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Abstract: The performance of Satellite Rainfall Estimate (SRE) products applied to flood inundation
modelling was tested for the Mundeni Aru River Basin in eastern Sri Lanka. Three SREs (PERSIANN,
TRMM, and GSMaP) were tested, with the Rainfall-Runoff-Inundation (RRI) model used as the
flood inundation model. All the SREs were found to be suitable for applying to the RRI model.
The simulations created by applying the SREs were generally accurate, although there were some
discrepancies in discharge due to differing precipitation volumes. The volumes of precipitation of
the SREs tended to be smaller than those of the gauged data, but using a scale factor to correct this
improved the simulations. In particular, the SRE, i.e., the GSMaP yielding the best simulation that
correlated most closely with the flood inundation extent from the satellite data, was considered the
most appropriate to apply to the model calculation. The application procedures and suggestions
shown in this study could help authorities to make better-informed decisions when giving early flood
warnings and making rapid flood forecasts, especially in areas where in-situ observations are limited.
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1. Introduction

Experts consider that extreme weather events associated with climate change are becoming
more severe worldwide. Water-related disasters, such as floods and droughts, are expected to
increase. People in poverty in developing countries are particularly likely to be exposed to extreme
weather events. According to the International Disaster Database of the Center for Research on the
Epidemiology of Disasters (EM-DAT; [1]), about 3 billion people globally were affected by floods and
droughts between 1995 and 2014. There is concern that human livelihoods and food production will
increasingly be affected by water-related disasters as climate change progresses.

Remote sensing techniques, including satellite image analysis, have been employed to capture
the extent of areas affected by water-related disasters. However, there are limitations to such methods;
for example, satellite images are not always available due to the satellite’s orbital period or cloud cover.
Recently, several authors have suggested applying rainfall estimates derived from remote sensing to
hydrological numerical models to simulate the flood inundation extent.

Satellite Rainfall Estimate (SRE) products provide global-scale spatial data on rainfall intensity.
Among them are: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN [2]); the Tropical Rainfall Measuring Mission (TRMM [3]); and the Global
Satellite Mapping of Precipitation (GSMaP [4]). These datasets have been applied to numerical
hydrological models to simulate floods in various locations of the world [5-8]. Within South Asia,
Nanda et al. [9] used an SRE dataset to develop a real-time flood-forecasting model for a basin in
eastern India.
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Numerical hydrological models, such as LISFLOOD-FP [10], HEC-HMS/RAS [11,12] and the
RRI (Rainfall-Runoff-Inundation) model [13], have been developed and used to simulate flood
inundation. Of these, the RRI model has advantages that include: the ability to simultaneously
calculate flood inundation and river flow in areas encompassing downstream flood plains and
upstream mountain zones; the facility to make calculations for multiple basins in cases where the
downstream floodplain can be affected by several rivers; and free availability, making it more accessible
to developing countries.

There have been several studies to apply SREs to the numerical hydrological models. Some employed
multiple SREs and then tested their validity by comparing stream discharge [5,14-18]. Flood inundation
extent and depth have also been simulated by applying solo SREs such as PERSIANN and TRMM to
distributional flood models [8,19]. In addition, the RRI model has been utilized with GSMaP to simulate
the 2008 flood event in Pakistan [20]. In the meantime, SRE products have been compared with each
other and their characteristics and accuracy have also been evaluated [21-23]. However, evaluation
among multiple SREs in terms of flood inundation reproducibility has not been done yet. It would be
important to evaluate the applicability of SREs to flood inundation simulation, because the quality of
rainfall information plays a key role in flood simulation, especially in less-gauged areas which have
few observation stations of ground-level rainfall and stream discharge, where most of the developing
regions are situated.

The authors previously demonstrated that it is possible to apply SREs to the RRI model to simulate
basin-scale flood inundation [24]. This indicated that applying SREs to the RRI model could support the
provision of early flood warnings, even in basins with few or no rainfall gauges. However, the model
could potentially accept a variety of SREs, some of which might perform better than others. This paper
illustrates the procedures to test the performance of PERSIANN, TRMM, and GSMaP in the RRI model
for simulating flood inundation extents.

2. Materials and Methods

2.1. Study Area

The study area, encompassing the Mundeni Aru River Basin (hereafter, MRB), is located in eastern
Sri Lanka (Figure 1). The catchment area of the MRB is approximately 1300 km?, with the highest point
standing 873 m above sea level. A large part of the catchment area is covered by mostly forest and
paddy fields. A dam with storage of 59.2 x 10° m® began operating in the upstream part of the MRB
in July 2013 [25].

According to EM-DAT [1], nine major riverine flood events occurred in Sri Lanka between 2011
and 2015, together causing more than 300 deaths. Heavy rains at the beginning of 2011 seriously
affected residents and agricultural production across parts of northeastern Sri Lanka. In the MRB,
a major flood event on 3 February 2011 induced broad-spread inundation, mostly in the downstream
part of the basin, with the water depth reaching approximately 2 m (Figure 2; [26]). A further flood
affected eastern Sri Lanka in December 2012.

River discharge in the MRB was observed at a gauging station in Tampitiya, and rainfall was
measured at stations in Rugam, Kolaneyaya, and Kongaspenvila (Figure 1) by Sri Lanka’s Department
of Irrigation. Discharge was recorded several times a day; for this study, these data were averaged
into daily values. Rainfall was measured daily. Data for both were available from 1 October 2010 to
30 September 2014.
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Figure 1. Domain of the calculation of the study area showing gridded points of the Satellite Rainfall
Estimates (SREs) and gauge stations for runoff and rainfall.
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Figure 2. Inundation extent of a flood in January and February 2011, analyzed by satellite observation

images [26].

2.2. Satellite Rainfall Estimate Products

PERSIANN, TRMM, and GSMaP SREs were tested. Their specifications are written in Table 1.
The PERSIANN system uses neural network function procedures to compute an estimate of rainfall
rate from the observation data of multiple satellite infrared sensors, and the products are calibrated
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with rainfall estimates by satellite microwave observations [27]. TRMM is a project aimed to provide
precipitation information for tropical and sub-tropical regions and also a name of satellite launched by
the National Aeronautics and Space Administration (NASA) that comprises microwave-, infrared- and
visible-wavelength sensors [28]. In this study, TRMM 3B42 V7 dataset was used, which incorporates
microwave and infrared data from multiple satellites including TRMM. GSMaP is a platform hosted
by the Japan Aerospace Exploration Agency (JAXA) to provide near-real-time and reanalyzed global
dataset based on microwave and infrared satellite data combined using a Kalman filter. The period for
which data was available and its resolution, for both gauged rainfall (hereafter Gauged-R) and the
SREs, is also shown in Table 1.

Data in nine cells of the PERSIANN and TRMM SREs, correlating to the study area, were selected
and then applied to the model (Figure 1). Similarly, the data in 48 cells of the GSMaP product were
selected and applied to the model.

Table 1. Satellite rainfall estimates data description and its salient features.

Dataset/Version Resolution Base Data and Estimation Method Mission Cycle Data Period
. . . 1 October 2010 to
Gauged-R (3 stations) Ground observation Real time 30 September 2014

Multiple satellite infrared data, combined

by applying neural network algorithms, . 1 January 1983 to
PERSIANN 025 degree and calibrated by satellite microwave Operational 30 December 2014
rainfall products
1 January 1998 to
Microwave and infrared data from 30 December 2014,
TRMM (3B42 V7) 0.25 degree . . . . Completed but not available in
multiple satellites, with gauge adjustment
November and
December in 2013
Passive microwave and infrared data,
GSMaP . . . ! . 1 January 2001 to
(V6 reanalysis) 0.10 degree combined using a Kalman filter. The Operational 28 February 2014

reanalysis version is gauge-adjusted

2.3. The RRI Model

The RRI model [13] was employed to calculate flood inundation extent and depth for heavy
rainfall events pertinent to this study. The model is a two-dimensional raster-based model which
considers water movement in both slopes and river channels. The governing equations of lateral
flow on slopes considered in the model are composed of the following mass balance Equation (1) and
momentum Equations (2) and (3):

oh  0qy  9qy

ot Tax Ty T @
d9x , Ouqy  dvgy _ OH T
ot ox dy o Ow @

a " oax oy Sy pw ®)

dqy duqy dvqy haH Ty

where suffixes x and y indicate directions in the x-y coordinate system,  is height of water from the
local surface, gy and gy are the unit width discharges, u and v are flow velocities, r is rainfall intensity,
H is height of water from the datum, p, is the density of water, g is the gravitational acceleration,
Ty and T, are shear stresses, and ¢ is time. The spatial differentiation in the momentum Equations (2)
and (3) are converted to functions of H by applying Manning’s law. The model can also consider
percolation and groundwater flow governed by Darcy’s law. Then, the spatial differentiation in the
mass balance Equation (1) is discretized by the first-order finite difference method, and the time
differentiation is resolved by the fifth-order Runge-Kutta formula. Details in the differentiation and
surface-subsurface water interactions are described in the RRI model manual [13].
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The model calculation requires rasterized topographic information as well as distributional
rainfall input. In this study, HydroSHEDS with 30-second (approximately 900-m) resolution, provided
by U.S. Geological Survey [29], was applied.

The RRI model requires the operator to set parameters for the calculation. The parameters are
listed in Table 2. In this study, the degree of freedom of the model parameters was reduced in the
following ways: (1) Values of the parameters related to the cross-sectional shape of channels and soil
capacity were fixed to the default values shown in the manual [13], since dimensions of the rivers had
not been measured on site. It was confirmed that river width calculated with the default parameters
was mostly equal to that roughly measured in aerial photographs; (2) Every cell was considered to
have a channel (a reasonable assumption given the prevalence of drainage canals on farmland in rural
areas). Under these conditions, the parameters that have to be calibrated could be limited to Manning’s
roughness and groundwater permeability. Calibration was carried out using gauged rainfall data
for the period from 1 January to 28 February 2011 by comparing hydrograph and inundation extent.
Procedures were according to the authors’” previous study [24].

Table 2. List of parameters of the Rainfall-Runoff-Inundation (RRI) model used in this study.

Explanation Value How to Determine the Parameter Values
ng Manning 7 for slope 0.06
nR Manning # for channel 0.03 Determined by calibration
ka Permeability for groundwater flow 0.1
da Capacity of soil 1.0
Cw Parameters for cross-sectional shape of 5.0 .
Sw channel (m): 0.35 Default values shown in the manual
Cq Width = Cy, ASY; Depth = C4 A5, 0.95
S4 where A is area of its catchment (km?) 0.2

The Maha season (from 1 October to 31 March) between 2010 and 2013 was selected to be
the validation period. (The Maha season from October 2013 to March 2014 was excluded from the
discussion, because some TRMM and PERSIANN data were not available for this period and also
because the dam began operating in July 2013). Mean and maximum figures for the calculated
discharges were compared with the corresponding observed values. The difference between the
observed and calculated hydrographs was evaluated by calculating the Root Mean Squared Error
(RMSE), the Mean Absolute Error (MAE), the Coefficient of Efficiency (CE; [30]), and the Relative
Bias (MB), which have widely been used in evaluation of hydrological model (e.g., [31,32]), as per the
following equations:

1 N

RMSE = |+ 3= (Qi - Q) 4)
i=1
1Y .
MAE:NZ|Q1'—Q1'| ®)

i=1

B N 2 /Y 2
CE=1-{) (Qi—-Q) /), (Q-Q) (6)
i=1

i=1

1=

N
RB = (QiQi)/Z Qi @)
i=1
where (; is estimated discharge at time 7, Q; is discharge observed or calculated with the Gauged-R at
time i, Q is average of Q;, and N is number of the time series. If Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) are smaller, the difference can be said to be smaller. Conversely, a larger
Coefficient of Efficiency (CE) also equates to a smaller difference.

1
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In addition, the coincidence of inundation extent, which is also named as “fit” [10] and “correct
predictions of flooding” [33], at peak flooding time and during the entire period of a flood event,
denoted as Ppeqx and Py, respectively, was evaluated by the follow equations:

AN Ay

Ppeak = m, when A, U A become smaximum 8)
a

N N
Protal = (Z AaNAy/ Y AgU Ab) ©)
i=1 i=1
where A, N Ay is the intersection of these two domains of flood inundation extent, and A, U A is
the union of those domains. Here, an estimated depth of more than 0.5 m is regarded as inundated.
These indices are relatively unbiased, since between both underprediction and overprediction they
are simply and equitably discriminated so that optimal simulations will provide the best compromise

between these two undesirable attributes [33].

2.4. Correction of SREs by Scale Factors

The scale factor is relevant to adjust the bias from all the SREs to make them well correlated
with the gauged rainfall, prior generating the hydrograph and the inundation extent from flood
inundation models. This will also help to improve the accuracy and product comparison with the
remote sensing-derived flood extent. Therefore, in this study, scale factors were determined by
comparing the gauged data and the SREs from 1 October 2010 to 30 September 2014, and then
employing these to correct the discrepancy.

3. Results

3.1. Characteristics of the Satellite Rainfall Estimate Products

Comparison of yearly total precipitation amounts of the SREs to those of the gauged rainfall are
shown in Table 3. In addition, ratios of the accumulated amounts of the SREs from October 2010 to
September 2014 to those of the gauged data are shown, as scale factors, in Table 3. All of the yearly
amounts of the SREs are smaller than those gauged, hence the scale factors are greater than 1.

Fluctuations in monthly amounts of the SREs are shown in Figure 3, in comparison with those of
the gauged data. The fluctuation graphs tend to look similar to each other; this justifies applying the
SREs in lieu of observed data.

Comparisons of the monthly total SRE and Gauged-R amounts are shown in Figure 4a, with (R?)
being the coefficients of determination (used to derive proportional relationships). Because this value
for TRMM and GSMaP is larger, these SREs are likely to be better correlated than PERSIANN with
those of the Gauged-R data. The SRE data corrected using the scale factors (calculated as ratios of the
accumulated amounts from October 2010 to September 2014 between Gauged-R and SRE; denoted
with a postfix ‘SF” hereafter; their values are shown in Table 3) were also tested and are shown in
Figure 4b. In this graph, the R? values for the corrected database are closer to 1 than those of Figure 4a,
indicating that correcting the SRE data increased its correlation with the Gauged-R data.

Table 3. Summation of yearly total amount and scale factors of the rainfall datasets.

Accumulated Rainfall (Unit in mm)

Datasets Scale Factor
2011 2012 2013
Gauged-R 3559 2068 2164 —
PERSIANN 2199 1643 1584 1.34
TRMM 2632 1697 + 1.23
GSMaP 2891 1802 1567 1.24

t Tropical Rainfall Measuring Mission (TRMM) data are not available in November
and December in 2013.
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Figure 3. Monthly variation of the SRE values and those of the gauged data.
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Figure 4. Comparison of monthly rainfall amounts of the SREs to Gauged-R data; (a) raw data; (b) data
corrected by the scale factors.

3.2. Simulated Discharge and Flood Inundation Extent

3.2.1. Discharge

Calibration had been done with the gauged rainfall data for the period from 1 January to
28 February 2011. As a result, the set of parameters with ng = 0.06, ng = 0.03, and k, = 0.1 were
chosen. Details in the parameter determination are described in the authors’ previous study [24].

Results of calculating discharge at Tampitiya, using the calibrated RRI model with the SREs,
are shown in Figure 5. All of the SREs were suitable for applying to the RRI model.

The results for the 2010-2011 Maha season, including the calibration period (Figure 5(al)—(a3)),
show that the peak discharge calculated with PERSIANN-SF was much smaller than the observed
peak and that calculated with Gauged-R data, even though the scale factor was considered. In contrast,
the peak discharges simulated with the TRMM-SF and GSMaP-SF data were closer to the observed
data and those calculated with the Gauged-R data. This would be because the relationship between
PERSIANN and Gauged-R was less linear, indicating that PERSIANN might not be able to accurately
illustrate extreme rainfall events. However, the results of another flooding period, during the 2012-2013
Maha season (Figure 5(b1)—(b3)), show that the peak discharge calculated with GSMaP-SF tended to
be more overestimated than those generated using PERSIANN-SF and TRMM-SF. In addition, in the
hydrographs calculated by all of SREs, there were several large peaks which did not appear in the
observed hydrograph, specifically during the Maha season (Figure 5(b1)—(b3)).
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Figure 5. Hydrographs at Tampitiya produced with Gauged-R data and that of the SREs for the
calibration period (from October 2010 to March 2011; (a1)—(a3)) and part of the verification period
(from October 2012 to March 2013; (b1)-(b3)).

The mean and the maximum of the calculated discharges were compared with those of
the observed data (Table 4). The maximum discharge calculated with PERSIANN-SF tended to
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be underestimated in comparison to the observed discharge and that calculated with Gauged-R
data; the maximum for the 2010-2011 Maha season was much smaller, just as the peak discharge
in the hydrograph appeared much smaller (Figure 5(al)). The maximum discharges calculated
with TRMM-SF and GSMaP-SF for the 2010-2011 Maha season were larger than those calculated
with PERSIANN-SF and closer to the observed figures and those calculated with Gauged-R data.
However, the maximum discharge calculated with GSMaP data for the 2012-2013 Maha season was
highly overestimated against the observed data and that calculated with Gauged-R data, as also
observed in the hydrograph (Figure 5(b3)).

Differences among the observed and calculated discharges were evaluated using RMSE, MAE,
CE, and RB methods (Tables 5 and 6). The RMSE and MAE values for PERSIANN-SF were smaller
than those for TRMM-SF and GSMaP-SF. However, it should be noted that the relative difference was
mostly comparable since these values were synchronized with the mean for each of the SREs. For CE,
the results with PERSIANN-SF were evaluated as being ‘less different” from both those observed and
calculated with Gauged-R data. For the rest, especially for the 2010-2011 Maha season, the indicators
showed that the hydrograph calculated with GSMaP-SF was ‘more similar” to the observed and
that calculated with Gauged-R than that calculated with TRMM-SE. The values of RB ranged from
—0.194 to 0.134 for comparison of the calculated discharge with Gauged-R data, but there was no
obvious tendency among the result.

Table 4. Mean and maximum of the observed and calculated discharge in the Maha seasons.

Observed Gauged-R PERSIANN-SF TRMM-SF GSMaP-SF
Maha Mean Max. Mean Max. Mean Max. Mean Max. Mean Max.

2010-2011 121 1144 147 884 137 674 153 989 167 1080
2011-2012 121 675 104 662 84.1 597 87.9 746 87.2 728
2012-2013 140 650 126 819 123 693 123 773 141 1176

Unit: m3/s.

Table 5. Evaluated error of the calculated discharge in the Maha seasons, in comparison with the
observed discharge.

Gauged-R PERSIANN-SF
Maha RMSE MAE CE RB RMSE MAE CE RB
2010-2011 139 837 0552 0212 154 917 0449 0.128
2011-2012 145 89.0 —0.031 —0.135 120 789 0297 —0.303
2012-2013 118 86.6 0334 —0.098 160 113 —-0.219 -0.120
TRMM-SF GSMaP-SF
Maha RMSE MAE CE RB RMSE MAE CE RB
2010-2011 184 103 0.213  0.265 171 95.1 0.321  0.375
2011-2012 152 101 —-0.124 —-0.271 153 9.6 —0.168 —0.277
2012-2013 185 127 —0.638 —0.122 199 135 —0.903 0.004

Unit: m3/second for RMSE and MAE, no dimension for CE and RB.

Table 6. Evaluated error of the calculated discharge in the Maha seasons, in comparison of the
calculated discharge with Gauged-R data.

PERSIANN-SF TRMM-SF GSMaP-SF
Maha RMSE MAE CE RB RMSE MAE CE RB RMSE MAE CE RB

2010-2011 126 789 0534 —0.069 144 79.7 0396 0.043 142 779 0410 0.134
2011-2012 94.9 53.6 0459 —0.194 113 62.0 0277 -0157 122 64.6  0.112 —0.164
2012-2013 121 703 0318 —0.024 160 93.8 —0.196 —0.026 160 918 —0.194 0.114

Unit: m?/second for RMSE and MAE, no dimension for CE and RB.
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3.2.2. Flood Inundation Extent

The distribution of maximum flood inundation duration between December 2010 and March
2011 was illustrated using the result of calculation by the calibrated model with the SREs and the
gauged data (Figure 6). The extent of inundation duration calculated using TRMM-SF and GSMaP-SF
data was a little overestimated but similar to that calculated from the gauged rainfall; that calculated
using PERSIANN-SF data was likely underestimated. The distribution of flood inundation depth on
the day when the largest flood peak came within this period (3 February 2011) was also illustrated
(Figure 7). Underestimation in the calculation using PERSIANN-SF data was consistent with the result
that the hydrographs at Tampitiya (Figure 5(al)) calculated with PERSTANN-SF were smaller than the
observed data and those calculated with Gauged-R data during the 2010-2011 Maha season. On the
other hand, the distribution of inundation depth calculated using GSMaP-SF data was close to that
calculated with Gauged-R data.

The coincidence of flood inundation extent between the SREs and the Gauged-R data, denoted
as Ppeax and Pyory, Was evaluated (Tables 7 and 8). As with the flood inundation maps (Figure 6),
the correspondence of inundation extent calculated using PERSIANN-SF data was less pronounced
than that generated using TRMM-SF and GSMaP-SF data, especially for the 2010-2011 Maha season.

‘H, Inundation duration (days): [l >5 4 3 2 |1

S

(a) Calculated with the gauged data;
Inundation depth > 0.5 m

|| (c) Calculated with TRMM-SF; |
Inundation depth > 0.5 m

aP-SF; |

Inundation depth > 0.5 m

=

Figure 6. Distribution of maximum flood inundation duration from December 2010 to March 2011,
calculated by the calibrated RRI model; (a) Gauged-R; (b) PERSIANN-SF; (c) TRMM-SF; and (d) GSMaP-SE.



Remote Sens. 2017, 9, 998

0 10 20 30 (km)
e

February 31, 2011
-

Inundation depth (m): [l >2.0 [1.5-2.0 [] 1.0-1.5[] 0.5-1.0

(d) Calculated with GSMaP-SE;
February 3, 2011

12 of 16

Figure 7. Distribution of flood inundation depth on 3 February 2011, calculated by the calibrated RRI

model; (a) Gauged-R; (b) PERSIANN-SF; (c) TRMM-SF; and (d) GSMaP-SE.

Table 7. Coincidence of inundation extent for the peak flooding times and the entire flooding periods.
Coincidence (Ppeax and Pyora1) Was defined by Equations (8) and (9). The larger @Ppeak and Piotq) are

more related to the flood inundation extent between the SREs and the Gauged-R data.

PERSIANN-SF TRMM-SF GSMaP-SF
¢peak Drotal q)peak Diotal ¢peak Diotal
Maha 2010-2011 0.160 0.484 0.438 0.549 0.451 0.521
Maha 2011-2012 0.477 0.682 0.435 0.698 0.412 0.691
Maha 2012-2013 0.077 0.487 0.105 0.526 0.355 0.472

Unit: no dimension.
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Table 8. Coincidence of inundation extent for the peak flooding times and the entire flooding
periods. Values of the intersection (A, N Ap) and the union (A; U Ap) of domains of flood inundation
were calculated by the SREs and Gauged-R and their rate (@) for peak flooding times in the Maha
2010-2011 season.

i PERSIANN-SF TRMM-SF GSMaP-SF
Specific Date
AaNAp A UAy o] A N Ay A UAy e A;NA, A UA [
8 January 2011 254 617 0.412 616 1405 0.438 615 1428 0.431
11 January 2011 402 705 0.570 610 864 0.706 696 1457 0.478
1 February 2011 120 749 0.160 424 749 0.566 741 1643 0.451

Unit: m®/second for A, N Ap and A, U Ay, no dimension for &.

4. Discussion

The simulations made by applying the SREs generally produced satisfactory results; in fact,
they are closely related (Tables 5 and 6), although there were mismatches in discharge caused by the
differences between the precipitation amount of the SREs and the gauged data. Regarding the similarity
of hydrographs evaluated using CE methods, PERSIANN-SF derived better estimates of discharge
than TRMM-SF and GSMaP-SF (Tables 5 and 6). However, especially for the 2010-2011 Maha season
when the large flooding event occurred, the flood inundation extent maps calculated using TRMM-SF
and GSMaP-SF data were ‘more similar” to those calculated with Gauged-R data, while the flood
inundation extent calculated with PERSIANN-SF was less than that with the Gauged-R data (Figure 6;
Tables 7 and 8). Comparing the results from using TRMM-SF and GSMaP-SF data, the application with
GSMaP-SF gave stably higher scores of @peqx and Piora1, while Ppeqi 0f using TRMM-SF during the
2012-2013 Maha seasons appeared as the relatively small value (Table 7). In addition, those calculated
with GSMaP-SF tended to overestimate while those with TRMM-SF were likely underestimating
(Figure 6), although the coincidence scores were not significantly different (Table 8). From this it can be
said that calculation with GSMaP-SF would be on the safe side regarding application to flood early
warning practices. Considering these results, and focusing on the ability to simulate flood extent, using
GSMaP-SF data was the most appropriate choice for executing the model.

Correspondence of SREs to ground-observation rainfall data has been studied in various regions
of the world. Some of them reported that GSMaP had larger bias against ground-observation [34-36].
However, even if bias of SREs was considerable, total amount of rainfall could be somewhat corrected
by multiplying the scale factor, as shown in this study. There are limitations to applying scale factor to
improve the bias in areas where gauged data is absent. In this study, the bias correction was applied
for the catchment area with the dependency of gauged data. For ungauged areas, however, use of
multisource SREs would be another possibility of the bias correction, and monthly- and seasonal-basis
scale factors can also be employed for the bias adjustment. There have been several studies to apply
and evaluate some advanced methods which enable bias correction of SREs, even in sparsely gauged
areas [37,38]. At the same time, dependence of SREs on topography, season, and other factors are being
studied for bias correction [39,40]. It would be a future task to sophisticate the bias correction based
on this knowledge for improved simulation in ungauged areas. Furthermore, as the previous study
mentioned that SREs with higher spatial resolution enable their application on a more local scale [36],
the better result by using GSMaP-SF would possibly be due to its finer grid size. It should also be noted
that algorithms generating SRE products, including GSMaP, are still being developed, which keeps
improving their performance. Hence, it would be recommended to test the applicability of each of the
SREs and correction methods according to the procedures like the way shown in this study.

5. Conclusions

Three datasets of SREs (PERSIANN, TRMM, and GSMaP) were applied to the RRI model and their
ability to simulate flood inundation tested for a basin in eastern Sri Lanka. In summary, the findings of
this study are that:
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e  All of the SREs could be applied to simulate flood inundation using the RRI model, to obtain
hydrographs and flood inundation maps.

e The amount of precipitation of the SREs tended to be larger than that of the gauged data,
but correcting this discrepancy with a scale factor (SF) improved the simulations.

o  The error evaluation of hydrographs and the coincidence evaluation of inundation extent for each
of the SREs gave conflicting results: the former gave the better score to the results produced using
PERSIANN-SF data, while the latter evaluated those produced using GSMaP-SF data as the best.
From the point of view of simulating the flood inundation extent, using GSMaP-SF seemed more
appropriate for executing the model.

e The better performance by using GSMaP-SF would possibly be due to its finer resolution.
Because algorithms generating SRE products are still being improved and corrections such
as multiplying a scale factor are also applicable, it would be recommended to test the applicability
of each of the SREs and correction methods according to the procedures shown in this study.

These findings indicate that the procedures shown in this study could support decision makers
to issue early flood warnings and quickly predict flood situations, especially in areas where in-situ
observations are limited or poorly equipped.
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