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Abstract: Detailed studies on the spatiotemporal patterns of urban agglomeration in the Middle
Yangtze River Basin (MYRB) are rare. This paper analyzed the spatiotemporal patterns of urbanization
in the MYRB using multi-temporal remote sensing data circa 2000, 2008 and 2016 integrated with
geographic information system (GIS) techniques and landscape analysis approaches. A multi-level
analysis of the rate and intensity, type as well as the landscape changes of urban expansion at regional,
prefectural and inner-city levels was performed. Results show that the MYRB experienced rapid urban
expansion with an annual expansion rate of 3.199%, especially in the Chang-Zhu-Tan and Poyang
Lake metropolitan areas. The small and medium cities presented faster urban expansion than the
larger cities with annual growth rates three times the average level. Urban expansion within the three
capital cities was further analyzed in detail. It is found that outlying expansion and edge-expansion
were the dominant growth patterns at all the three levels. Although urbanization in the MYRB has
a remarkable increase in the past sixteen years, its annual growth rate of urban land expansion has
fallen behind the three other large urban agglomerations in China as a result. Finally, the spatial
evolution of the socioeconomic structure of the MYRB was further explored. It indicated that
urban land was distributed mainly along the “northwest-southeast” direction and that the economic
spatial interactions among cities showed a pattern of “multi-polarization and fragmentation”, which
illustrates the weak radiative driving forces of the central cities. The MYRB urban agglomeration
faces a great challenge to manage trades-offs between narrowing the intra-regional disparity and
maintaining synergetic development among cities.

Keywords: urban expansion; multi-level analysis; remote sensing; Middle Yangtze River Basin
(MYRB) urban agglomeration

1. Introduction

Urbanization has been an important social and economic phenomenon taking place at
an unprecedented scale and rate all over the world [1]. In addition, it is forecast that approximately
4.9 billion people are expected to settle down in urban areas by 2030 and 6.3 billion by 2050 [2].
Meanwhile, urbanization and industrialization have become major factors affecting ecosystem services
and environmental quality [3], especially within developing countries in Asia such as China and
India [4]. As the most populous developing country in the world, China has witnessed a 46% increase
in its urban population and a 78.5% increase in its urban land area over the past decade [5]. China
issued its “New Urbanization Planning” strategy in 2014 to promote sustainable, human-oriented, and
efficient urbanization [6]. In this context, timely and accurate information on urban areas and their
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changes have significant implications on studies of urban growth modeling and on the understanding
of the causes and effects of urbanization in China among diverse processes such as urban planning,
water and land resource management, and service allocation [7].

As reported in many previous studies, spatiotemporal urban land cover change is
a serious concern both in megacities, such as Beijing [8,9], Shanghai [10–12], Hangzhou [13,14],
and Guangzhou [15,16], and in developed coastal urban agglomerations, especially the three largest
urban agglomerations, i.e., the Yangtze River Delta (YRD) [17,18], the Pearl River Delta (PRD) [19,20]
and the Jing-Jin-Ji (JJJ) [21–23]. However, urban expansion in less developed cities and urban
agglomerations has received little attention even though rapid urbanization has also occurred in
these areas. Even so, such attention is mainly focused on some capital cities, such as Wuhan and
Chengdu [24–26], and therefore, a broad-scale analysis of the peripheral regions as a whole is lacking.
This is mainly due to the availability and quality of medium to high resolution images, as it is very
difficult and time consuming to extract urban land of each city for every year.

Rather than investigating urban expansion across cities of different sizes at multiple scales,
urban land change were conducted either at the national or regional scale as a whole, or at the
single metropolitan or city level [27]. For example, at the national scale, Xu et al. [28] characterized
the spatiotemporal dynamics of urbanization in 285 Chinese cities using time series of DMSP/OLS
data from 1992 to 2009. Kuang [2] analyzed the patterns and drivers of the rapid urban expansion
in China between 1990 and 2010 by taking China as a whole. Setting the study area as China,
Huang et al. [29] carefully illustrated that the urban expansion in China from 2005 to 2008 was
influenced by globalization, marketization and the process of decentralization. At the regional scale
and city scale, numerous studies on the extent, pattern and driving forces of urban expansion were
focused on individual or several metropolitan cities in China, especially the more developed cities
in the east of China, such as Beijing, Shanghai, Tianjin, and Guangzhou [30–33]. Some urban remote
sensing projects generated data and statistics based on jurisdictions, but failed to justify how to
effectively link the data to pattern analysis of urbanization across multiple levels of jurisdiction.

To date, a number of earth observation satellites have been launched with varying degrees of
resolution. For example, the Advanced Very High Resolution Radiometer (AVHRR) managed by the
National Oceanic and Atmospheric Administration, possesses a coarse spatial resolution, while the
Moderate Resolution Imaging Spectroradiometer (MODIS), Land Satellite (Landsat), and Advanced
Space-borne Thermal Emission and Reflection Radiometer (ASTER) possess fine spatial resolutions.
Specific advantages and disadvantages are associated with each type of them [34]. Due to the data
volumes involved, the quality (i.e., season or cloud) as well as relatively low repeat times, the number of
pre-collected medium spatial resolution images varies at different regions, thus provision of reliable and
repeated urban information at regional to global scales remains a challenging task [35–37]. Compared
with AVHRR data, MODIS data has an improved spectrum (0.4 µm–14.4 µm), spatial resolution
(maximum 250 m), and data quality, and the MODIS sensor has seven bands that are designed for
terrestrial systems. Thus, it attracts much attention in the mapping and monitoring of land use and
land cover changes at the global or regional scale [38].

In 2015, the development strategy [39] for urban agglomeration in the Middle Yangtze River
Basin (MYRB) was released, which is based on the development of the urban agglomeration in
the MYRB, emphasizing cooperation among neighboring cities, and finally aiming to create a new
growth pole for China’s economic development, a new urbanization zone for the central and western
regions, and a leading area for the construction of the two-type society (the resource-saving and
environment-friendly society). In this context, studying the urban expansion in the MYRB is necessary
which will provide supportive information for better urban planning and development. This study
aims to explore the trends and patterns of urban expansion in the MYRB urban agglomeration over
past 16 years from the regional landscape to prefectural and inner-city levels using multi-temporal
MODIS products and Landsat data integrated with GIS techniques and landscape ecology approaches.
The specific objectives of this study comprise: (1) dynamically map the locations and extents of
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main urban area expansions; (2) analyze the similarities and differences of the general trends of
urbanization, spatially explicit urban growth patterns, and spatiotemporal changes of landscape
metrics; and (3) reveal spatiotemporal inequality of the socioeconomic development among the cities
in the MYRB. Furthermore, the results of this study also offer a scientific decision-making platform for
achieving the goals of macroeconomic regulation and control, town planning, land management for
governmental eco-environmental protection and promoting healthy urbanization in the MYRB region.

2. Study Area and Datasets

2.1. Study Area

The MYRB urban agglomeration, located in the central part of the Yangtze River Economic Belt
(YREB) (Figure 1), is the fourth largest urban agglomeration in China following the YRD, PRD and JJJ
urban agglomerations and the second largest urban agglomeration in the YREB. It encompasses three
city clusters, namely the Poyang Lake megalopolis (PLM) in Jiangxi Province, Wuhan megalopolis
(WHM) in Hubei Province, and the Changsha–Zhuzhou–Xiangtan megalopolis (CZTM) in Hunan
Province (Figure 1c). As the most important hub of Chinese transportation and the focal point of the
economy, culture, education, and technology in central China, the study area consists of 31 cities of
different sizes covering a total land area of 317,000 km2, with a population of 121 million, and a gross
domestic product (GDP) of 980,552.38 million US$ in 2014, accounting for 3.3%, 8.8% and 8.8% of the
whole country, respectively [39]. The region is rich in biodiversity with a total area of biodiversity
reserves of 11,770 km2 [40], and the climate is humid continental and characterized by hot, humid
summers and cold winters.
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Figure 1. The location of the study area: (a) the study area in China; (b) the study area in the YREB
area; (c) topography of the study area; and (d) total GDP of the prefectural cities in the MYRB urban
agglomeration in 2000, 2008 and 2016. (CC: Chengdu-Chongqing Urban Agglomeration; CY: Urban
Agglomeration in the central Yunnan, China; CG: Urban Agglomeration in central Guizhou, China).
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2.2. Datasets

Numerous mapping efforts using medium-resolution data have been made in the literature [35–37,41].
In this study, two kinds of remote sensing datasets were used for this work to conduct analysis at different
levels, including (1) Collection 5 MODIS 250 m surface reflectance and Enhanced Vegetation Index (EVI)
products, 500 m surface reflectance products for 2000, 2008 and 2016 for analyzing urban land change at
the regional and prefectural levels, (2) Landsat-based thematic maps depicting finer land cover as well
as areas of change at the inner city level for 2000, 2008 and 2016 for the three capital cities, as shown
in Table 1.

Table 1. RS data used in this study.

MODIS Data

Product name MOD09A1 MOD09Q1 MOD13Q1

Tile h27v05, h27v06, h28v05, h28v06

Band bands 3–7 bands 1–2 EVI

Resolution 500 m 250 m 250 m

DOY
(Date)

2000 201 (20 July–27 July) 201
(20 July–27 July)

001 (1 January–8 January), 097 (7 April–14 April),
193 (12 July–19 July), 273 (30 September–7 October)

2008 217
(5 August–12 August)

217
(5 August–12 August)

001 (1 January–8 January), 097 (7 April–14 April),
193 (12 July–19 July), 273 (30 September–7 October)

2016 201 (20 July–27 July) 201
(20 July–27 July)

001 (1 January–8 January), 097 (7 April–14 April),
193 (12 July–19 July), 273 (30 September–7 October)

Landsat data

Periods
Wuhan Changsha Nanchang

Path/row DOY (Date) Path/row DOY (Date) Path/row DOY (Date)

2000
123/38
123/39
122/39

257
(14 September 2000)

257
(14 September 2000)
282 (9 October 2000)

122/40
123/40
123/41
124/40
124/41

258 (15 September 2000)
267 (24 September 2001)
251 (8 September 2001)
258 (15 September 2001)
258 (15 September 2001)

121/40
122/40

253
(10 September 2001)

258
(15 September 2000)

2008
123/38
123/39
122/39

212 (31 July 2007)
212 (31 July 2007)
189 (8 July 2007)

123/40
123/41
124/40
124/41

212 (31 July 2007)
263 (20 September 2008)

219 (7 August 2007)
219 (7 August 2007)

121/40
122/40

206 (25 July 2007)
232 (20 August 2008)

2016
123/38
123/39
122/39

205 (24 July 2016)
205 (24 July 2016)

214 (2 August 2016)

123/40
123/41
124/40
124/41

205 (24 July 2016)
205 (24 July 2016)
212 (31 July 2016)
212 (31 July 2016)

121/40
122/40

175 (24 June 2016)
134 (14 May 2016)

Bands 3–7 from MODIS 500 m 8-day surface reflectance product (MOD09A1), bands 1–2 from
MODIS 250 m 8-day surface reflectance product (MOD09Q1) and 250 m MODIS Enhanced Vegetation
Index (EVI) product (MOD3Q1) for 2000, 2008 and 2016 from the NASA website (https://www.nasa.
gov/) were used. The MODIS EVI product is a high-quality dataset that is gap-filled and smoothed
using an enhanced TIMESAT algorithm [42]. It is similar to the Normalized Difference Vegetation Index
(NDVI), but less affected by atmosphere and can better reflect the canopy structure of vegetation [43,44].
To reduce the spectral variation brought by phonological effects [41], the surface reflectance products
from the May–September growing season were used in our study [35]. As to the EVI products, after
previewing the images of each DOI phase, four time periods representing the four seasons were chosen
with little cloud cover (Table 1). The MODIS data are stored in a tile format and four tiles (i.e., h27v05,
h27v06, h28v05, h28v06) are needed to cover the whole study area. Therefore, 72 scenes of images
were used in this study. All MODIS datasets were resampled into a 250 m spatial resolution using
the cubic convolution approach through the MRT. The Landsat TM/ETM+/OLI images with cloud
covers of less than 10% obtained from the USGS website (http://www.usgs.gov/) were also used to
conduct a further analysis on urban expansion at the inner-city level setting the three selected cities
as examples. Only the six reflective bands with 30 m resolution were used for further data analysis
while the thermal infrared band with a coarse spatial resolution of 120 m was excluded. The path/row
numbers and acquisition dates of images used in this study are listed in Table 1. City and county

https://www.nasa.gov/
https://www.nasa.gov/
http://www.usgs.gov/
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boundary datasets were obtained from the Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (RESDC). Demographic and socioeconomic data from the Statistical
Yearbooks of Hubei, Hunan, and Jiangxi Provinces in 2000, 2008 and 2016 were also used to provide
summary statistics for cities within the study area.

2.3. Data Processing

The MODIS Reprojection Tool (MRT) [44] was employed to execute the automatic batch
processing of reprojection (sinusoidal to UTM coordinates) and mosaicking of the MODIS images.
The flash atmospheric correction and image georeferenced mosaicking for Landsat datasets and
band combination for both Landsat and MODIS datasets were then accomplished using professional
image processing software Environment for Visualizing Images (ENVI) 5.1. Finally, the Landsat and
MODIS images were all clipped using the vector boundaries. Normalized indices show a much
higher classification accuracy compared with original un-transformed spectral data. Such indices
can effectively detect changes from early spring growth to late season maturity and senescence [45].
For a more accurate classification [38] at the regional level, four indices images, e.g., the Normalized
Difference Soil Index (NDSI) [46], Normalized Difference Moisture Index (NDMI) [47], Normalized
Difference Water Index (NDWI) [43] and Normalized Difference Built-up Index (NDBI) [48], were
also combined with the MODIS surface reflectance bands as additional spectral bands using the layer
stacking tool of ENVI. Because changes to administrative boundaries can influence the calculation
of urban population, we applied the city boundaries in 2015 to both datasets to ensure comparable
urban areas.

Six broad land cover types (i.e., urban land, cropland, forest, grass, water body and unused land)
were classified based on these images using the SVM classifier via a radial basis function kernel [49].
A stratified random sampling strategy was used to select sample points for all the images by visual
interpretation. A total of 8224 pixels, which represent water (2631), urban (921), forest (2313), grass (687),
crop (1628) and unused (44), were selected from the MODIS composite image with reference to all the
Landsat images for each year. The Google Earth [50] was used as reference data for selecting training
and validation samples for the Landsat dataset. In all, 2800 pixels were selected and they represent
water (553), urban (750), forest (963), grass (50), crop (440) and unused (44) for Wuhan. 2898 pixels were
selected and they represent water (553), urban (715), forest (1047), grass (79), crop (440) and unused (64)
for Changsha. 2262 pixels were selected and they represent water (400), urban (578), forest (723),
grass (56), crop (440) and unused (65) for Nanchang. All the samples were randomly divided into two
parts, with 70% as training samples and 30% for validating the results. Points were generally located
near the center of fields or away from edge areas to avoid mixed pixels, however, just as [51] pointed
that some mixing is likely inevitable considering the relatively coarse spatial resolution of the datasets.
After the land-use classification was completed, the output images were further converted into two
land categories (urban and nonurban) because the focus of this study is the spatiotemporal dynamics
of urban land.

Accuracies of the classified products were measured by their overall accuracy (OA), kappa
coefficient (KC), commission error (CE) and omission error (OE). They were calculated from the
confusion matrix based the remained 30% samples. All these accuracy assessments were done in the
ENVI system, which provides a very good tool to deal with post-classification [52]. Results showed that
the KCs were more than 0.80 for most of the images (Table 2), which meets the accuracy requirements
for land cover change evaluation [53].
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Table 2. Results of the commission error, omission error, overall accuracy, and kappa coefficient
for assessing the urban category in each image (MOD: MODIS; WH: Wuhan; CS: Changsha;
NC: Nanchang).

2000 2008 2016

MOD
Landsat

MOD
Landsat

MOD
Landsat

WH CS NC WH CS NC WH CS NC

CE (%) 6.27 1.87 2.23 2.32 3.09 1.57 1.39 1.32 2.67 1.73 1.94 1.50
OE (%) 9.13 2.48 4.07 2.43 6.30 1.32 3.63 2.28 3.63 2.71 3.83 2.28
OA (%) 78.34 89.01 89.10 89.52 90.74 94.68 89.56 92.09 92.50 93.10 89.51 89.30

KC 0.70 0.88 0.88 0.89 0.87 0.92 0.88 0.89 0.90 0.88 0.88 0.88

3. Methods

Figure 2 shows the methodology for data processing and analyses. Based on the collected
datasets, gridded maps were developed to show the spatial intensity of urban land expansions at
250 m resolution across the MYRB and 30 m for the three capital cities in each of the time period.
Spatiotemporal patterns and landscape change of urban land during 2000–2016 were then analyzed.
We further compared the urban expansion of the MYRB with that of the other three national level
urban agglomerations and further investigated the socioeconomic spatial evolution in the MYRB.
The related policy implications considering the urban planning were finally discussed.
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3.1. Qualitative Analysis of Urban Expansion

The characteristics of urban expansion (e.g., speed, extent, intensity, and direction) vary from
region to region [54]. Four indicators, namely, the AI, AGR, Rs and Is, were adopted to evaluate the
spatiotemporal dynamics of urban expansion in this paper. The AI and AGR can denote the magnitude
and speed of urban expansion in recent years. The Rs and Is can be used to represent changes in the
amount of urban area per unit time compared with the original urban area and the total land area.
Thus, these indices can quantify the urban expansion during the study period. They are defined as
follows [10,22]:

AI =
Ub − Ua

d
(1)

AGR =

[(
Ub
Ua

)1/d
− 1

]
× 100% (2)

Rs =
Ub − Ua

Ua
× 1

d
× 100% (3)

Is =
Ub − Ua

TUa
× 1

d
× 100% (4)

where AI (km2 per year), AGR (%) are the annual area change and annual change rate of urban
land, respectively. Rs (%) is the urban expansion rate, Is (%) is the urban expansion intensity, d is the
time span, Ua and Ub are the urban area at the start and end year, respectively, and TUa is the total
land area in year a. These indices can be used to understand the characteristics of urban expansion
between years.

3.2. Urban Expansion Pattern

Urban growth was divided by Forman (1995) into three types: infilling, edge-expansion and
outlying. The landscape expansion index (LEI) was calculated to define these three urban growth
types using the following equation according to Liu et al. [55]:

LEI = 100 × Ao

Ao + Av
(5)

where LEI represents the landscape expansion index of a newly growth patch, Ao is the intersection
between the buffer zone and the occupied category, and Aν is the intersection between the buffer
zone and the vacant category. According to this definition, the value of the LEI ranges from 0 to 100.
The urban expansion type is defined as infilling, edge-expansion and outlying when LEI > 50, 0 < LEI
≤ 50, or LEI = 0, respectively.

3.3. Landscape Metrics

For the objectives of this study, and to avoid influences of different scales and extents of the
datasets, land expansion was characterized by five prominent spatial metrics chosen based on
spatial and complexity criteria. The metrics include the patch density (PD), largest patch index
(LPI), aggregation index (AI), percentage of landscape (PLAND), and landscape shape index (LSI)
(Table 3). These metrics were computed for each of the selected regions and cities, at the class level
with the help of FRAGSTATS 4.2 with the eight-neighbor rule [56].
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Table 3. Landscape metrics used in this study.

Acronym Name of Landscape Metric
(Units) Description

Area metrics PLAND Percentage of Landscape (%) The percentage the landscape of the
corresponding patch type.

LPI Largest patch index (%) Proportion of total area occupied by the
largest patch of a patch type.

Shape metrics LSI Landscape Shape Index
Provides a standardized measure of total
edge or edge density that adjusts for the
size of the landscape.

Density metrics PD Patch density
(Number/100 ha) The number of patches of per 100 ha.

AI Aggregation Index (%) The degree of fragmentation of a land
cover type or a landscape.

3.4. Across-Scale Land-Cover Data Generation

Because the spatiotemporal dynamics of urban expansion appear to be significantly different at
different scales [57,58], we explored them from 2000 to 2016 at regional, prefectural and inner-city
levels. Specifically, at the prefectural-city level, the 31 cities were categorized as super, mega, large,
medium and small according to the newly criteria proposed by China central government [59] (Table 4).
Then, the extents of urban expansion for these five groups were calculated for the period 2000–2016.

Table 4. Criteria for the categorization of city sizes.

City Size Urban Population (Million) City Count

Super city >10 1
Megacity 5–10 7
Large city 1–5 12

Medium city 0.5–1 4
Small city <0.5 7

To examine the detailed spatial patterns of landscape changes, we further analyzed the urban
land changes at the inner-city level of three hotspot cities: Wuhan, Changsha and Nanchang. Using
administrative boundaries as the spatial extent of a city is unsuitable because they are changeable,
include areas that are too large or too small and are not comparable across cities [59,60]. Concentric
buffer structure is a common method used to analyze phenomena changes, such as population and
land use, across an area [32]. Based on this theory, a series of buffer rings with consecutive distances
of 2 km were generated within a radius of 30 km from the city center. North-south and East-west
transects cutting across the city center were later used to divide each city into four sectors: northeast
(NE), southeast (SE), southwest (SW) and northwest (NW) (Figure 3). The area of urban land in each
sector was then calculated to reflect the spatial heterogeneity of urban expansion.
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4. Results

4.1. Urban Land Dynamic Change at the Regional Level

4.1.1. Urban Land Change in the MYRB Was Mainly Occupied by Outlying and Edge-Expansion

The MYRB urban agglomeration has witnessed rapid urban expansion from 2000 to 2016 (Figure 4).
Urban land cover increased over the past 16 years from 3523.50 km2 to 5326.75 km2 with an average
annual growth rate of 2.62%. In addition, edge-expansion was the primary mode of urban expansion
in the MYRB urban agglomeration during the study period (Figure 5). Specifically, the expansion of
urban land through this pattern was 2659.31 km2, which accounted for 60.82% of the total expanded
urban land during 2000–2008. In addition, it increased to 2750.75 km2 during 2008–2016. However,
the expansions of urban land resulted from the outlying and infilling modes were relatively less,
accounting for 34.75% and 4.43%, respectively, in the first period, and 45.73% and 2.24%, respectively,
in the second period.

On the metropolitan level, the urban land was mainly distributed in Wuhan, Chang-Zhu-Tan
and Poyang Lake metropolitan areas (63.97% in 2016) as a result of the higher levels of economic
development in those areas (Figure 4). The WHM, which occupies 17.92% of the MYRB land area,
accounted for 22.43% (411.27 km2) of the regional expansion of urban land from 2000 to 2016. Moreover,
the expansion of urban land was faster during 2008–2016 (2.21%) than that in the first period (1.82%)
as a result of rapid social and economic development. It can also be seen that the WHM experienced
urban land expansion in almost every direction, presenting a polynuclear urbanization pattern.
Edge-expansion, which accounted for 68.14% of the total area of expanded land in the WHM, was the
dominant urban growth mode in WHM over the past sixteen years (Figure 6).
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For the CZTM, which takes up 8.47% of the total MYRB land area, experienced an urban expansion
of 405.25 km2 from 2000 to 2016, with an average annual growth rate of 4.23%. The expansion rate
of urban land during 2000–2008 (8.17%) was higher than that during 2008–2016 (2.60%), which is in
contrast to that of WHM, due to the influence of both policy and socioeconomic factors. Outlying
expansion was the dominant urban growth pattern in this area, accounting for 2858.56 km2 or 53.73%
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of the total expansion of urban land in the CZTM. It can also be seen that the CZTM experienced its
urban land expansion mainly around its main urban center in contrast to the WHM.

As to the PLM, accounting for 17.62% of the total area of the MYRB, experienced an expansion
of urban land of 450.99 km2 during 2000–2016 with an average annual growth rate of 3.87%. It also
demonstrated faster urban expansion in the second period (5.24%) than in the first period (3.53%),
which is the same as that of the WHM. The dominant urban growth mode was outlying expansion
during the past 16 years, which accounted for 699.31 km2 or 70.48% of the total expansion of urban
land in the PLM. Specifically, during 2000–2008, the main urban expansion mode was edge-expansion,
accounting for 68.21% of the total expanded urban land, and it transformed into outlying expansion,
which accounted for 87.81% of the total urban land expansion in the second period.

4.1.2. Urban Landscape Became More Aggregated in the Whole MYRB from 2000 to 2016

Figure 6 demonstrates the features and trends of urban landscape changes in the MYRB and
the three metropolitan areas from 2000 to 2016. As urbanization progressed, the PLAND showed
a monotonically increasing trajectory for the MYRB urban agglomeration with a much steeper trend
for the CZTM than those for the WHM and PYLM (Figure 6a). The PLAND increased from 1.08% in
2000 to 1.34% in 2008 and 1.63% in 2016 over the whole MYRB, while it increased from 2.02 to 2.72%
for the WHM, 1.54 to 2.98% for CZTM, and 0.93 to 1.70% for the PYLM. The PD and LSI fluctuated
during the period from 2000 to 2016. Specifically, they decreased during 2000–2008 and then increased
in the following period throughout the whole MYRB as well as in the WHM and PYLM, indicating
that urban land in these areas experienced dispersed growth before 2008 and then shown a compact
expansion. In contrast, the fragmentation and complexity of landscape in CZTM increased first and
then decreased as indicated by the shapes of the broken lines of PD and LSI in Figure 6b,d. The LPI of
urban land demonstrated different patterns in the MYRB and the three metropolises. For the MYRB,
the urban land remained relatively stable in the past 16 years. However, it demonstrated a monotonic
increase with a much steeper trend for the CZTM than that of the PYLM, indicating the agglomeration
of built-up areas into larger, more densely built-up patches [21]. In terms of the WHM, the urban land
became aggregated from 2000 to 2008 and then fragmented during 2008–2016 as seen from Figure 6c,e.
A rise in the AI can be observed both throughout the whole MYRB and the three metropolises during
2000–2008 (Figure 6e). Meanwhile, the PYLM witnessed a decrease in the AI during 2008–2016 in
contrast to the whole MYRB and the other two metropolises. Therefore, the urban form became more
clumped or aggregated.

4.2. Urban Land Dynamic Change at the Prefectural Level

4.2.1. Medium-Small Cities Witnessed Faster Urban Expansion than Larger Cities

Figure 7 shows the distribution of urban land change of the 31 cities in the MYRB from 2000 to 2016.
Based on the results, we observe that almost all the prefectural level cities witnessed urban expansion
in the study period. In addition, the increase of urban land in the three capital cities during the period
of 2000–2008 was much higher than that in the period of 2008–2016. Moreover, the urban land among
the three capital cities exhibited a total increase of 670.68 km2 from 2000 to 2016, accounting for 36.58%
of the total urban land expansion at the whole urban agglomeration level. However, the neighboring
cities presented smaller areas of urban expansion compared to those of the capital cities, indicating
that urban land expansion differs across space and administrative rank [61] and that the development
and expansion of urban land are highly related to economic development [2,32,54].
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There was also a clear disparity in terms of the urban expansion when cities of different sizes
were compared (Table 5). On the 16-year scale, sharp increases in the expansion of urban land
occurred during the period 2000–2016. The megacities experienced much greater urban expansion
(from 1202.64 km2 to 1724.86 km2) than those in the other four categories. Meanwhile, the small
and medium cities witnessed faster urban expansion than the other cities. Between 2000 and 2016,
the urban expansion rates within small and medium cities were 7.51% and 4.77%, respectively, or 1.96
and 1.25 times the average of the five groups of cities. On a small scale of 8 years, urban land expansion
among the five groups of cities showed different variations. The expansion rates of urban land reached
its peak in 2000–2008 and decreased during the period 2008–2016 in both the super-cities and the
megacities. However, the other three categories of cities showed continuous increase.

Table 5. Magnitude of urban expansion in the MYRB urban agglomeration for the five categories
of cities.

Year/Period Super-City Megacity Large City Medium City Small City

AI (km2/year)

2000–2008 21.646 32.098 17.430 15.952 19.509
2008–2016 1.234 33.179 22.308 29.346 32.642
2000–2016 11.440 32.639 19.869 22.649 26.076

AGR (%)

2000–2008 3.206 2.449 1.825 3.020 4.751
2008–2016 0.158 2.111 2.008 4.199 5.364
2000–2016 1.671 2.279 1.916 3.608 5.057

Rs (%)

2000–2008 3.590 2.669 1.946 3.359 5.620
2008–2016 0.159 2.021 2.155 4.871 6.487
2000–2016 1.898 2.714 2.218 4.769 7.513

Is (%)

2000–2008 0.256 0.029 0.018 0.031 0.036
2008–2016 0.015 0.030 0.022 0.058 0.061
2000–2016 0.135 0.029 0.020 0.045 0.049
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4.2.2. Different Urban Landscape Characteristics Exist among Cities in the MYRB

Figure 8 demonstrates the calculated landscape metrics for the 31 cities. During 2000–2016, it is
obvious that urban land showed a continuous increase. Specifically, the cities of Wuhan in the WHM,
Changsha in the CZTM, and Nanchang in the PYLM showed significant urban increases in the PLAND
and LPI, indicating that the focus of development is still on more developed cities. For shape-related
metrics, the LSI seemed to exhibit random behavior across the MYRB, meaning that urban settlements
in different areas showed different growth patterns, such as infilling, edge-expansion or outlying.
This changing trend is not in accordance with the trend at the regional level, indicating that it is
necessary to analyze urban expansion at different administrative levels. The AI increased in most
of the cities during both periods. This is an indicator that the urban form became more aggregated.
The PD seemed to show a reversing trend in contrast to the AI. It decreased in most cities during
2000–2016 or increased first and then decreased. This trend is in consistent with the trend of the whole
MYRB, but there were some distinct features for different cities.
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The spatial indicators can reveal interesting conclusions about urban expansion, but their numbers
often produce fuzzy and troubled explanations. Although it is difficult to find the most appropriate
spatial indicators to properly describe urban expansion, we can understand the importance of these
spatial indicators by indicating the sign of their differences. In other words, the key point is to focus
on the increase or the decrease in the spatial indicators during the two time periods examined.

4.3. Urban Land Dynamic Change at the Inner-City Level

4.3.1. Outlying and Edge-Expansion Dominated the Spatial Pattern of Urban Land in the Three
Capital Cities

The three capital cities were finally selected to further study urban expansion within the inner
cities. From the annual expansion rates of urban areas (Figure 9), each city had a very high
growth rate (34.41% km2/year, 39.49 km2/year and 28.68 km2/year for Wuhan, Changsha and
Nanchang, respectively) through the whole study period. In the two time periods, the annual
expansion rates of urban area depicted continuous increases in the three cities. Meanwhile, each
city indicated different urban expansion rates, which ranged from 10.14 km2/year to 58.13 km2/year.
The most remarkable growth occurred in the urban areas of Changsha from 2008–2016, which was
58.13 km2/year. In contrast, Nanchang showed the lowest annual urban expansion rate at only
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10.14 km2/year from 2000–2008. Wuhan illustrated the highest annual urban expansion rate during
2000–2008 but the lowest in 2008–2016. As capital cities and most developed cities involving rapid
urbanization, Wuhan, Changsha, and Nanchang are representatives of the MYRB that are undergoing
fast economic development.
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Figure 10 illustrates the spatial distributions of the three urban growth types in each city during
the two neighboring periods over the past 16 years. It is observed that the three cities were dominated
by edge-expansion and outlying expansion throughout the study period. Meanwhile, urban expansion
among the different cities shows different patterns during different periods. In Wuhan, edge-expansion,
as the primary growth type, mainly occurred around the city center during 2000–2008. In 2008–2016,
the outlying expansion sharply increased and distributed sparsely around peripheral areas, while
infilling growth filled the gaps between them and had relatively smaller variations. For Changsha,
outlying expansion was more extensive, taking up almost the entire expanded area during 2000–2008,
while edge-expansion appeared mainly around the original urban area in all directions during
2008–2016. Infilling growth was little in Changsha during the past 16 years. For Nanchang, urban
expansion occurred mostly to the south of the Yangtze River and to the south of the city during
2000–2008 to form new growth points. Edge-expansion was mainly distributed around the urban core
with a southward-moving tendency from 2008 to 2016. In general, the spatial distribution of urban
patches mainly expanded along the Yangtze River as well as outwards away from the original urban
area. Relative to edge-expansion and outlying growth types, the infilling growth of the three cities was
less obvious during the study periods.

Both the numerical and area proportions of urban patches of the three urban growth types during
the two neighboring periods for each of the three cities are also presented in Figure 10. It is shown that
a difference exists between the changes in the numerical proportion and the area proportion. Although
the outlying numerical proportion occupied the majority of the expanded patches, the corresponding
area proportion encompassed more of the overall expanded area in some cities. It can also be observed
that the three cities exhibited differences in the compositions of urban growth types. Regarding the
number of patches, outlying expansion was always the primary type for the three cities, especially for
Changsha, and had an increase in the second period except for Wuhan, which showed a slight increase
from infilling expansion. This suggests that the urban expansion of the three cities spatially reached
areas far away from their existing urban coverage. With respect to the area proportion, outlying
expansion was the dominant type for Changsha during 2000–2008, the trend for which reversed
in 2008–2016. Edge-expansion contributed the largest urban area for Wuhan and Nanchang in the
period 2000–2008 and showed a decrease for both cities, wherein Wuhan demonstrated a little increase
from infilling growth. It should be noted that infilling accounted for relatively little in both of the
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proportions, indicating that all of the three cities are still in a state of the enlargement of the urban size
instead of an optimized design.

Figure 10. Spatial distributions of the three urban expansion types and the composition (%) of the three
types of expansion for the number of patches and area of newly developed urban patches for the three
capital cities.

4.3.2. The Existing Urban Land near the City Center Became Less Fragmented over Time

To further understand the detailed spatial patterns of the landscape within the three cities,
the features and trends of urban landscape change were assessed for the three cities both across space
and through time (Figure 11). To avoid redundancy, only three metrics were presented: the PLAND,
PD, and AI. The curve for each city displays a pattern of single or multiple peaks in different landscape
metrics. As urbanization proceeded, the three cities all showed a monotonically increasing trajectory
in the PLAND. A zero value of the PLAND appeared at 18 km in the west sector in 2000 and increased
over time in all directions with the largest urban percentages in the NW sector of Wuhan and in
the eastern sectors of both Changsha and Nanchang. There are some fluctuations in the range of
2–6 km from the city centers due to the existence of the Yangtze River in the middle of the cities.
For Wuhan, the PD decreased in nearly all sectors at the buffer distances of 2–15 km in 2000–2008
and increased again during 2008–2016. The change in the PD in Changsha showed some differences
in comparison with that of Wuhan. It showed a continuous decrease over the past 16 years within
approximately 14 km from the city center in the east and 10 km from the city center in the west.
However, the trend reversed when the buffer distance was larger than 14 km. As for Nanchang, the PD
increased dramatically when the buffer distance was larger than 23 km in the east and 15 km in the
west from 2000 to 2016. A constant decrease was also observed at buffer distances of 2–14 km in the
NW sector and 6–10 km in the SE sector, respectively. Meanwhile, similarities in the PD can still be
found for these three cities. That is, the PD presented a multimodal pattern and showed a decrease for
the area near the city centers, implying a decrease in landscape fragmentation of existing built-up areas.
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The AI decreased outward from the city center in all directions for each of the three cities, but there
were some distinct features for the different cities (Figure 11). Specifically, for Wuhan, the AI sharply
increased during 2000–2007 at buffer distances of 22–26 km in all directions. For Changsha, a similar
spatial change of the AI mainly appeared during 2008–2016. As for Nanchang, the AI changed more in
the SW sector in the past 16-year period.
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5. Discussion

5.1. Urban Expansion in the MYRB Urban Agglomeration Compared with Other Large Urban Agglomerations
in China

In China, there are other three national level urban agglomerations except for the MYRB
agglomerations, that is the JJJ, the YRD, and the PRD [62]. Numerous previous researches have
shown that rapid urban expansion have occurred in the above three urban agglomerations over
time [17,20,22,23], however, less for the MYRB urban agglomeration. To better understand the urban
expansion in the MYRB urban agglomeration and the differences between the four national level
urban agglomerations, a comparison of urban expansion rate among the four urban agglomerations
was made.

Unlike the other three urban agglomerations, which have experienced extremely rapid urban
land expansion over the past several years. Xu et al. [27] reported that the AGR of 6.08%, 9.76%, 5.84%



Remote Sens. 2017, 9, 1086 17 of 24

and 11.69% for the JJJ, YRD, and PRD during 1992 and 2015, respectively. These rates were much
higher than that of the MYRB urban agglomeration, even though the time periods for comparison
did not match exactly. Regional studies also support this observation of the rates of expansion in
the three metropolises in earlier years. The rate of urban expansion in the WHM was reported to
have an increase of 40.69 × 104 ha from 2000 to 2011 [26] and urban expansion in the CZTM was
reported to be dominated by edge-expansion in [63]. Meanwhile, infilling expansion mode was the
primary expansion mode in the other three national level urban agglomerations as time went on [22,30],
however, edge-expansion and outlying modes are still dominated the urban expansion mode in the
MYRB urban agglomeration. The result indicates that the other three large urban agglomerations have
begun to use land more intensively, while the MYRB is still at the stage of creating more urban land
without a regular planning.

Two important factors that can explain the lower rate of urban land expansion in the MYRB are
geographic location and economic growth. Urbanization of the JJJ, YRD and PRD has benefited from
their geographic proximity to the coast areas of China where most industries and commercial centers
are located [2,31,64]. These three urban agglomerations can be regarded as the most important centers
of Chinese trade, commerce, manufacture and industry [21]. Additionally, the three most developed
cities (Beijing, Shanghai, and Shenzhen) of China are located in the JJJ, YRD and PRD, respectively,
which have promoted the development of the other cities nearby. In addition, most of the population
of China dwell at the east of China, which also accelerates the expansion of urban land in these regions.
The GDP of JJJ represented 43% of the national GDP in 2010 [21], the GDP per capita of the YRD was
3.92 times the national average level in 2005 [17], and the PRD accounts for 10% of China’s GDP and
over 80% of Guangdong’s GDP, which shows highly concentration of economy activity [65]. However,
the MYRB urban agglomeration, as shown in Table 4, consists of many less developed cities; these
cities actually had smaller GDP than the above three urban agglomerations. Therefore, the MYRB
urban agglomeration had relatively smaller expansion rate compared with the other three ones.

5.2. Evolution of the Spatial Structure in the MYRB Urban Agglomeration

To further investigate the evolution of the socioeconomic situation during the process of
urbanization in the MYRB urban agglomeration, the standard deviational ellipse (SDE) [66] and
the gravity model [67] were used in this paper to better understand the direction of spatial evolution
and spatial connections between the cities. The SDE can represent the gravitational center, range, and
intensity, and represent the direction of discrete datasets and the temporal change of their form [68].
The gravity model originated from Newton’s law of universal gravitation. Here, we used it to quantify
the interactions between the 31 cities in the MYRB urban agglomeration. A greater value of gravity,
indicates a closer relationship between the cities. After the gravity among the cities was calculated,
the maximum value between a city and other cities was then chosen to obtain the distribution of
gravity connections.

As seen from the SDE results of urban expansion (Figure 12a), the spatial distribution of
cities in the MYRB is centralized among the three metropolitan areas and presents a pattern with
a “northwest-southeast” trend, which is consistent with the results of a previous study [69]. The change
of the long axis is more obvious than that of the short one, meaning that the forces driving the spatial
evolution mainly come from urban expansion in the “northwest-southeast” direction. Specifically,
in 2000–2008, the short axis varied more than the long axis, that is, the “southwest-northeast” direction
had rapid urban expansion during 2000–2008. In 2008–2016, the long axis varied more than the short
axis, indicating that the “northwest-southeast” had rapid urbanization during 2008–2016. Furthermore,
the SDEs of the population and GDP (Figure 12b) were also compared with that of the urban land in
the three periods. The results show that, as a whole, the spatial evolution of urban land had the same
trend with the demographic and economic changes, indicating that the population and economy are
important forces on urban expansion.
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As Figure 13 shows, the connections among the cities became increasingly intensive as time
progressed due to rapid economic development, which demonstrates the rapid urbanization in this
area in these years. However, it can also be seen that the interactions among the cities mainly focused
on the three capital cities and that there exist differences of the interaction intensities among the
different cities, which show a pattern of “multi-polarization and fragmentation”. The reason for this
may be geographical separation. On the other hand, it also indicates that the radiative driving forces
of Wuhan, Changsha and Nanchang were not strong enough to bring all these cities together.
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5.3. Implications for Regional Development Strategies

The detailed, distinctive characteristics of the directions and hot-zones of urban expansion in each
city can be ascribed to the influences of urban planning and policy [23]. The Master Plan [39] for the
MYRB urban agglomeration set the development targets of enhancing the economic strength of this
region, realizing the rational distribution of the infrastructures, and improving the urban system and
the driving forces of the central cities till 2020. In this subsection, two implications are highlighted
according to the results of this paper.

First, strict controls should be applied to alleviate the extent and disorder of urban sprawl in
the MYRB, especially for the small and medium cities. As the results show above, outlying and
edge-expansion are the dominant expansion types in the MYRB urban agglomeration. It is commonly
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admitted that urbanization introduces much convenience; meanwhile, many problems caused by
unplanned urban expansion have been witnessed and studied [8,70]. In this context, intensive land-use
should be advocated and rigorous policies should be imposed to make room for our natural resources
to build a society where people can live in harmony with nature. Although numerous policies have
been enacted to constrain the abuse of the land in the past several years, the outcomes seem to be
unsatisfying. Therefore, the enforcement of these policies should also be strengthened.

Second, the interactions among the inter-regions in the MYRB should be strengthened to form
a new national economic growth pole. As Figure 13 shows that although the interactions between
each capital city and their neighboring cities have enhanced over time, respectively, the interactions
among the inter-regions are still relatively weak, indicating that the competition is stronger than the
cooperation among the cities due to their lacking integrated coordination mechanism [71]. In 2016,
the State Council of China adopted the “Plan for promoting the rise of central China (2016 to 2025)” [72]
which emphasizes on accelerating the construction of urban agglomerations and forming an important
support for the national economy. Recently, the topic of developing a “one belt one road” [73] strategy
has been discussed heatedly. The planning for the development of central China and the promotions
of “Belt and Road” construction, Beijing-Tianjin-Hebei coordinated development, and Yangtze River
economic development have been converged to speed up the construction of urban and rural areas
and promote the comprehensive strength and competitiveness of the central region to a new level.
Under these circumstances, measures should be taken to break the limitation of physical distance
among different regions in the MYRB, such as increasing the means of transportation between regions
to decrease the cost of transportation, enhancing the regional cooperation to forge closer links among
different regions in the MYRB and finally realizing the goal of forming a new national economic
growth pole.

5.4. Limitations and Future Perspectives

There are several limitations to this study. First, although the spatial resolution of data used
for extracting urban land at regional level is 250 m, it is still not accurate enough to characterize the
urban land change for a wide range of area at finer scale due to the mixed pixel problem, therefore,
a more accurate method that can merge various kinds of data sources should be the focus of our future
study. Second, as a general problem, the accuracy of the classification may influence the subsequent
analysis results. Although here, at the regional level, we used images with spatial resolutions of
250 m, which is relatively finer than those of most previous studies, it cannot be denied that some
urban areas may have been overestimated due to misclassification. Therefore, the significance of our
analysis does not reside in the individual values of the metrics at any given time, but rather the general
spatiotemporal patterns of these metrics over several decades. Third, we explored the urban expansion
in the MYRB urban agglomeration; however, the causes and impacts of urban expansion were not
investigated. Future studies may focus on the investigation of these problems with the help of models
such as the single layer urban canopy model (SLUCM) and Weather Research and Forecasting (WRF)
model [74,75].

6. Conclusions

Urban agglomeration is the ultimate spatial urban form within China’s new urbanization
strategy [76]. Over the past decade, central and provincial governments have sought to foster urban
agglomerations as regional growth poles and as strategic core areas with the potential to drive
continuous economic growth [77]. In this context, the study of urbanization in the MYRB is necessary.
However, studies on urban expansion in the MYRB agglomeration are relatively limited.

Using multi-temporal remote sensing data, this paper details an investigation of the
spatiotemporal change of urban land in the MYRB urban agglomeration from 2000 to 2016 at regional,
prefectural, and inner-city levels. Three features of urban expansion are highlighted according to
the results: (1) the MYRB has experienced significant urban land expansion over the past sixteen
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years. The CZTM and PYLM had higher expansion rates than the WHM. The urban expansion shows
an obvious spatiotemporal heterogeneity across the 31 cities in the MYRB. This roughly represents
the phenomenon wherein the development of cities surrounding other highly developed cities is not
promoted; by contrast, highly developed cities usually suppress the development of neighboring cities,
as most of the resources are attracted away from the latter by the former. This finding is based on the
results of urban land change calculations for the 31 cities. (2) Small and medium cities in the MYRB
experienced the highest level of expansion, which is consistent with the situation of China according
to a previous study [78]. This is supported by our findings that the expansion rates and intensities of
small and medium city were larger over the period 2000–2016. (3) The proportions of the three urban
growth modes reveal that outlying and edge-expansion were still the dominant urban expansion types
in the MYRB during the study period both at the regional and inner-city level, indicating that urban
agglomeration in the MYRB is still focused on continuous urban sprawl. An infilling urban growth
type is generally associated with compact urban development, while outlying expansion is typically
associated with dispersed development. Which kind of type is better has long been a hot topic [79];
however, we believe that a balance between intensive and extensive development may benefit both
urban areas and the environment. The landscape of urban land in the whole MYRB became more
compact as time went on; however, different cities in the MYRB show great spatial heterogeneity at all
the three levels, suggesting the necessity of studying urban expansion at different levels. Meanwhile,
based on the above analysis, we conclude that the extent of urban expansion in the MYRB can be
reliably measured using MODIS data and Landsat data as well as census data.

Our results also revealed a considerable regional disparity in the MYRB urban agglomeration by
measuring the urban expansion of the 31 cities. It was also found that the economic spatial interaction
among the cities demonstrated a pattern of “multi-polarization and fragmentation”, which illustrates
the weak radiative driving forces of the central cities such as Wuhan, Changsha, and Nanchang.
We believe that these results could be useful for monitoring the processes of urban growth in the
Middle Yangtze River Basin urban agglomeration and have discussed some of the possible implications
for planning.
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