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Abstract: Various applications have utilized a mobile mapping system (MMS) as the main 3D urban
remote sensing platform. However, the accuracy and precision of the three-dimensional data acquired
by an MMS is highly dependent on the performance of the vehicle’s self-localization, which is
generally performed by high-end global navigation satellite system (GNSS)/inertial measurement unit
(IMU) integration. However, GNSS/IMU positioning quality degrades significantly in dense urban
areas with high-rise buildings, which block and reflect the satellite signals. Traditional landmark
updating methods, which improve MMS accuracy by measuring ground control points (GCPs)
and manually identifying those points in the data, are both labor-intensive and time-consuming.
In this paper, we propose a novel and comprehensive framework for automatically georeferencing
MMS data by capitalizing on road features extracted from high-resolution aerial surveillance data.
The proposed framework has three key steps: (1) extracting road features from the MMS and
aerial data; (2) obtaining Gaussian mixture models from the extracted aerial road features; and
(3) performing registration of the MMS data to the aerial map using a dynamic sliding window and
the normal distribution transform (NDT). The accuracy of the proposed framework is verified using
field data, demonstrating that it is a reliable solution for high-precision urban mapping.

Keywords: mobile mapping system; airborne imagery; airborne laser scanning; point cloud; lidar;
urban; road marking; 3D map; landmark update

1. Introduction

With their ability to obtain high-definition information about 3D environments, various applications
have used a mobile mapping system (MMS) as the main urban remote sensing platform. Such applications
include 3D map reconstruction for intelligent vehicle navigation and control [1–4], 3D city modeling [5–7],
city visualizations [8], road asset inventories [9], railway modeling [10], vegetation detection and urban
forest inventories [11–13]. As the primary provider of static environment information for the intelligent
vehicles, maps constructed through MMSs have even been considered as “virtual sensors” [14] that
would enable long-distance autonomous navigation [15]. Advanced driver assistance systems (ADAS),
which protect drivers and passengers through active, integrated safety, require maps to include precise
sub-road details, such as the position and topology of pavement markings and stop lines, which are
utilized for lane change assistance and lane departure warnings [16,17].

Vehicle self-localization is another application that is highly dependent on map accuracy and
precision. The main vehicle-based positioning technologies, such as global navigation satellite systems
(GNSSs), 3D light detection and ranging (lidar), and vision-based systems, can be assisted by access to
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a prior map. A 3D building map helps GNSSs address the signal blockage and reflection problems
caused by tall buildings in urban areas [18]. Another well studied positioning technique for urban
area is map matching based on lidar [19,20] and vision sensors [21]. This method can achieve high
positional accuracy relative to the prior map, but are dependent on map precision and accuracy for
global accuracy.

Here, an important question arises regarding how high-accuracy and high-precision maps should
be obtained in a time and cost-efficient way in dense urban areas with tall buildings and street canyons
when no prior map exists. An MMS is a valuable geo-information acquisition technology that is
specifically designed to provide fast and high-definition mapping of dense urban areas. However, its
ability to acquire high-precision 3D data is constrained by the vehicle’s positioning system. The position
and orientation system (POS) of an MMS depends on a tight integration between a high-end GNSS and
an inertial measurement unit (IMU) [22,23]. The 3D measurements acquired by the vehicle-mounted
laser scanners are georeferenced to the global coordinate system based on the POS data [24]. In urban
areas where the accuracy of GNSS/IMU degrades significantly, the quality of the collected data is
also affected.

The map required for many of the applications listed above should be both “accurate” and
“precise”. Figure 1 illustrates common definitions of accuracy and precision, the two principal terms
used in this type of mapping. Generally, the map is reconstructed by georeferencing multiple MMS
surveys. In urban areas, each MMS survey involves an independent error, and therefore the resulting
map would be neither accurate nor precise if no correction were performed (Figure 1a). In such cases,
the generated map cannot be used for any of the applications mentioned above. Instead, if corrections
were made, but the corrections were not able to limit the independent error from each survey to a
certain threshold, the resulting map would indeed be more accurate, but still not precise (Figure 1b).
Maps after applying the landmark update, which employs the reference ground control points (GCPs)
acquired by a total station survey to update the MMS data, with only a limited number of GCPs fit in
this category. In contrast, if the surveys are precisely registered, but global georeferencing were not
performed, the final map would be precise but not accurate (Figure 1c). Methods that use simultaneous
localization and mapping (SLAM), but without a global reference, fall into this category. In contrast, in
ideal conditions, if all points of each survey are georeferenced precisely to their correct global positions,
the resulting map would be both accurate and precise (Figure 1d). When a map is not globally accurate,
data obtained from the map cannot be fused or integrated with global information, such as GNSS
data. On the other hand, if the map is not precise, acquired data such as a vehicle position will be
imprecise as well. Throughout the article, the terms accuracy and precision are used according to the
above definitions.

Numerous studies have addressed MMS registration to improve the global accuracy of the
obtained data. One standard method is the landmark update [10,25]. In this method, the reference
GCPs are first measured by a field survey. Then, the reference points are handpicked in the MMS
data of each survey to calculate the position correction vector (PCV). In the next step, the vehicle
trajectory is updated by correcting the previously estimated vehicle positions using the PCVs. Finally,
the MMS data are regenerated with the new trajectory. Although this method can preserve some level
of accuracy, the data precision is limited by the number of GCPs. Unfortunately, acquiring GCPs is
a labor-intensive and time-consuming task. Various studies have used different methods to register
multiple MMS surveys to increase the precision. Gonzalez et al. [26] proposed a method based on
segmenting the highly reflective features to align multiple MMS surveys. In this approach, the global
accuracy of the resulting point cloud is limited by the accuracy of the reference survey. Yao et al. [27]
presented a method to register MMS point clouds to panoramic images based on a sensor constellation.
Because this method relies on the relationship between the global positioning system (GPS) and a
panoramic camera’s position and orientation, it is not suitable for deep urban areas where buildings
block the satellite signals.
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Figure 1. Visualized examples of the effects of the terms “accuracy” and “precision” in mapping (the 
red polyline is the ground-truth building footprint): (a) neither accurate nor precise; (b) accurate only; 
(c) precise only; and (d) both accurate and precise. 

Aerial and ground surveillance data are two complementary data sources for high-definition 3D 
urban modeling [28]. Previous studies have shown that aerial surveillance data are very 
advantageous in maintaining the quality of ground surveys. Cheng et al. [5] proposed a method for 
performing automatic registration of airborne and vehicle laser point clouds based on 3D road 
networks and building contours. In this approach, the road networks were utilized for coarse 
registration, and the building contours were used for fine registration. However, because of the 
substantial difference between the two data, the combination of vertical and horizontal error cannot 
achieve better than 83 cm and 196 cm of mean and maximum error, respectively. Some other studies 
used airborne laser scanning (ALS) data to perform registration of terrestrial laser scanned (TLS) 
images [29–33]. However, because TLS has an entirely different error model compared to the MMS, 
the proposed methods cannot be applied to MMS calibration. Polewski et al. [34] proposed a method 
to combine the advantages of ALS and terrestrial photographs by co-registering the respective point 
clouds. They reported an average 2D position deviation of 66 cm in forested areas. 

Another approach for using aerial surveillance data to achieve global consistency involves 
Lidar-based simultaneous localization and mapping (SLAM), which employs aerial images as prior 
information. Kuemmerle et al. [35] inserted the correspondences found between the range data and 
the aerial images as constraints into a graph-based formulation for SLAM. 

Figure 1. Visualized examples of the effects of the terms “accuracy” and “precision” in mapping (the
red polyline is the ground-truth building footprint): (a) neither accurate nor precise; (b) accurate only;
(c) precise only; and (d) both accurate and precise.

Aerial and ground surveillance data are two complementary data sources for high-definition 3D
urban modeling [28]. Previous studies have shown that aerial surveillance data are very advantageous
in maintaining the quality of ground surveys. Cheng et al. [5] proposed a method for performing
automatic registration of airborne and vehicle laser point clouds based on 3D road networks and
building contours. In this approach, the road networks were utilized for coarse registration, and the
building contours were used for fine registration. However, because of the substantial difference
between the two data, the combination of vertical and horizontal error cannot achieve better than
83 cm and 196 cm of mean and maximum error, respectively. Some other studies used airborne laser
scanning (ALS) data to perform registration of terrestrial laser scanned (TLS) images [29–33]. However,
because TLS has an entirely different error model compared to the MMS, the proposed methods cannot
be applied to MMS calibration. Polewski et al. [34] proposed a method to combine the advantages
of ALS and terrestrial photographs by co-registering the respective point clouds. They reported an
average 2D position deviation of 66 cm in forested areas.

Another approach for using aerial surveillance data to achieve global consistency involves
Lidar-based simultaneous localization and mapping (SLAM), which employs aerial images as prior
information. Kuemmerle et al. [35] inserted the correspondences found between the range data and
the aerial images as constraints into a graph-based formulation for SLAM.
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Gruen [36] utilized 169 manually extracted GCPs from the geo-referenced UAV images to
update the MMS data in a 2.2 km2 area. Tournaire et al. [37] proposed an image-based strategy
for georeferencing an MMS in an urban area that employed multi-view aerial images and “zebra
markings” for registration. However, because their proposed method and results were preliminary,
they did not perform a registration of single or multiple MMS surveys to evaluate the performance.
Hussnain et al. [38] proposed a method that maintains the accuracy of an MMS by performing an
automatic registration of a rasterized point cloud to aerial image tiles. Although they reported a
pixel-level accuracy, a comparison between the proposed method and manually measured road
markings shows greater errors in the least accurate results. Similarly, Jende et al. [39,40] adopted
feature-matching techniques to perform registration of mobile mapping images to corresponding aerial
images, but they did not report the accuracy and performance of their method. Our previous work [41]
showed preliminary results of the registration of MMSs to aerial images utilizing road markings, in
which the proposed framework was semi-automatic and fixed-length windows were used for the
registration. However, that prior work lacked a quantitative evaluation of the georeferencing error.

In this study, we aim to design a fully automated framework to conduct accurate and precise
mobile mapping of urban areas by employing the road markings obtained from high-resolution aerial
imagery. The proposed framework achieves MMS georeferencing by: (1) extracting road features
from the MMS and aerial data; (2) generating Gaussian mixture models from the aerial road features;
and (3) registering the MMS point cloud to the aerial reference using a dynamic sliding window
and normal distribution transform (NDT). We evaluated the accuracy of the proposed framework by
applying it to the Hitotsubashi region in Chiyoda-ku, Tokyo, Japan, a dense and complex urban scene.
The results demonstrated that the proposed framework provides a reliable solution for high-precision
urban mapping by georeferencing the MMS surveys with a mean error of 11.6 cm.

2. Methods

One unique characteristic of urban areas in well-developed cities is that the road pavement typically
features clear markings. Because both aerial imagery and ground-based MMS data capture these markings
clearly, they are suitable features to use for aligning urban MMS surveys. This section describes how we
developed an automatic framework for the georeferencing of the MMS surveys based on high-resolution
aerial surveillance data in which road features are considered as a registration reference. The proposed
framework takes multiple MMS surveys, ALS point cloud, and overlapping high-resolution aerial
images as input and provides accurate and precise MMS data as output. The proposed framework is
performed in the following sequence. First, road markings are extracted from both aerial images and
MMS point clouds. Next, a Gaussian mixture map is generated from the aerial road markings as a
reference. Then, each MMS survey is subdivided into fixed-length short patches, and finally, the MMS
surveys are aligned to the aerial reference based on the registration results from the road markings.
To overcome the problem of roads obscured by buildings in the aerial images, which is called relief
displacement and complicates road marking extraction, a perspective occlusion map is generated
for each image using ALS and the image’s position and orientation. In addition, overlapping aerial
photographs (forward overlap) are considered to exclude moving vehicles which can be mistakenly
extracted as road features. For the registration, a dynamic-length sliding window is introduced over
each MMS survey to overcome distortion within the surveys. Figure 2 illustrates the overall flow of
the proposed framework.

2.1. Extracting Road Markings from Aerial Data

Aerial images in urban areas have some unique characteristics that make extracting road markings
difficult. In urban areas, the similarity between roads and surrounding objects is significant, because
roads, sidewalks, building roofs, and parking lots are made of similar materials, such as asphalt,
cement, and concrete, which have a similar appearance in the images [17]. Moreover, the images often
contain building edges, roof features, vehicles, and other structures that can look like road markings in



Remote Sens. 2017, 9, 975 5 of 30

the image, but are not (see Figure 3a–h). Furthermore, road obstruction by tall buildings due to the
relief displacement is yet another challenge. Therefore, it is necessary to develop an automatic and
thorough system that more correctly extracts road marking features for the registration to address the
effects described above.

Remote Sens. 2017, 9, 975  5 of 30 

 

an automatic and thorough system that more correctly extracts road marking features for the 
registration to address the effects described above. 

table

 
Figure 2. The overall workflow of the proposed framework. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 3. Sample road markings in the aerial images of the Hitotsubashi area in central Tokyo. Some 
of the problematic areas are highlighted by the red dotted rectangles. 

In this paper, the input aerial images are calibrated, distortion-free, and georeferenced by 
company as a product. The main techniques used to extract the road markings from aerial data 
include road segmentation by generating a perspective occlusion map, road recovery by filtering 

Figure 2. The overall workflow of the proposed framework.

Remote Sens. 2017, 9, 975  5 of 30 

 

an automatic and thorough system that more correctly extracts road marking features for the 
registration to address the effects described above. 

table

 
Figure 2. The overall workflow of the proposed framework. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 3. Sample road markings in the aerial images of the Hitotsubashi area in central Tokyo. Some 
of the problematic areas are highlighted by the red dotted rectangles. 

In this paper, the input aerial images are calibrated, distortion-free, and georeferenced by 
company as a product. The main techniques used to extract the road markings from aerial data 
include road segmentation by generating a perspective occlusion map, road recovery by filtering 

Figure 3. Sample road markings in the aerial images of the Hitotsubashi area in central Tokyo. Some of
the problematic areas are highlighted by the red dotted rectangles.

In this paper, the input aerial images are calibrated, distortion-free, and georeferenced by company
as a product. The main techniques used to extract the road markings from aerial data include
road segmentation by generating a perspective occlusion map, road recovery by filtering vehicles
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and occluding buildings using overlapping aerial photographs, and binary image production by
thresholding. These techniques are described in detail in the following sections.

2.1.1. Road Segmentation with Perspective Occlusion Maps and Boundary Maps

In this section, an automatic approach that defines the road segment accurately by filtering
buildings and their obstruction is proposed. In the aerial images, except for the structures at the
nadir (the center of an aerial photograph), vertical objects such as tall buildings appear to lean at
a certain angle. This angle increases with the distance from the nadir point, which is called relief
displacement. In combination with the knowledge that many building roofs have thick, sharp and
white edges, two problems arise: (1) original road markings on the pavement can be occluded by
the building perspectives; and (2) building roof edges can be mistakenly identified as road markings.
To avoid these problems, a perspective occlusion map (POM), which defines the areas occluded by
buildings, is generated for each aerial image based on the digital surface model (DSM) reconstructed
from ALS and the position and orientation of the aircraft at the moment of image acquisition. For the
DSM reconstruction through ALS, 2.5D Delaunay triangulation is performed, which projects the ALS
points in 2D on an XY plane and triangulates the corresponding points to generate a mesh structure
(Figure 4). Then, the points higher than a certain threshold are considered when generating the POM.
This threshold should be above ground height to ignore ground points and vehicles on the road surface
when generating the POM.
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Consider a set of triangles connected by their common edges or corners that representing the
DSM mesh. To reconstruct the POM, the DSM should be rasterized, which is done by projecting the
3D vertices of each off-ground triangle onto the 2D raster using perspective projection and filling all
the pixels covered by the projected 2D triangles (Figure 5a). The resolution of the POM is defined as
being equal to that of the aerial image. The aircraft’s position (cx,y,z) and orientation (ω, φ, κ), and
the camera’s parameters define the projection transformation. To define the 2D projection (x, y) of
each vertex (X, Y, Z), we first define the position of the vertex with respect to the camera’s coordinate
system (dx,y,z) using the following transform: dx

dy

dz

 =

 1 0 0
0 cos ω sin ω

0 − sin ω cos ω


 cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ


 cos κ sin κ 0
− sin κ cos κ 0

0 0 1



 X

Y
Z

−
 cx

cy

cz


, (1)
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where cx,y,z represents the 3D position of the camera installed on the aircraft. The transformed vertex
is then projected onto the 2D image using the following equations:

x = x0 −
f

dz
dx, (2)

y = y0 −
f

dz
dy, (3)

where f is the focal length and (x0, y0) indicates the image coordinates of the principal point. Figure 5c
illustrates the generated POM. To obtain clearer road segments, we also used a two-dimensional
boundary map of the constructed areas that is publicly available from the Geospatial Information
Authority of Japan (GSI). The final result of the road segmentation operation is shown in Figure 5d,
where the generated map filters all the buildings and their relief displacements effectively.
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2.1.2. Filtering Moving Vehicles from the Roads

When performing road marking extraction from aerial images, vehicles painted in light colors
can mistakenly be considered as road markings. Because the objective of road marking extraction is
to perform registration between ground and aerial data, the extraction does not need to be perfect.
Instead, the extracted road markings are considered as features for the registration operation. Therefore,
in areas with few road markings, missing a lane marking or mis-detecting a vehicle as a road marking
may have a significant effect on the registration result. In contrast, in areas with sufficient features,
such as intersections with zebra crossings, missing a few features will not affect the matching quality.
To obtain the best vehicle filtering result, machine learning methods might be ideal; however, we
did not have access to a sufficiently large and labeled data set to perform training appropriately.
Therefore, we applied a simpler method that uses overlapping aerial images to filter the moving
vehicles. If a vehicle is detected in the first image and it is moving, the probability that the same vehicle
will appear in the second image is low, and so on. The proposed solution takes two overlapping images
and compares the total of all RGB channel values for each pixel, then selects the color with a lower
luminance. Vehicles in the aerial images may appear between lane markings or on zebra crossings.
This simple method can not only filter all the vehicles that appear between lane markings but also
all the light-colored vehicles. However, parked vehicles cannot be filtered. Moreover, dark-colored
vehicles can obscure a portion of zebra crossings. Although this simple solution is imperfect, it is
sufficiently robust for our application. Figure 6 illustrates these steps.

2.1.3. Extracting Road Markings from Filtered Aerial Images

The road markings extracted from the aerial image are considered as references to be used in the
georeferencing of the MMS data. To obtain additional features for the registration, all types of road
markings and even signs on sidewalks were considered based on the intensity contrast between the
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markings and the background road surface. After a level adjustment of the image, adaptive Gaussian
thresholding was performed to extract the road markings. Figure 7 illustrates an example of road
markings extracted from an aerial image in bitmap format; the white pixels are the extracted road
markings and the black pixels are the background.
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2.2. Road Marking Extraction from MMS Data

Next, we need to extract similar road markings from the MMS point cloud data. Similar to the
procedure adopted for the aerial images, the first step is road segmentation. Then, the extraction
process is performed on each road segment. In addition to precise distance, most Lidar scanners
installed on the MMS also record the intensity, called the reflective luminance, which is a measure
of the return strength of the laser pulse that generated the point. The intensity value enables the
differentiation of different materials such as asphalt and pavement markings. The main flow of the
process to extract road markings from the MMS data includes road segmentation from the MMS point
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cloud using a cloth filter simulation, intensity calibration based on distance and incident angle, and
road marking extraction by intensity thresholding.

2.2.1. Ground Segmentation of the MMS Point Cloud

Ground segmentation from ground and airborne laser point cloud is a well-researched topic [10,42–44].
Curb-based road surface segmentation is a popular method for ground point extraction from MMS
data [45]. However, both road surfaces and sidewalks include signs and features suitable for matching.
Because pavement markings on both roads and sidewalks are extracted from aerial images, they
should also be considered in the MMS data. Therefore, the ground segmentation from MMS should
be able to extract both roads and sidewalks while excluding buildings and other ground structures.
For this purpose, a method based on the cloth filter simulation [46] is used for ground segmentation.
Figure 8 shows the result of ground segmentation in a part of MMS point cloud.
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ground segmentation. The red points represent the ground, and the blue points are off-ground.

2.2.2. Intensity Calibration Based on the Distance and Incidence Angle

The laser scanners installed on MMS can capture the received signal strength indication (RSSI)
of the returned signal (i.e., intensity/remission), which can be used to identify the material of the
reflecting surface. Various research groups have used this value to differentiate between asphalt and
painted parts of the road surface [45]. However, the reflected laser signal is significantly affected by
the scanning geometry, mainly the distance and the laser incidence angle to the target surface [47–50];
therefore, it cannot be directly used for road marking extraction. In MMS scanning, where the
distance between the scanner and target is relatively close, and the target surface is larger than the
footprint of the laser beam, the range dependence can be expressed as 1/R2, where R is the range [47].
Another important parameter is the incidence angle. The laser footprint increases significantly as the
incidence angle increases and, therefore, the quality of data is affected [51]. Although the effects of
distance and incidence angle on laser intensity would ideally be modeled individually, different laser
scanners from different manufacturers can show completely different responses [49]. The transmitted
energy, intensity bit depth, amplification of low-reflectivity surfaces, and aperture size are some
instrumental factors that affect the intensity measurements and differ between manufacturers.

In this paper, the intensity value is used to differentiate the painted areas of roads and sidewalks.
One road surface characteristic is flatness. As shown in Figure 9, when flat surfaces such as roads and
sidewalks are considered, the incidence angle of the laser beam decreases as the range increases. In this
case, we can consider the intensity changes of materials based only on the distance of the measured
point from the MMS scanner, which inherently includes the effect of the incidence angle.
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Figure 9. The effect of range and incidence angle on the shape of the laser footprint and the power of
the reflected signal. As can be seen, as the range increase and the incidence angle decreases, area of the
laser footprint increases, which degrades the quality of sampling.

The main idea of the intensity calibration is to normalize the intensity of both road markings
and asphalt surfaces based on the intensity characteristic of the asphalt. In that case, markings on the
pavement will have higher intensity compared to the asphalt background. Figure 10 shows the effect
of the distance (consisting the effect of incidence angle inherently) on the reflected intensity of the
asphalt surface of an experimental road using the laser installed on the MMS. In the proposed method
for the calibration of these two effects, the nonlinear least square curve fit is employed to model the
effect of a change in range and incidence angle, and then the fit curve is used to calibrate the intensity
using the following empirical model:

Ic =


R < R1 (IM × Ire f )/ fcurve(R)
R1 < R < R2 (IM × Ire f )/Im

R > R2 ignore
, (4)

where Iref and Ic present the reference and calibration intensities, respectively; IM and Im indicate the
maximum and minimum reflection of the asphalt surface; R, R1 and R2 are the reference range, first
and second predefined range threshold, consecutively; and fcurve indicates the fit curve acquired from
least square fit. The result of intensity calibration is illustrated in Figure 11.
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By increasing distance, the angle of incidence inherently decreases. The red curve illustrates the curve
fit to the relation between distance and intensity using a nonlinear least squares fitting method.
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As shown in Figure 11, the proposed method works well for horizontal road surfaces, but the
intensity of the curbs and low vegetation can be overestimated.
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2.2.3. Road Marking Extraction

After calibrating the intensity, we should extract similar road markings from the MMS point
cloud for the registration step. MMS road markings are derived by applying the adaptive thresholding
procedure. Figure 12 shows a sample of the road markings extracted from an MMS point cloud,
where the white points are the road markings. As can be seen, some curbs and vegetation close to the
sidewalks are detected as road marking due to overestimation of the intensity in the previous step.
However, those little misdetections do not affect the registration step, and can be neglected here.
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2.3. Registration

Thus far, we have obtained the road markings from both aerial images and MMS surveys. The final
step is to perform accurate and precise registration of each MMS survey to the aerial image. We have
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two different input formats. The first input is the aerial road markings in the form of a two-dimensional
bitmap image, while the other input consists of MMS road markings in a three-dimensional point cloud
format. To perform the registration, we proposed a method based on a dynamic-length sliding window
and NDT. In this approach, a Gaussian mixture map is first generated from the aerial road markings as
a reference. Then, the sliding window is shifted over the patch-wise cropped MMS road markings to
consecutively perform the registration of each MMS survey. Finally, the obtained registration result is
employed to align the original MMS point cloud and image data.

2.3.1. Generating an NDT Map from Aerial Road Markings (Reference)

The main idea behind the NDT is to represent the observed spatial information as a Gaussian
mixture model [52–54]. To prepare the reference data for the registration, the bitmap image of the
airborne road markings is divided into a uniform grid with a predefined cell size. Assuming that the
set of all n points within the cell cij, {p1, p2, . . . , pn | pk = (xk, yk)}, has been drawn from a normal
distribution N(µ, Σ), the maximum-likelihood estimate of the mean (µ) is defined as follows:

µ =
1
n

n

∑
i=1

pi, (5)

and the maximum-likelihood estimator of the covariance matrix (Σ) is defined as

Σ =
1

n− 1

n

∑
i=1

(pi − µ)(pi − µ)T . (6)

Figure 13a,b illustrates the representation of the estimated Gaussian distributions for 1D and 2D
cells. Figure 13c shows a part of the aerial road markings, and the generated Gaussian mixture map is
shown in Figure 13d. The probability of observing a road marking at a particular 2D coordinate of the
cell cij is derived from the following equation:

P(p) ∼ e−
(p−µij)

T Σ−1
ij (p−µij)

2 , (7)

where p represents the 2D coordinate (x, y) of the point.
The size of the NDT grid is an important parameter for the registration process. If the grid size

selected is larger than the ideal dimension, the defined probability density function for the cell may
not provide a good representation of the points included in the cell. In contrast, if the selected grid
size is too small, each grid will capture only a few of the input road-marking points and only a few
grids will have a Gaussian distribution [55]. Therefore, a small error will cause the input points to lie
outside the corresponding reference grid.
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2.3.2. Dynamic Sliding Window over MMS Patches (Input)

The original MMS surveys are generated by a direct georeferencing technique that registers the
Lidar measurements using the positions and orientations acquired from deeply coupled GNSS, IMU
and odometer measurements [56]. Thus, each survey is made from thousands of scan lines where the
relative positioning accuracy between two consecutive scan lines is at a centimeter-level. Figure 14
illustrates the definitions of the laser scan line and MMS survey. The absolute accuracy of the survey is
defined by the continuous quality of the scan line registration, which is affected by satellite visibility,
the performance of the IMU, and driving conditions. In deep urban areas where tall buildings and other
structures surround the streets, the GNSS/IMU positioning accuracy is significantly degraded. In this
case, the overall accuracy of each MMS survey is mainly affected by the error budget of GNSS/IMU
integration [57], which sometimes exceeds a few meters.
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The relative error within each scan line is centimeter-level; therefore, the scan line can be
considered as a rigid-body during the registration. However, due to the uncertainty in the bias
of the IMU, a survey consisting of thousands of scan lines cannot be treated as a rigid-body. Ideally,
to obtain a high-accuracy point cloud from the survey, every single scan line should be aligned to
its correct absolute position based on the road features. However, a single scan line provides only a
few recognizable features for the registration. To overcome this problem, rather than considering the
scan line as the unit of registration, short and fixed-length patches consisting of several grouped scan
lines are considered. The size of the patch should be defined based on the precisions of the IMU and
the odometer to limit the relative error between the points within a patch (e.g., 1 cm relative error).
To obtain the patches, the proposed method subdivides each MMS survey as shown in Figure 15.
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These short pieces still do not contain sufficient road markings, especially to accomplish
longitudinal registration. Thus, to define the position of the target patch, we consider a window
that includes tens of patches around the target patch. This window should be sufficiently large to
cover an adequate number of features for the registration process. The length of the window is an
important parameter to achieve the required quality. If the length is too short, registration quality will
suffer from a lack of road markings in the window. On the other hand, if a long window is adopted to
cover more road markings, the relative accuracy of the scans inside the window will decrease due to
the uncertain bias error of the IMU, which significantly degrades the quality of the matching. In this
paper, instead of defining a fixed-length window, we set the window length dynamically based on the
availability of a sufficient number of road marking features within the window. The concepts of the
patches, a target patch, the dynamic window and features are illustrated in Figure 15.

The window length is defined for each target patch based on three predefined factors: (1) patch
length; (2) initial window length; and (3) required feature count. Initially, the window is defined to
include a predefined number of patches. Then, the length of the window is extended by adding new
patches until it covers the required number of features. Finally, the window is registered to the aerial
image to calculate the transformation matrix, which aligns the target patch. After each registration, the
obtained transformation matrix is stored, and the window shifts to the next patch, where its length is
redefined based on the new environment.

In contrast, the patch length is fixed and is considered as the unit of the registration. On one hand,
choosing a long patch limits the achievable accuracy. On the other hand, the registration accuracy
is limited by the aerial image’s resolution. Therefore, even very small patches cannot improve the
accuracy beyond a certain level, but very small patches increase the processing time. Thus, a relatively
short patch length should be chosen to maintain high accuracy within a reasonable processing time.
Theinitial window length defines the initial number of patches around the target patch, but the required
feature count defines whether the initial window should be extended. To count the existing features in
a window, we subdivide the window into feature grids and calculate the number of occupied cells (five
or more points). If the occupied cells exceed the required feature count, the window length is sufficient.
If not, a new patch is added to the end of the window, and the number of occupied cells is recalculated.
This cycle repeats until the window covers the required number of features. Figure 16 illustrates these
steps in sequence. Using the proposed method, the window length will increase in areas where only
a few road markings are available. This enables a robust registration for such areas, in which other
methods cannot find a reliable approach to conduct the transformation between the mobile mapping
data and the aerial images. Moreover, at crossings where an abundance of road markings exists, the
window is kept small to achieve highly accurate matching.

Because the window length is much longer than the sliding interval (which is the patch length),
two consecutive scans have a large overlap. This overlap provides a smooth registration result.
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the number of occupied cells meets or exceeds the required feature count (right).
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2.3.3. Registration

In this section, we describe the registration of the sliding window over the MMS point cloud
(which is 3D) to the aerial road markings (which is 2D) using NDT matching at each step, which
defines the transformation of the target patch in the original MMS survey. To obtain the rotation Rz(θ)

and translation (Tx,y) of the 2D transformation matrix,

Mti =

[
Rz(θ) Tx,y

0 1

]
, (8)

which is applied to the target patch ti to generate the aligned patch,

t′ i =

[
cosθ −sinθ

sinθ cosθ

]
ti +

[
Tx

Ty

]
, (9)

the window Wti = {
→
wti1 , . . . ,

→
wtin} should be registered to the aerial road markings.

To register the window Wti , the points inside it are first subsampled and then transformed to
absolute coordinates based on an initial guess. While the initial guess for the first window is obtained
through GNSS/IMU estimation, the transformation matrix of the previous window Mti−1 is applied to
the GNSS/IMU position of the current target patch ti to form the initial guess for the Wti . To estimate
the matching score, a Gaussian mixture model is used instead of a normal distribution to limit the
effect of outliers, which significantly decrease the output of the normal distribution [53]. Therefore,
instead of Equation (7), a mixture of uniform and normal distribution is used:

Ṕ(
→
x ) = c1P(

→
x ) + c2P0, (10)

where P0 is the expected rate of the outliers, and the constants c1 and c2 are defined to normalize the
distribution. Finally, the score of the point

→
x k ∈ W ′ti is calculated by applying it to the log-likelihood

function and approximating it to derive the simplicity:

S(
→
x k) = d1exp(−d2

(
→
x k − µj)

T
Σ−1

j (
→
x k − µj)

2
), (11)

where j is the index of the closest Gaussian distribution, and d1 and d2 are obtained from c1 and c2.

Finally, the cost function of the window W ′ti = {
→
w′ti1 , . . . ,

→
w′tin}, the result of registering Wti , is defined

as follows:

C(W ′ti ) = −
n

∑
k=1

S(
→
w′tik ). (12)

Moreover, to optimize the cost function and achieve the best matching result iteratively, the
Newton optimization method is employed [53].

After obtaining the transformation matrix from the road-marking registration, the original MMS
data of the corresponding patch are calibrated based on the same matrix.

3. Experiment and Analyses

3.1. MMS, Aerial Surveillance System, and Experimental Area

In this section, the details of the MMS and aerial surveillance system, the two primary
data acquisition platforms used for the data collection, are described, and the experimental area
is introduced.
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3.1.1. Mobile Mapping System

For the MMS data collection of the experiments, we used an MMS-K320 system developed by
Mitsubishi Electrics. As shown in Figure 17, this system is equipped with two single-layer laser
scanners and three cameras to perform a 3D measurement of the surroundings, two single frequency
GPS receivers, one dual frequency GPS receiver, a high-end IMU, and an odometer for precise vehicle
self-localization. Two laser scanners, with 180◦ field of view, were configured to point up (pitch: +25◦)
and down (pitch: −25◦). The laser scanners collect reflective luminance, which is a measure of the
return strength of the laser pulse that generated the point. As we only need the road markings for
the registration, any other setup that can densely scan the ground surface and capture the pavement
markings is suitable for the experiments.

Remote Sens. 2017, 9, 975  16 of 30 

 

registration, any other setup that can densely scan the ground surface and capture the pavement 
markings is suitable for the experiments. 

 
Figure 17. MMS system description: Mitsubishi Electric’s MMS-K320 (bottom); and the configuration 
of two SICK LMS-511 laser scanners and RTK GPS receivers (top). 

3.1.2. Aerial Surveillance System 

Our aerial surveillance system was equipped with a medium format single head camera (Leica 
RCD30 series 80 MP multispectral imagery) installed in a direct down-facing position to acquire the 
high-resolution imagery, a Lidar system (Leica ALS70-HP) with a 500 kHz pulse rate for 3D urban 
mapping, and a high-end GNSS/IMU for positioning. The aircraft altitude in the experiments was 
more than 1700 m, the ground sampling distance (GSD) of the acquired aerial images was equal to 
12 cm, and the point density of the obtained ALS point cloud was less than 10 pts/m2. Figure 18 
shows the aerial system. Table 1 lists the details of the sensor platforms. 

(a) (b)

Figure 18. Aerial surveillance system description: (a) the aircraft used for aerial data collection; and 
(b) the sensor setup for the aerial imagery. 

  

Figure 17. MMS system description: Mitsubishi Electric’s MMS-K320 (bottom); and the configuration
of two SICK LMS-511 laser scanners and RTK GPS receivers (top).

3.1.2. Aerial Surveillance System

Our aerial surveillance system was equipped with a medium format single head camera (Leica
RCD30 series 80 MP multispectral imagery) installed in a direct down-facing position to acquire the
high-resolution imagery, a Lidar system (Leica ALS70-HP) with a 500 kHz pulse rate for 3D urban
mapping, and a high-end GNSS/IMU for positioning. The aircraft altitude in the experiments was
more than 1700 m, the ground sampling distance (GSD) of the acquired aerial images was equal to
12 cm, and the point density of the obtained ALS point cloud was less than 10 pts/m2. Figure 18 shows
the aerial system. Table 1 lists the details of the sensor platforms.
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Table 1. Details of the sensor platforms employed for the experiments.

Item Value

MMS *

Laser Scanner

Manufacturer (Model) SICK (LMS-511)
No. mounted 2 single layer lasers

Mounting direction CH1: Front/Down (−25◦), CH2: Front/Up (25◦)
Intensity Can be acquired

No. of points 27,100 points/s (1 unit)
Range (max.) 65 m

Viewing angle 180◦

Camera

No. mounted 3
No. of pixels 5 megapixels

Max capture rate 10 images/s
View angle Wide viewing angle (h: 80◦, v: 64◦)

Localization platform Manufacturer Mitsubishi Electrics
Method RTK-GPS/IMU/odometer

Self-positioning accuracy *1 Within 6 cm (rms) *4,*5

Relative accuracy data *2 Within 1 cm (rms)

Absolute accuracy data *1,*3 Within 10 cm (rms)

Aerial system

Flying height ~1700 m

Laser Scanner

Manufacturer (Model) Leica (ALS70)
Mounting direction Direct-down

Intensity Can be acquired
Max measurement rate 500 kHz
Point cloud density *6 Less than 10 pts/m2

Field of view ~75◦

Camera

Manufacturer (Model) Leica (RCD30)
Mounting direction Direct-down

No. of pixels 80 MP (10,320 × 7752 pixels)
Maximum frame rate 0.8 fps

Forward overlap 60%
GSD *7 12 cm/pixel

Localization platform Manufacturer (Model) Novatel (IMU-LN200)
Method GNSS/IMU

* www.mitsubishielectric.co.jp/pas/mms. 1 Assuming favorable GPS reception (rms: root mean square). 2 Relative
accuracy: the consistency of the coordinate values captured during mobile measurements. 3 Absolute accuracy:
the extent to which the coordinate values captured during mobile measurements match actual coordinate values.
4 Driving on a level road at a constant speed of approximately 40 km/h. 5 User must calibrate before each survey.
6 Point density is defined by the flying height of the aircraft and the scanner measurement rate. 7 GSD is defined by
the flying height of the aircraft and the camera resolution.

3.1.3. Experimental Area

To evaluate the performance of the proposed system, the MMS and aerial data were acquired
near Hitotsubashi, a dense urban area in the Chiyoda-ku area of central Tokyo, Japan (Figure 19).
Streets around the Hitotsubashi intersection are surrounded by tall buildings, trees, and traffic.
A survey on the number of Line-of-Sight (LOS) GPS satellites in this area showed that, two-thirds of
the time, less than four satellites were visible [58]. This shortage increases the positioning error to a few

www.mitsubishielectric.co.jp/pas/mms
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meters, which is unsuitable for precise mapping. Nine MMS surveys were performed to obtain ground
data of the area; the survey routes included multiple crossings, traffic flow, and road markings on the
pavement. The aerial survey was performed on 12 June 2014 (a cloudy day in spring), and the MMS
data were acquired on 20 April 2016 (a sunny day in spring). If the road markings are substantially
altered or repainted to a different position after obtaining the aerial image, the registration performance
will be affected. In our data, a few parts of the road markings were repainted after 12 June 2014
(the date of the aerial image acquisition). To simplify error interpretation, we manually updated the
aerial road markings of those areas based on the newer observations, and report the effect of these
road-marking changes on the performance of the framework separately.
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Tokyo, Japan.

3.2. Experimental Parameters

This section provides an overview of the experimental parameters used for the final evaluation.
Table 2 lists the parameters.

Table 2. Summary of the parameters applied in our experiment.

Parameters Value Description

POM Generation
Height threshold 5 m (above the ground) Defined based on the maximum height of

the vehicles

Resolution 12 cm/pixel Equal to the GSD of the aerial image

MMS ground
segmentation

Cloth resolution 2 m Larger grids do not cover the ground well
(set empirically)

Max iteration 1000 More than 500 is suggested

Classification threshold 20 cm If the cloth resolution is set correctly, small
values give suitable results

Adaptive thresholding
Block size 2.5 m (21 pixels) Empirically defined

Threshold weighted mean—c c = 17 empirically defined

Dynamic sliding window

Patch length 0.5 m Defined based on IMU performance to limit the
error within 1 cm

Window length Dynamic -

Initial window length 60 patches Equal to 30 m (60 × 0.5 m)

Feature grid size 1 m Empirically defined

Required feature count 400 Empirically defined

NDT registration
NDT grid size 1 m

Defined to be smaller than the distance
between the lane markings and signs in the
middle of the lanes

NDT iterations 30 Should be high enough to let the NDT
converge (set empirically)
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3.3. Results

Nine MMS surveys were georeferenced using the proposed framework. The survey routes are
shown in Figure 20. All the computations were conducted on an off-the-shelf PC with an 8-core,
3.50 GHz Intel Xeon E3-1270 V2 CPU and 16 GB of RAM running the 64-bit version of the Ubuntu
16.04 operating system. The average time required to apply the framework was 0.94 s per meter per
survey, which included the registration, visualization, georeferencing of the original data, and saving
the updated data. We successfully calibrated all nine surveys using the proposed framework.
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Figure 20. Routes of the nine surveys S01–S07 on the map. The colors show the estimated GPS error
reported by MMS.

Figure 21 illustrates the performance of the proposed method for survey No. 6 visually.
The survey’s length was approximately 557 m. In this figure, the color of the MMS point cloud
represents the intensity of the lidar reflection. In Figure 21b, the aerial road markings are highlighted
in red to show the shift between the aerial image and MMS data before registration. The MMS data
and aerial image clearly overlap (Figure 21c).
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the operator to increase the accuracy of data collection. Usually, when the operators are notified that 
the localization error exceeds 2.5 m, they should suspend the survey and move the vehicle to a 
location with sufficient satellite signals and wait for the convergence. Then, the survey must be 
restarted from the beginning. However, in dense urban areas like Hitotsubashi intersection, in most 
cases, even after a move to an open-sky area to cause GPS convergence, the error would exceed 2.5 
m before the vehicle arrived back at the start point of the survey. Figure 22 shows the estimated GPS 
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Figure 21. Visual evaluation of the proposed method for survey No. 6: (a) survey route of the MMS
on the aerial image (after registration); (b) enlarged view of the original MMS point cloud before
registration (the red points are aerial road markings); and (c) enlarged view of the MMS point cloud
after applying the proposed method (the red points are aerial road markings).

4. Discussion

The MMS-K320 is able to report the estimated localization error during the experiment to allow
the operator to increase the accuracy of data collection. Usually, when the operators are notified that
the localization error exceeds 2.5 m, they should suspend the survey and move the vehicle to a location
with sufficient satellite signals and wait for the convergence. Then, the survey must be restarted from
the beginning. However, in dense urban areas like Hitotsubashi intersection, in most cases, even after
a move to an open-sky area to cause GPS convergence, the error would exceed 2.5 m before the vehicle
arrived back at the start point of the survey. Figure 22 shows the estimated GPS error for each of the
nine surveys.
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Figure 22. Estimated GPS error by MMS-K320 for each of the nine surveys.

To evaluate the performance of the proposed framework, 39 GCPs at the corners of road signs
were measured using the total station surveys in the area, and 136 virtual control points (VCPs) were
generated from the original GCPs and the aerial image. Figure 23 illustrates the GCP distribution in
the test field. Additionally, a labor-intensive landmark updating procedure was performed to allow
a comparison of the result with the proposed MMS georeferencing framework. For this purpose,
the original GCPs were manually picked from the MMS point cloud using software provided by the
Aisan Technology Co., Ltd. (Nagoya, Japan) to obtain the calibrated point cloud. The 2D error d was
calculated for all VCPs using the following equation:

di =
√
(XVCPi − xi)

2 + (YVCPi − yi)
2, (13)

where (XVCPi , YVCPi ) is the 2D coordinate of the ith VCP, and (xi, yi) is the coordinate of the point
corresponding to the ith VCP in the MMS point cloud. For the quantitative evaluation, the mean,
maximum and standard deviation of the calculated 2D error are reported for the original MMS data,
landmark updating and the proposed approach.
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Figure 23. Distribution of the GCPs collected in the experimental area utilizing the total station survey.
The GCPs are from the corner points of road signs, which are clearly captured by both the MMS camera
and the point cloud.
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Figure 24 shows a comparison of the proposed method, landmark updating and the original
MMS data for survey No. 6, which extended for 557 m from the north to the south of the Hitotsubashi
intersection. The proposed method successfully limited the average error to below 12 cm (the resolution
of the aerial image), while its maximum error was 20.6 cm. The average error of the landmark updating
method was 20.8 cm, while its maximum error exceeded 66 cm. The average error in the original data
was reported as 118.6 cm, and the maximum error exceeded 140 cm. As shown, the proposed method
outperformed the labor- and time-intensive landmark update, due to the availability of sufficient road
features and their relatively uniform distribution along the survey route. Table 3 summarizes the
compared results.
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Figure 24. The 2D error of survey No. 6 in the original data, after the landmark update, and after the
proposed method.

Table 3. Evaluation result of survey No. 6.

Method
Error (m)

Mean Max Stdev

Original data
(GPS/IMU/Odometer) 1.186 1.405 0.19

Landmark updating 0.208 0.664 0.11
Proposed method 0.102 0.206 0.05

In Figure 24, the landmark updating method resulted in higher accuracy than our method for a
few virtual control points, which are highlighted by red circles. In fact, the coordinates of those VCPs
are close to the original GCPs used for landmark updating. Because the objective of the landmark
updating technique is to update the vehicle’s trajectory to minimize the error in the incorporated GCPs,
it performs very well for areas around the GCPs. Therefore, its good performance was not unexpected.
However, the proposed method yielded a better performance in most cases.

The proposed framework depends on several variables and parameters. In particular, the final
registration step is sensitive to a variety of parameters such as the NDT grid size, the initial window
length, the required feature count, and the patch length. We evaluated the sensitivity of the proposed
framework to all four of these parameters. To simplify the interpretation of the error behavior, we
evaluated each parameter by assigning different values to it while using the default values for the
other parameters. Table 4 shows the registration result of survey No. 6 for various NDT grid sizes.
As shown, grid size plays an important role in registration quality.
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Table 4. The proposed framework’s sensitivity to different NDT grid sizes.

Item
Value

Proposed

NDT grid size * (m) 0.5 1 2 4
Mean error (m) 5.01 0.11 1.20 1.22

* All parameters other than the NDT grid size were selected based on Table 2.

On the one hand, when the grid size is too small (e.g., 0.5 cm), some grids will contain insufficient
points to calculate the Gaussian distribution. Therefore, some important road marking information
will not be used in the registration. On the other hand, if large grids are selected (e.g., 2.0 or 4.0 m),
a Gaussian distribution will not provide a good estimate of the local environment (i.e., road markings).
Figure 25 shows the Gaussian mixture models generated using different grid sizes.
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The window length is another parameter that affects the registration performance. Figure 26
illustrates how the length of the dynamic sliding window changed for survey No. 6.
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Tables 5 and 6 show how the initial window length and required feature count affect the window
length and the registration error, respectively. A short initial window length (e.g., 15 and 30 patches)
causes the registration to become sensitive to false positive features and decrease the matching accuracy.
On the other hand, a large initial window (e.g., 120 patches) with a fixed required feature count would
result in a long and static window length, which also affects the matching significantly. In the proposed
framework, the initial window length was set to 60 patches, which provides the dynamic windows
with a length of at least 30 m.

Table 5. Evaluation of the sensitivity of the framework to different initial window lengths.

Item
Value

Proposed

Initial window length * (patch) 15 30 60 120
Min win length (patch) 39 39 60 120

Mean win length (patch) 59.22 59.16 64.67 120
Max win length (patch) 95 95 95 120

Mean error (m) 0.80 0.52 0.11 3.34

* All parameters other than the initial window length were chosen based on Table 2.
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After selecting a suitable initial window length, the required feature count should be defined so
that it allows extension of the initial window in the absence of road markings. If the required feature
count is too small (e.g., 200), the window length will remain equal to the initial window length. On the
other hand, large feature counts (e.g., 600 or 800) will extend the window length disproportionately,
which decreases the matching accuracy (Table 6).

Table 6. Evaluation of the sensitivity of the framework to different numbers of required features.

Item
Value

Proposed

Required feature count * 200 400 600 800
Min win length (patch) 60 60 69 90

Mean win length (patch) 60 64.67 90.13 119.68
Max win length (patch) 60 95 130 165

Mean error (m) 2.37 0.11 0.72 3.58

* All parameters other than the required feature count were chosen based on Table 2.

Finally, the patch length is important to obtain a smooth point cloud from the registration.
Figure 27 illustrates the georeferenced MMS point cloud using different patch lengths, where the initial
window length was set to 30 m to evaluate only the patch length change effect on the registration.
When the initial window length is defined by meters, the initial number of patches in a window
decreases by increasing the patch size. As shown, long patches (e.g., 2 and 4 m) result in a non-smooth
overlap between two consecutive patches (highlighted by red arrows). Although a smaller patch
length is preferred, smaller patch lengths linearly increase the execution time. Accordingly, the patch
length was set to 0.5 m, which provides both smooth registration and acceptable execution time.
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Figure 28 illustrates the overall performance of the proposed method for all nine surveys. In total,
the proposed method decreased the average MMS data error from 99.7 cm to 11.6 cm while limiting
the maximum error to 27 cm. The maximum error reported for the original data was 206 cm.

Figure 29 compares the overall performance of the proposed method with the landmark
update method for all nine surveys. As shown, the proposed method not only significantly
outperforms the traditional landmark updating method but also does not require the labor-intensive
and time-consuming work involved in the conducting the GCP survey and manually finding the
corresponding points in the data.
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proposed method.

Table 7 summarizes the overall performance of the proposed method in comparison with other
state-of-the-art methods. The main advantage of the proposed method compared to the work presented
in Kümmerle et al. [35] is its accuracy. In contrast, although we could achieve a higher accuracy than
Hussnain et al. [38], our method’s main advantage is that the proposed framework is robust to
temporary absence of road markings. Because Hussnain et al. used a feature-based registration
technique with fixed size windows (tiles), their method is susceptible to insufficient features during
registration. We overcame this challenge by applying dynamic overlapping sliding windows for
registration. The same group reported in Jende et al. [59] that they were able to obtain a reliable
transformation for fewer than 23% of their image tiles. In contrast, our framework achieved an
accurate registration for all nine surveys. However, the datasets used in these works are not the same,
thus a fair comparison is not possible.
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Table 7. Overall performance comparison.

Method
Error (m)

Mean Max Stdev

Original data (GPS/IMU/Odometer) 0.997 2.064 0.22
Landmark updating 0.208 0.72 0.16

Proposed method 0.116 0.277 0.07

Original data for [35] (Graph SLAM) 1.3 * 1.93 * -
Kümmerle et al. [35] 0.85 * 1.47 * -

Original data for [38]
(GNSS/IMU/Odometer) 2.13 ** 2.40 ** 0.13 **

Hussnain et al. [38] 0.18 ** 0.32 ** -

* The reported numbers are based on reports from the text and Figure 13 of the cited paper. ** The reported numbers
are extracted from Table 2 and Figure 18 of the cited paper. Because they reported only the accurate and least
accurate results using manually selected corner points in their aerial images, we estimated the mean and max values
using only the graph of those tiles.

The proposed method’s registration is based on the availability of sufficient road markings in
both MMS and aerial surveys. Therefore, it cannot be performed under certain conditions, e.g., under
bridges or on streets without road markings. Additionally, significant changes to road markings after
the aerial survey, because of reconstruction or repainting to different positions, will affect the quality
of the registration. However, the proposed method is robust to small changes. Figure 30 illustrates
the areas of this study where the road markings were repainted after the aerial image acquisition.
To assess the effect of these road-marking changes, we also performed survey registration using the
original aerial image (which included outdated road markings rather than the updated versions).
In that case, the maximum error increased from 27 cm to 52 cm, but the average error increased by only
1 cm. In recent years, aerial surveys have become a popular method of acquiring data for different
applications. Therefore, different companies have begun providing regularly updated aerial data of
cities, making the proposed framework a promising scheme for accurate urban mapping.
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5. Conclusions

In this paper, we have presented a novel and thorough framework for automatic georeferencing of
mobile mapping system (MMS) data that is specially designed for urban areas. First, road markings are
extracted from high-resolution aerial images based on a perspective occlusion map (POM) and adaptive
thresholding. The POM is generated by perspective projection of the digital surface model (DSM) obtained
from airborne laser scanning (ALS) data. Moving vehicles, which could be mistakenly extracted as road
markings, are filtered by comparing overlapping aerial photographs. Then, similar road markings
are extracted from an MMS point cloud to perform registration by road segmentation, laser intensity
calibration and adaptive thresholding over intensity value. Finally, the MMS georeferencing was
achieved by performing a precise registration of each MMS survey to the aerial reference, utilizing a
dynamic overlapping sliding window and a normal distribution transform (NDT). In urban areas, the
quality of global navigation satellite system (GNSS) measurements is significantly degraded due to
blockages and reflection of the satellite signals. Therefore, integrated GNSS/IMU positioning has a
significant error with considerable uncertainty. In such cases, a single MMS survey cannot be treated as
a rigid body for the registration. The proposed dynamic sliding window-based registration overcomes
this problem by keeping the window length as short as possible based on the availability of road
markings in the target area. The experimental results from several surveys in a dense urban area
in Tokyo were employed to assess the performance of the proposed method. In total, the proposed
method could decrease the average MMS data error from 99.7 cm to 11.6 cm, while it reduced the
maximum error from more than two meters to 27 cm. These results indicate that the proposed method’s
performance is even better than that of the labor-intensive and time-consuming landmark update
process, yet the proposed method does not require a field survey to acquiring the ground control
points (GCPs) and avoids having to manually find those points in the point cloud data.

The current proposed framework performs a two-dimensional registration of the MMS data.
To achieve a high-definition 3D urban mapping, three-dimensional registration is desirable for some
applications. In future work, we will consider a three-dimensional calibration of the MMS data based
on the fusion of aerial images and ALS point clouds. After obtaining the 3D registration of the MMS
data, it can be combined with the aerial data to create large-scale 3D urban models.
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