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Abstract: In space missions, during the long isolation at extreme conditions for human health,
it is of paramount importance to monitor vital parameters. One such parameter is the breathing
rate. Indeed, several factors can induce some breathing anomalies during the sleep, which may
cause apnea episodes. In order to act timely with the right therapy, an early diagnosis is required.
Conventional devices are usually uncomfortable since they require electrodes or probes in contact with
the subject. An alternative way to perform this kind of measurement in a remote sensing modality
is provided by a continuous wave bioradar operating in the microwave frequency band. This is an
effective contactless tool for monitoring the respiratory activity through the measurement of chest
deformation due to inhalation and exhalation. The radar emits a low power electromagnetic wave at
a single frequency, which is reflected by the human chest. By measuring of the phase shift between
the incident and reflected wave, it is possible to detect and monitor the respiratory rate. The main
contribution of this work is concerned with a metrological characterization of the continuous wave
bioradar; which is a topic not thoroughly assessed in the relevant literature. In particular, the bioradar
measurements are also compared with data recorded by a spirometer, which is a standard medical
device that measures the air volume inhaled and exhaled by the subject. The purpose of this study
is the characterization of the measurement standard uncertainty to enable the assessment of the
bioradar system performance.

Keywords: bioradar; breathing monitoring; human health; measurement uncertainty; metrological
characterization; spirometer

1. Introduction

The contactless measurement of vital signs with bioradar technique is valuable in several
application fields such as security and surveillance, healthcare, and space medicine [1–11].

The working principle of this kind of device is based on the measurement of the phase shift of the
radar signal caused by the contraction and expansion of the human chest during breathing. From this
information and a suitable signal processing, it is possible to extract the breathing and heartbeat
pattern of the subject under test [2,6–8].

Continuous wave bioradars for the monitoring of breathing and heartbeat activity constitute
the simplest type of bioradar and have been known since the 1970s [1]. However, in recent years
technological advances have triggered many studies aiming on one hand to the design and
miniaturization of these systems and on the other hand to the enhancement of the signal processing
techniques [2,6].

Remote Sens. 2017, 9, 996; doi:10.3390/rs9100996 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8430-8592
http://dx.doi.org/10.3390/rs9100996
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 996 2 of 10

The monitoring of vital parameters via a bioradar is fundamental during search and rescue
operations in crisis scenarios (e.g., earthquakes, avalanches, etc.) because it could be exploited to save
human lives. Moreover, it can be exploited to detect stationary or moving subjects hidden behind
building walls [4].

Recently non-contact microwave based transceivers have been also proposed in the biomedical
field as diagnostic tools [5,7,9]. Indeed, the contactless monitoring of heartbeat and breathing
parameters is crucial in the case of burnt patients or patients where on-body sensors cannot be
applied. In sleep medicine, bioradars enable the monitoring of respiration and heartbeat patterns
during night sleep in order to diagnose sleep apnea syndrome [9]. Some other application examples
of bioradar in healthcare are the detection of sudden infant death syndrome [2], tumor tracking in
radiation therapy [2], and imaging of cardiac motion [10]. Another important innovation regards the
possibility to gain information about breathing signals by using multisensory information provided by
the multistatic UWB radar, which takes the form of impulse radios and comprises one transmitting
and four separated receiving antennas [11].

The main goal of this work is the evaluation of the metrological performance of a bioradar for
breathing rate estimation. Despite the large body of work available in the literature on the topic of
bioradar, the evaluation of the bioradar performance from the metrological viewpoint has received
low attention. In this respect, the measurement uncertainty of breathing rates evaluated from bioradar
signals is defined and analyzed. Furthermore, bioradar results are compared with data recorded by
a spirometer, which is a standard medical device that measures the air volume inhaled and exhaled
by the subject [12]. Additionally, the field levels emitted by the bioradar equipment are characterized
in order to check their compliance with current regulations on the limits of human exposure to
electromagnetic fields.

The paper is organized as follows. Section 2 describes the measurement system and the
experimental tests. Section 3 deals with the measurement results related to the field levels radiated by
the bioradar and the comparison between the bioradar and spirometer breathing rates. In Section 4,
the standard measurement uncertainty of the bioradar breathing rate is defined and evaluated.
Concluding remarks follow in Section 5.

2. Bioradar Prototype

The bioradar system considered in this study is a continuous-wave Doppler radar with quadrature
receiver, as shown in Figure 1. The radar has been developed at IREA-CNR by using commercial
off-the-shelf radio-frequency components. The system has an approximate size of 284× 184× 252 mm3

and operates at discrete frequencies in the range between 1.8 and 3 GHz [13,14]. The radio signal
emitted by the source is split into two equal parts: one part is radiated and the other part is used
to generate two reference signals with 90 degrees phase offset, which are used to down convert
the reflected signal at baseband. The outputs of the mixers are the in-phase (I) and quadrature (Q)
components of signal reflected by the subject. The baseband I and Q signals are finally amplified and
digitized for the later data processing. The system uses a single antenna (horn with 10 dB gain) thanks
to a circulator that decouples the transmit and receive channels. The system is equipped with software
and a graphical interface for managing the data acquisition and signal processing [13,14].

Several demodulation schemes have been proposed to exploit the information carried by the I
and Q signals [2,6,15–17]. For sake of simplicity, in this work, we select one between the I or Q signal
based on the highest peak-to-peak variation to get a satisfying sensitivity. After a band-pass filtering,
the breathing rate is estimated from the Fourier spectrum of the signal (e.g., see [17]).

Figure 1b illustrates the measurement set-up considered for this study. During the experiments,
an adult male subject sits in front of the radar breathing normally and, simultaneously to bioradar,
a spirometer records the air volume inhaled and exhaled by the subject. It is noticed that the spirometer
measures the magnitude of the airflow, which has a periodic behavior due to the inhalation and
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exhalation phases. A spectral analysis of the spirometer signal enables the defining of the reference
breathing rate.Remote Sens. 2017, 9, 996  3 of 10 
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Figure 1. Bioradar system. (a) The block diagram of the radar architecture; (b) Photo of the bioradar 
prototype. 
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Before exposing the human subject to the electromagnetic radiation, it was necessary to monitor 
the electromagnetic field levels generated in the environment by the radar equipment. In this respect, 
it must be recalled that current Italian regulation on the limits of human exposure to the 
electromagnetic fields [18] establishes that the electric field amplitude should not exceed 6 volts per 
meter, as summarized in Table 1. 

For the radar system under investigation, the field measurements were recorded in the horizontal 
plane on the main radiation lobe of the radar antenna. In particular, as shown in Figure 2a, the field 
levels were measured at three different points at progressively increasing distances from the aperture 
of the antenna: the center point corresponds to the radiation maximum in front the antenna and the 
left and right points correspond to the −3 dB (half-power) directions. In Figure 2a, we can see that the 
distances vary from 0 cm to 144 cm away from the horn aperture, at a fixed height of 84 cm that 
complies with the central symmetry axes of the horn (Figure 2b). 

Figure 1. Bioradar system. (a) The block diagram of the radar architecture; (b) Photo of the
bioradar prototype.

3. Measurement Results

3.1. Electromagnetic Field Levels

Before exposing the human subject to the electromagnetic radiation, it was necessary to monitor
the electromagnetic field levels generated in the environment by the radar equipment. In this
respect, it must be recalled that current Italian regulation on the limits of human exposure to the
electromagnetic fields [18] establishes that the electric field amplitude should not exceed 6 volts per
meter, as summarized in Table 1.

For the radar system under investigation, the field measurements were recorded in the horizontal
plane on the main radiation lobe of the radar antenna. In particular, as shown in Figure 2a, the field
levels were measured at three different points at progressively increasing distances from the aperture
of the antenna: the center point corresponds to the radiation maximum in front the antenna and the
left and right points correspond to the −3 dB (half-power) directions. In Figure 2a, we can see that
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the distances vary from 0 cm to 144 cm away from the horn aperture, at a fixed height of 84 cm that
complies with the central symmetry axes of the horn (Figure 2b).

Remote Sens. 2017, 9, 996  4 of 10 

 

(a)

 
(b)
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(PMM 8051 model) shown in Figure 2b.  

As reported in Figure 3, for all the investigated frequencies equal to 2.1, 2.4, and 2.6 GHz, the 
electric field decreases versus distance and assumes values lower than 1 V/m for distances exceeding 
1m. Therefore, it was possible to proceed with the test campaign because the distance between the 
radar and the subject in the experimentation was greater than 1 m. 

Figure 2. Electromagnetic field measurement set-up. (a) Measurement points; (b) measurement probe.

Table 1. Limits of human exposure to electromagnetic fields [18].

Frequency Range RMS Electric Field (V/m) RMS Magnetic Field (A/m) Irradiance (W/m2)

0.1–300 GHz 6 0.016 0.10 (3 MHz–300 GHz)

The measurements were collected with the electric, magnetic, and electromagnetic field meter,
(PMM 8051 model) shown in Figure 2b.

As reported in Figure 3, for all the investigated frequencies equal to 2.1, 2.4, and 2.6 GHz,
the electric field decreases versus distance and assumes values lower than 1 V/m for distances
exceeding 1 m. Therefore, it was possible to proceed with the test campaign because the distance
between the radar and the subject in the experimentation was greater than 1 m.
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Figure 3. Electric field profile. (a) Frequency of 2.1 GHz; (b) Frequency of 2.4 GHz; (c) Frequency of 
2.6 GHz. 
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Figure 3. Electric field profile. (a) Frequency of 2.1 GHz; (b) Frequency of 2.4 GHz; (c) Frequency of
2.6 GHz.
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3.2. Experimental Results

The test campaign was performed with an adult male subject sitting in front of the radar at a
stand-off distance of 1.5 m. Three distinct operating frequencies were selected, 2.1, 2.4, and 2.6 GHz,
to assess the metrological performance of the bioradar system. Particularly, 10 independent datasets
were recorded at each frequency. For each dataset, the bioradar and the spirometer signals were
acquired simultaneously over a time window of 30 s.

The comparison between the bioradar and spirometer signals has demonstrated an excellent
agreement at each operating frequency as confirmed by the sample dataset reported in Figure 4.

The breathing rates measured for each frequency are reported in Table 2. The data show a good
match between two techniques, thus confirming that the bioradar is capable of detecting the breathing
rate with good accuracy.

This assertion is also supported by the curves of the relative percentage error shown in Figure 5.
In particular, it was found that the average error between bioradar and spirometer breathing rates is 3,
3.8, and 5%, for 2.1, 2.4, and 2.6 GHz frequencies, respectively.
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Figure 4. Comparison between bioradar and spirometer data, a one sample of test campaign for each 
frequency. (a) Comparison at 2.1 GHz; (b) Comparison at 2.4 GHz; (c) Comparison at 2.6 GHz. 
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Figure 4. Comparison between bioradar and spirometer data, a one sample of test campaign for each
frequency. (a) Comparison at 2.1 GHz; (b) Comparison at 2.4 GHz; (c) Comparison at 2.6 GHz.

Table 2. Breathing rates provided by bioradar and spirometer.

Test
2.1 GHz 2.4 GHz 2.6 GHz

Bioradar [Hz] Spirometer [Hz] Bioradar [Hz] Spirometer [Hz] Bioradar [Hz] Spirometer [Hz]

1 0.322 0.350 0.327 0.287 0.301 0.350
2 0.365 0.383 0.299 0.331 0.325 0.334
3 0.332 0.347 0.340 0.341 0.275 0.293
4 0.331 0.335 0.310 0.315 0.302 0.292
5 0.306 0.301 0.324 0.329 0.251 0.261
6 0.348 0.350 0.325 0.329 0.279 0.274
7 0.349 0.333 0.317 0.328 0.275 0.292
8 0.272 0.262 0.320 0.319 0.250 0.273
9 0.251 0.262 0.338 0.323 0.252 0.272
10 0.349 0.348 0.312 0.314 0.273 0.280
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4. Bioradar Measurement Uncertainty

After the test campaigns, we proceeded with the calculation of measurement uncertainty.
More specifically, we were interested in defining and evaluating the uncertainty of bioradar estimates
of breathing rates.

It is well-known that the measurement standard uncertainty is computed as the sum of two
contributions [19]: the first one uA estimated by performing the statistical analysis of the set of
performed measurements; the second one uB is based on scientific judgment using all of the relevant
information available about the measurement. Finally, using a coverage factor of 2 which gives a
level of confidence of approximately 95%, the expanded uncertainty is calculated as the double of the
composed uncertainty, i.e.,

Ue = 2
√

u2
A + u2

B (1)

As regards the first contribution uA, it is evaluated as the arithmetic mean

uA(xi) =
si√
ni

(2)

where si is the experimental standard deviation

si =

√√√√∑ni
q=1
(
xiq − xi

)2

(ni − 1)
(3)

Let us assume that n statistically independent observations (n > 1), xiq is the measured value,
xi the average value of the measured value.

The second contribution uB can be evaluated under some assumptions, considering an interval
[ximin, ximax] where the uncertainty has the same value in each points. Thanks to this hypothesis, it is
possible to consider a uniform distribution of probability in the interval of width ximax − ximin equal to

uB(xi) =
ximax − ximin

2
√

3
(4)

where ximax and ximin are the maximum and minimum of measured values for each frequency.
These values are reported in the following table (Table 3).

Table 3. ximax and ximin values of bioradar system.

Bioradar Frequency 2.1 GHz 2.4 GHz 2.6 GHz

ximax 0.365 Hz 0.340 Hz 0.325 Hz
ximin 0.251 Hz 0.299 Hz 0.250 Hz

In Table 4, the estimated values for the expanded uncertainty of the bioradar system are reported,
for each frequency, together with the average breathing rates.

Table 4. Measurement results plus uncertainty value.

Bioradar Frequency 2.1 GHz 2.4 GHz 2.6 GHz

Measured value ± uncertainty (0.320 ± 0.06) Hz (0.321 ± 0.02) Hz (0.270 ± 0.04) Hz

5. Conclusions

In this paper, an electromagnetic bioradar for measuring the human respiratory rate has been
characterized and compared to a standard medical device. Both the devices allow monitoring the
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frequency of human breathing, which may suffer from disturbances, especially in the nocturne phase
during long isolation as in a space mission.

Before proceeding with the experimentation, the field levels radiated by the bioradar have been
measured in order to check their compliance with the limits of human exposure to electromagnetic
fields imposed by current regulations. The analysis of recorded data has confirmed that the field levels,
used to gain information about breathing activity, are lower than the threshold imposed by law for
stand-off distances greater than one meter. This allows us to consider bioradar as a safe alternative
solution to standard medical devices.

The quality of breathing rates obtained with the bioradar has been assessed from the metrological
viewpoint. An interesting result has been achieved by the calculation of the measurement uncertainty.
Specifically, the uncertainties are less than or equal to 20% of the reading value, in the worst case.
Such uncertainty values account for the natural physiological variations of the respiratory rate.
An uncertainty reduction is achieved by increasing the operation frequency of the radar. On the
other hand, the average errors between bioradar and spirometer breathing rates are 3, 3.8, and 5% at
2.1, 2.4, and 2.6 GHz, respectively. Therefore, although increasing the frequency allows improving the
bioradar sensitivity (i.e., the chest’s displacement becomes larger in terms of wavelength), this does not
necessarily lead to more accurate results, most likely because the bioradar operation is quite sensitive
to small and random body movements.
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