraction of incoming radiation reflected hemispherically by the
surface, is an essential climate variable (ECV) and directly related to the surface radiation budget [1].
The changes in the surface albedo over a longer period indicate, for example, the impact that climate
change has over the Arctic [2]. Since the surface albedo is observed in optical wavelengths, atmospheric
effects—especially aerosols—are a significant source of uncertainty. To achieve a homogeneous time
series of surface albedo, the atmospheric correction also needs to be homogeneous. However, no global
homogeneous aerosol optical depth time series covering several decades previously existed. Some
attempts to construct the AOD information in the UltraViolet (UV) range from aerosol index (AI) data
have been made [3,4], but there are no daily AOD data in the visible channel for the whole needed time
period. The only aerosol—dependent quantity available for the required period is AI, from which we
constructed a global daily AOD time series for the atmospheric correction of the surface albedo product
in the Satellite Application Facility on Climate Monitoring project (CM SAF), financially supported
by European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The 34-year
long (1982–2015) broadband albedo time series CLARA-A2 SAL (the Surface ALbedo from the CM
SAF cLoud, Albedo and RAdiation data record, the second version) was produced from Advanced Very
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High Resolution Radiometer (AVHRR) measurements [5,6]. The CLARA-A2 SAL algorithm uses the
Simplified Method for Atmospheric Correction algorithm (SMAC) [7] for correcting for atmospheric
effects. The constructed AOD time series [8] studied in this article was applied to the SMAC algorithm
as the aerosol input information.

The AOD-related time series for the visible channel presented here is based on linear regression
of the AI at the UV wavelength range from the satellite measurements of the Total Ozone Mapping
Spectrometer (TOMS) and the Ozone Monitoring Instrument (OMI), and Solar Zenith Angle (SZA)
data with land use classification information [8]. Seasonal effects were paid special attention to, when
searching for the relationship of AI and AOD. The AOD time series is constructed specifically for the
needs of atmospheric correction, such as needed for generation of the CLARA-A2 SAL data record.
In addition, the emphasis of our AOD data set is in the range 0 ... 1 because AOD values larger than
that are not accepted for SAL processing. It is challenging to try to estimate the surface parameters
accurately in cases with AOD exceeding unity.

The main objective of this paper is to show that aerosol information based on the statistical
relationship between AI and AOD is consistent with other satellite-based and in situ AOD data. More
importantly, the atmospheric correction based on the constructed AOD data should be close to the
results produced applying the SMAC algorithm to other satellite-based or in situ AOD values. In this
study, the AI data are used as a proxy for the total column AOD everywhere, even though AI is only
largely sensitive to smoke, desert dust and volcanic ash [9]. This is a conscious choice due to lack of
any other applicable data for the whole needed period 1982–2014.

This paper is organized as follows. In Section 2, we describe the data used in the comparisons of
diverse AOD values and their effect on the atmospheric correction when using the SMAC algorithm.
The comparisons between constructed AOD data and the other AOD data are shown in Section 3.
The effect of the diverse AOD data sets on the atmospheric correction is studied in Section 4.

2. Data

The data used in this study are described in Table 1.

2.1. Land Cover Classification Data

The AVHRR Land Use Classification (LUC) data [10] was generated in 1998 using AVHRR imagery
acquired between 1981 and 1994. In this study, data with spatial resolution of 1◦ is used for the subclass
division. The 11 classes of the LUC data are divided manually into 65 subclasses based on how
close the pixels are located to each other [8]. These subclasses are used to provide possibilities for
regional inspection, especially when AOD values are related to the land cover classes and locations.
The AVHRR LUC provides accurate land use classification on land, but it is too coarse in coastal areas
(resolution of 1◦× 1◦ compared to the needed and used resolution 0.25◦× 0.25◦). Global Land Cover
2000 (GLC2000) provides data of finer spatial resolution, 0.01◦× 0.01◦ [11]. Using the GLC2000 data,
we construct a water mask of 0.25◦× 0.25◦ resolution, where a pixel is marked as water if all the smaller
pixels are marked as such. Then, we used the constructed water mask to refine the coastal areas of the
AVHRR LUC data.

2.2. AI-Based AOD

We have constructed an AOD-related time series at the wavelength 550 nm (marked as τAI) for
the atmospheric correction process used in generation of the CLARA-A2 SAL data record [8]. It is
based on the Level-3 AOD and positive AI data of OMI [12] instrument, and SZA from the years
2005–2008. The AOD and AI data are at first preprocessed, including data screening using MODerate
resolution Imaging Spectroradiometer (MODIS) AOD data and estimating the OMI-AOD data at
wavelength 550 nm. Then, the AI and AOD data are deseasonalized within each subclass to remove
annual variation. After that, the regressions are made pixel-wise by using the function
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τ̃AI = α · AI · cos(θ) + β, (1)

where θ is the SZA. Use of either means or medians for Equation (1) was tested and the best regression
functions, derived for each regional subclass out of 65, were chosen.

The τAI time series is then calculated from the AI values from the Level-3 data of OMI and TOMS
instruments (Nimbus-7 and Earth Probe) [13,14] by using the chosen functions. The resolution of the
CLARA-A2 SAL product is 0.25◦× 0.25◦ and hence the τAI time series is constructed in this resolution.
In the comparisons with other satellite-based AOD data, the same 0.25◦× 0.25◦ resolution is used by
resampling when the resolutions differ. The intended use of the τAI facilitates its retrieval by three
major advantages: (1) the SMAC algorithm is not developed to cope with AOD values larger than
unity so that the needed AOD interval is limited to 0...1, (2) the CLARA-A2 SAL algorithm uses only
pixels for which SZA is smaller than 70◦, and (3) the atmospheric correction is not executed over water,
because the ocean albedo retrieval of CLARA-A2 SAL does not currently use reflectance data at all.
The details of the method and time series calculation are described in [8].

2.3. Other Satellite-Based AOD Data

In order to test the quality of the τAI data, it was compared to three satellite-based AOD
data sets: MODIS, Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and Multi-angle Imaging
SpectroRadiometer (MISR) (Table 1). Both the Terra and Aqua satellites carrying the MODIS instrument
are used for retrieval of AOD. Terra is on a descending orbit (southward) over the equator and the
AOD retrievals are made around 10:30 a.m. local time sun time, and Aqua is on an ascending orbit
(northward) over the equator and the AOD retrievals are made around 1:30 p.m. local solar time [15].
The MODIS-AOD data from Aqua Collection 006 are used for this study (marked as τMODIS) because the
timing matches better that of OMI and TOMS. The used AOD data (MYD08) [16] are Level-3 data from
Dark Target [17–20] and Deep Blue [21,22] algorithms. The MISR instrument is also aboard the Terra
satellite and it has been observing AOD since February 2000. The Level-3 AOD data (MIL3DAE) [23]
are used for this study (marked as τMISR).

The SeaWiFS instrument [24] was launched on August 1997 aboard GeoEye’s OrbView-2 (SeaStar)
satellite and it started delivering data in September 1997. Due to mechanical failure, SeaWIFS stopped
collecting data in December 2010. The AOD data from the SeaWIFS Level-3 data (SWDB_L305) [25]
from the Deep Blue algorithm are used for this study (marked as τSeaWIFS).

2.4. In Situ Data

AErosol RObotic NETwork (AERONET, [26,27]) provides globally distributed in situ observations
of spectral AOD with three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened) and
Level 2.0 (cloud-screened and quality-screened). In this study, we used version 3 Level 1.5 data (daily
mean values) because the Level 2.0 data were unavailable. Instead of directly comparing large data
pixels (0.25◦× 0.25◦) with in situ measurements covering tiny areas, we used a window of several
pixels against several stations’ measurements within the window. These areas are shown in Figure 1.
The chosen stations with additional information are listed in Table 2. The AOD at wavelength 550 nm
are not measured directly, so that value is calculated using the measured AOD values at wavelengths
440 nm and 675 nm together with the Ångström exponent calculated using AOD values at the same
wavelengths (details in [8]). The AOD value for each window is the mean value of these calculated
AOD values from each station inside the window (τAER from now on). The stations used in this study
were chosen at various locations around the world and have data for at least five years.

Even though the inspection windows are located all around the globe, they do not cover all diverse
aerosol scenarios. However, they offer enough variability to assess the usability of the constructed
AOD time series. In window W2, located in the Amazon, the AOD values vary a lot; whereas in
windows W1 and W3 (located on the eastern coast of North America, and in Europe, respectively), the
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AOD values are much smaller and vary less. In window W4, located over the Sahel, the aerosols are mostly
desert dust from the Sahara, and in inspection window W5, the aerosol comes more from urban sources.

Table 1. Summary of the data used in this study.

Satellite Product Version Period L3 Resolution

AOD

τAI - - v1.0 January 1982–December 2014 0.25◦× 0.25◦

MISR Terra MIL3DAE V4 February 2000–December 2014 0.50◦× 0.50◦

MODIS Aqua MYD08 006 January 2005–December 2014 1.00◦× 1.00◦

SeaWIFS SeaStar SWDB_L305 v004 September 1997–December 2010 0.50◦× 0.50◦

AERONET - - v3 1999–2014 -

LUC

AVHRR - UMD Global Land - 1981–1994 1.00◦× 1.00◦

Cover Classification
VEGETATION SPOT 4 GLC2000 - 2000 0.01◦× 0.01◦

AOD = Aerosol Optical Depth; LUC = Land Use Classification; τAI = constructed AOD time series; MISR = Multi-angle Imaging
SpectroRadiometer; MODIS = MODerate resolution Imaging Spectroradiometer; SeaWIFS = Sea-Viewing Wide Field-of-view
Sensor; AERONET = AErosol RObotic NETwork; AVHRR = Advanced Very High Resolution Radiometer; SPOT = Satellite Pour
l’Observation de la Terre; MIL3DAE = MISR Level 3 Component Global Aerosol Product covering a day; MYD08 = MODIS/Aqua
Aerosol CloudWater Vapor Ozone Daily L3 Global 1Deg CMG; SWDB_L305 = SeaWiFS Deep Blue Aerosol Optical Depth and
Angstrom Exponent Daily Level 3 Data Gridded at 0.5; UMD = University of Maryland, GLC2000 = Global Land Cover 2000.
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Figure 1. The chosen five inspection windows (W1–W5 black boxes). These contain at least 2 AERONET
stations each.

Table 2. Description of the chosen AERONET [27] stations located in each of the inspection window W1–W5.

Name (Lat, Long) LUC Period

W1

GSFC (38.99, −76.83) wooded grassland 1999–2014
MD Science Center (37.94, −75.48) mixed coniferous forest and woodland 1999–2014

Wallops (39.28, −76.62) wooded grassland 1999–2014

W2

Alta Floresta (−9.87, −56.10) broadleaf evergreen forest 1999–2013
Rio Branco (−9.96, −67.87) broadleaf evergreen forest 2000–2013

W3

Dunkerque (51.04, 2.37) cultivated crops 2003–2014
Lille (50.61, 3.14) wooded grassland 1999–2014

Oostende (51.23, 2.93) cultivated crops 2001–2014

W4

Agoufou (15.35, −1.48) grassland 2002–2011
Banizoumbou (13.54, 2.66) shrubs and bare ground 1999–2011
IER Cinzana (13.28, −5.93) grassland 2004–2011

W5

Beijing (39.98, 116.38) broadleaf decidious forest and woodland 2001–2014
XiangHe (39.75, 116.96) broadleaf decidious forest and woodland 2001, 2004–2014
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3. Comparison with In Situ Measurements

The τAI values are compared to the AERONET AOD data τAER together with the τMODIS, τSeaWIFS

and τMISR values, to see how well the AOD values from different sources compare. The monthly means
for the chosen test windows of τAI, τAER, τMODIS, τSeaWIFS and τMISR are shown in Figure 2. The mean
value of the absolute deviations of satellite-based AOD estimates from τAER are shown in Table 3.
In the windows located in North America (W1), Europe (W3) and in the Sahel (W4) (Figure 1), the
τAI data are close to the in situ data and the other satellite-based AOD data. τAI differs slightly more
from τAER than the other AOD estimates in W3 and W4. The mean difference between the τAER and
τAI values is zero in the window W1, but the other differences are also small in that window. In the
window located in the Amazon (W2), τAI produces peaks that are clearly too high most of the time
compared to the in situ or the other AOD values, but AOD values exceeding unity are in any case too
large to be used for atmospheric corrections. In that area, the aerosol index values are similar from
year to year, but the AOD values differ more, so the τAI does not reproduce the AOD values well
due to the nature of the time series calculation [8]. The τAI values differ clearly from the τAER values
compared to the other mean absolute differences. In the window located in China (W5), all the diverse
satellite-based AOD values deviate markedly from the in situ AOD values, except the τMODIS values.
In light of these results, it seems that the Amazon and China areas may cause problems for estimation
of the atmospheric correction, whereas areas over Sahara and Sahel, North America and Europe do not.
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Figure 2. The monthly means of τAI (blue), τAER (red), τMODIS (grey solid line), τSeaWIFS (grey dashed
line) and τMISR (grey dash-dot line) in the chosen inspection windows in the years 1999–2014. The black
horizontal line indicates the upper limit of the AOD data range usable for the Simplified Method for
Atmospheric Correction (SMAC) algorithm.
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Table 3. The mean difference between τAER and the satellite Aerosol Optical Depth (AOD) estimates in
the five chosen inspection windows during the time periods presented in Table 2.

τAI–τAER τMODIS–τAER τSeaWIFS–τAER τMISR–τAER

W1 0.00 0.03 0.00 −0.02
W2 0.15 0.06 0.06 −0.02
W3 0.05 0.03 0.03 0.00
W4 −0.08 −0.01 −0.02 −0.04
W5 −0.22 −0.06 −0.39 −0.35

4. The Effect of AOD Estimate on Atmospheric Correction

We performed simulations with the atmospheric correction algorithm SMAC with two wavelength
bands, 0.580–0.680 µm (visible, VIS) and 0.725–1.000 µm (Near-infrared, NIR) for the year 2006. The
inputs needed for SMAC are the solar zenith and azimuth angle (in degrees), the satellite zenith and
azimuth angle (in degrees), water-vapor content (g/cm2), integrated ozone (atm/cm2), aerosol optical
depth at 550 nm, pressure at surface level (hPa) and top of the atmosphere (TOA) reflectance. The
output of SMAC is the surface reflectance (R). For clarification, the notation R[τsource] is used in this
paper for indicating surface reflectance values calculated by applying the SMAC algorithm to the
AOD information from diverse sources (i.e., R[τMODIS] = the surface reflectance values calculated by
using τMODIS as the AOD value). For the simulations, water-vapor content, integrated ozone, surface
atmospheric pressure and satellite azimuth angle are set as typical constant values (2.5, 0.35, 1013 and
260, respectively). The sample constant values for the satellite zenith angle are 0◦ and 40◦ and for
TOA reflectance 0.05, 0.1 and 0.15 for the spectral VIS channel, and 0.2, 0.4 and 0.6 for the spectral NIR
channel. Other inputs (AOD, the solar zenith and azimuth angle) vary.

We studied the effect of the τAI data on the atmospheric correction in two ways. First, we
focus on pixel-wise comparisons of surface reflectance values produced using τAI and the other
satellite-based AOD data (MODIS, SeaWIFS and MISR) on five different subclasses (Section 4.1).
The chosen subclasses are shown in Figure 3. The subclasses covering the Amazon (subclass 1) and a
part of China (subclass 53) were chosen because the τAI values deviated markedly from τAER in those
areas (Figure 2 and Table 3). The other three subclasses (7, 9 and 39) were chosen mainly because
they represent different kinds of aerosols. After the subclass-based study, we focus on the daily mean
comparisons of the surface reflectance values calculated using τAER data of the five windows (Figure 1
and Table 2) and the corresponding τAI, τMODIS, τSeaWIFS and τMISR data (Section 4.2). The purpose
of these studies is to see whether the use of τAI data as AOD input for the atmospheric correction
algorithm produces markedly different results from other satellite-based or in situ AOD values.

4.1. Satellite-Based AOD

We compared the R[τAI], R[τSeaWIFS] and R[τMISR] values to the R[τMODIS] values (monthly means),
calculated for the year 2006, for the five chosen subclasses (Figure 3), and the results are shown in
Figures 4 (VIS) and 5 (NIR). We also calculated the relative differences of atmospherically corrected
surface reflectance values based on all combinations of two different AOD estimates, and the results
are shown in Figures 6 (VIS) and 7 (NIR). In these relative difference calculations, the simulated surface
reflectance values smaller than 0.01 are omitted. This screening removes approximately 5% of the data
from the VIS channel. It does not affect the amounts of data in the NIR channel.

The monthly mean values for the VIS channel in Figure 4 show that the R[τAI] values are consistent
with the R[τMODIS] values in the Sahara and quite close in eastern China. In both Siberia subclasses
and in the Amazon, the R[τAI] values are slightly smaller than the R[τMODIS] values. The R[τSeaWIFS]
and R[τMISR] values are mostly consistent with the R[τMODIS] values in all subclasses; only in Siberia II
are there larger outliers.
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Figure 3. The chosen subclasses for more detailed SMAC simulation inspections: Amazon and
surrounds (blue), Sahara and surrounds (orange), Siberia I (green), Siberia II (purple) and part of
eastern China (black) [8].
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Figure 4. The surface reflectance values simulated by applying the algorithm SMAC in the visible (VIS)
channel (0.580–0.680 µm) for Amazon, Sahara, Siberia I, Siberia II and a part of eastern China for each
month in the year 2006. The surface reflectance values calculated by using τAI, τMISR and τSeaWIFS as
AOD input are compared to those using τMODIS as AOD input.



Remote Sens. 2017, 9, 1095 8 of 17

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Amazon

R
[τ

A
I, 

τ
M

IS
R
, 

 τ
S

e
a

W
IF

S
]

R[τ
MODIS

]

 

 

R[τ
SeaWIFS

]

R[τ
MISR

]

R[τ
AI

]

0.2 0.4 0.6 0.8 1

Sahara

R[τ
MODIS

]

 

 

R[τ
SeaWIFS

]

R[τ
MISR

]

R[τ
AI

]

0.2 0.4 0.6 0.8 1

Siberia I

R[τ
MODIS

]

 

 

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

R[τ
MODIS

]

R
[τ

A
I, 

τ
M

IS
R
, 

 τ
S

e
a

W
IF

S
]

Siberia II

 

 

R[τ
SeaWIFS

]

R[τ
MISR

]

R[τ
AI

]

R[τ
SeaWIFS

]

R[τ
MISR

]

R[τ
AI

]

0.2 0.4 0.6 0.8 1

Eastern China

R[τ
MODIS

]

 

 

R[τ
SeaWIFS

]

R[τ
MISR

]

R[τ
AI

]

Figure 5. The surface reflectance values simulated by applying the algorithm SMAC in the near-infrared
(NIR) wavelength range (0.725–1.000 µm) for Amazon, Sahara, Siberia I, Siberia II and a part of eastern
China for each month in the year 2006. The surface reflectance values calculated by using τAI, τMISR

and τSeaWIFS as AOD input are compared to those using τMODIS as AOD input.

The mutual relative differences for all combinations of two different AOD estimates are shown
in Figure 6 for the VIS channel. On average, the relative differences in the subclasses covering the
Amazon and the Sahara for all simulated surface reflectance values using different AOD input are
close to each other, but there is some seasonal variation. In the Amazon, the most evident difference
can be seen in the season September-October-November (SON), where the τAI corrects the effect of
the AOD in the atmosphere from −8 to −5% more than the others. This result is expected due to
the overestimation of the τAI values in September in the Amazon (Figure 2). In the Sahara, a clear
difference can be seen in the season March-April-May (MAM), where the τAI corrects the AOD effect
from −14 to −6% more than the others, whereas the other satellite estimates based result are about
the same. The subclasses over Siberia I and II are clearly different for τAI values as AOD input, as the
annual R[τAI] values are around 10% and 6% higher, respectively, than the other satellite estimates
based results. This is due to the large relative differences in the seasons MAM and June-July-August
(JJA), the relative difference being −18% at maximum in Siberia I (season JJA), and about −10% in
Siberia II (season MAM). The season December-January-February (DJF) is discarded in both subclasses
due to the statistically too small number of independent samples, around 2500 values at maximum in
Siberia I and about 100 values at maximum in Siberia II, whereas typically the amount of data is from
8000 to over 27 million pixels. Hence, the results from season DJF are ignored. In the eastern China
subclass, the R[τAI] values compared to the others yield the lowest relative differences on average, but
there is also a lot of seasonal variation.

The monthly mean values for the NIR channel show that the R[τAI] values are consistent with
the R[τMODIS] values in the Sahara (Figure 5). In the other subclasses, the R[τAI] values tend to exceed
the R[τMODIS] values. The R[τSeaWIFS] and R[τMISR] are mostly consistent with the R[τMODIS] values in
all subclasses.
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Figure 6. The mean relative differences of the atmospherically corrected surface reflectance values
based on all combinations of two different AOD estimates in the VIS channel (0.580–0.680 µm) for the
whole year 2006 and three month periods.

The annual relative differences (Figure 7) of NIR channel surface reflectances show that the
R[τAI] values do not differ much on average from the others in the Amazon. A clear difference can
be seen in the seasons JJA and SON, where the R[τAI] values differ from 2 to 4% (JJA) and around 5%
(SON) from the others, whereas the other relative differences are close to zero in both seasons. In the
Sahara, all the relative differences, on average and in all seasons, are small: −1% at minimum and
1% at maximum. Thus, in most cases, the τAI corrects the aerosol effect as much as the others in the
Amazon and in Sahara areas. In both Siberia subclasses, the annual relative differences between the
R[τAI] values and the others are around 8% in Siberia I and around 4% in Siberia II, whereas the others
do not differ from each other in both subclasses. The season DJF is discarded because of statistically too
small amount of data, around 5500 values at maximum in Siberia I and around 150 values at maximum
in Siberia II, when the amounts are typically 8000 at minimum or over 35 million at maximum. In the
seasons MAM and JJA, the R[τAI] values differ from 5 to 10% from the others in Siberia I and around
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5% in Siberia II, whereas the others do not differ from each other. In the subclass covering eastern
China, the annual relative differences between the R[τAI] values and the others vary on the average in
the range [2%, 5%], whereas the others differ from −3 to −1% from each other. The τAI corrects the
aerosol effect in the atmosphere from 5 to 8% less than the others in the seasons DJF, MAM and JJA.

In general, snow-free land surface reflectance values tend to be higher and the AOD values
smaller in the NIR channel [28] (the surface reflectance values varying in the range 0 ... 1) than in the
VIS channel (the surface reflectance values varying in the range 0 ... 0.2), and all relative differences in
the NIR channel are typically smaller. In the VIS channel, the R[τAI] values differ around and over
10% in some areas from the other satellite-based surface reflectance estimates. In the NIR channel, the
relative differences are smaller, but there are also areas and seasons for which the R[τAI] values differ
from the others 10% at maximum.
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Figure 7. The mean relative differences of the atmospherically corrected surface reflectance values
based on all combinations of two different AOD estimates in the NIR channel (0.725–1.000 µm) for the
whole year 2006 and three month periods.
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4.2. In Situ AOD

We compared the R[τAI] values also to the R[τAER] values in the five inspection windows (Figure 1
and Table 2), calculated for the year 2006, and the results are shown in Figures 8 (VIS) and 9 (NIR).
The monthly mean values for the VIS channel in Figure 8 show that the R[τAI] values are consistent
with the R[τAER] values in the windows W1–W3. In window W1, the R[τMODIS] and R[τSeaWIFS] values
sometimes underestimate the R[τAER] values, and in window W2 the R[τSeaWIFS] values overestimates
and the R[τMODIS] values underestimates. In window W3, the R[τMISR] and R[τSeaWIFS] values are
also consistent with the R[τAER] values, but the R[τMODIS] values underestimates the R[τAER] values.
In windows W4 and W5, all the satellite-based surface reflectance estimates vary more and in W5

mostly they overestimate the R[τAER] values.
The relative differences for the VIS channel (Figure 10) show that the windows W1, W3 and

W4 are the easiest ones for most satellite-based estimates. In window W1, the annual and seasonal
relative differences between all the satellite-based surface reflectance estimates and the R[τAER] values
usually vary from −10 to −5%. The results in window W3 are similar, but the relative differences
are even smaller, except in season SON, for which the R[τMODIS] values differ clearly more from
the R[τAER] values than the others. In window W4, all relative differences in seasons DJF, MAM
and JJA vary more than the relative differences in windows W1 and W3, but, again in the season
SON, the R[τMODIS] values differ clearly more from the R[τAER] values than the others. The results
for the R[τAI] values in windows W1 and W3 are as expected because, in those areas, aerosol are
mainly dust particles and the AOD values are small. This is also what the results of Figure 2 and
Table 3 (Section 3) indicated. Windows W2 and W5 are clearly more challenging for the satellite-based
estimates. In window W2 in the season MAM, the relative differences are small and have roughly
the same magnitude, but, in the season SON, the relative differences vary more, the R[τAI] and
R[τMISR] deviating most from the R[τAER]. However, in the season JJA, the R[τAI] is the closest to the
R[τAER] values. The season DJF is discarded because of statistically too small amount of data, around
six values at maximum, when the typical amount varies in the range 10 ... 290. The comparisons
between R[τAI] and R[τAER] values for window W2 are better than expected (Table 3, Figure 2). In
window W5, all the relative AOD differences are large compared to the other windows, but there the
annual average of the R[τAI] is closest to the R[τAER] values.

The monthly mean values for the NIR channel in Figure 9 show that all satellite-based surface
reflectance estimates in window W3 are consistent with the R[τAER] values. The R[τAI] values are also
close to the R[τAER] values in windows W1 and W2, whereas other satellite-based surface reflectance
estimates deviate more from them. In window W1, they are overestimating and in window W2 they
are underestimating the R[τAER] values. The R[τAI] values vary more in windows W4 and W5 than
in the other windows, but the same is true for the other satellite-based surface reflectance estimates
values. The R[τAI], R[τMODIS] and R[τSeaWIFS] values both under- and overestimates in both windows,
and the R[τMISR] values underestimates in both windows.

The relative differences for the NIR channel (Figure 11) are small in every inspection window.
The relative differences between the R[τAER] values and the satellite-based surface reflectance estimates
values have roughly the same magnitude in every season in windows W1, W3 and W4. There are no
data in the season DJF in window W3. The results in window W2 vary more, the R[τAI] deviating
more from the R[τAER] than the other AOD estimates based surface reflectances, but altogether the
relative differences are minimal. The season DJF is discarded because of a statistically too small
amount of data, around six values at maximum, when the amounts typically vary in the range 10 ... 500.
The relative differences in all cases in window W5 vary more than in the other windows. The R[τAI]
values either overestimate (MAM and JJA) or underestimate (DJF and SON) the R[τAER] values, and the
other satellite-based surface reflectance estimates values only underestimate the in situ based surface
reflectance values. The annual-mean relative difference from the R[τAER] is smallest for the R[τAI].
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Figure 8. The surface reflectance values R simulated using SMAC in the VIS channel (0.580–0.680 µm)
for the inspection windows W1–W5 for each month in the year 2006. The surface reflectance values
calculated by using τAI, τMODIS, τMISR and τSeaWIFS as AOD input are compared to the R[τAER] values.
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Figure 9. The surface reflectance values R simulated using SMAC in the NIR channel (0.725–1.000 µm)
for the inspection windows W1–W5 for each month in the year 2006. The surface reflectance values
calculated by using τAI, τMODIS, τMISR and τSeaWIFS as AOD input are compared to the R[τAER] values.
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5. Conclusions

We have constructed an AOD time series 1982–2014 using aerosol index, solar zenith angle and
land use classification data. It was used as input for the atmospheric correction algorithm SMAC
when processing the surface albedo time series CLARA-A2 SAL. The AOD retrieval algorithm is
designed to provide best accuracy at small AOD values (the values varying in the range 0 ... 1) because
it is challenging to try to estimate the surface parameters accurately in cases with AOD exceeding
unity. We compared the constructed AOD time series to data from both satellite-based and in situ
sources in five areas. Best agreement was observed in areas with low AOD levels or mainly dust
aerosols. The surface reflectance simulations for one year using different sets of satellite-based AOD
data in the VIS and NIR channels show that the atmospheric correction obtained using the constructed
AOD data is comparable to that obtained using other satellite-based AOD data. Moreover, using the
constructed AOD as input for the atmospheric correction produces typically surface reflectance values
closer to those obtained using in situ AOD values for atmospheric correction than when using other
satellite-based AOD data for that.
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Abbreviations

The following abbreviations are used in this manuscript:

AOD Aerosol Optical Depth
AI Aerosol Index
SZA Solar Zenith Angle
TOA Top Of Atmosphere
τAI constructed AOD time series 1982–2014
τMODIS AOD retrieved from MODIS observations
τMISR AOD retrieved from MISR observations
τSeaWIFS AOD retrieved from SeaWIFS observations
τAER the mean value of calculated AOD values (from AERONET data) at 550 nm
τSOURCE corresponds to the used AOD information
R[τSOURCE] a surface reflectance values calculated using SMAC
SMAC a Simplified Method for Atmospheric Correction algorithm
DJF December–January–February
MAM March–April–May
JJA June–July–August
SON September–October–November
CLARA-Ax SAL the Surface ALbedo from the CMSAF cLoud, Albedo and RAdiation data record, version x
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