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Abstract: A multi-layer classification approach based on multi-scales and multi-features (ML–MFM) 

for synthetic aperture radar (SAR) images is proposed in this paper. Firstly, the SAR image is 

partitioned into superpixels, which are local, coherent regions that preserve most of the 

characteristics necessary for extracting image information. Following this, a new sparse 

representation-based classification is used to express sparse multiple features of the superpixels. 

Moreover, a multi-scale fusion strategy is introduced into ML–MFM to construct the dictionary, 

which allows complementation between sample information. Finally, the multi-layer operation is 

used to refine the classification results of superpixels by adding a threshold decision condition to 

sparse representation classification (SRC) in an iterative way. Compared with traditional SRC and 

other existing methods, the experimental results of both synthetic and real SAR images have shown 

that the proposed method not only shows good performance in quantitative evaluation, but can also 

obtain satisfactory and cogent visualization of classification results.  

Keywords: sparse representation classification (SRC); multi-layer structure; multi-feature fusion; 

multi-scale; SAR image 

 

1. Introduction 

Synthetic aperture radars (SAR) can obtain stable image data as we are observing the planet 

Earth. It is not affected by light conditions and can be used day and night under various conditions 

[1,2]. In recent years, SAR image classification has received more attention as an important part of 

image understanding and interpretation. A considerable number of image classification algorithms 

have been proposed, such as support vector machine (SVM) [3], neural network (NN) [4], wavelet 

decomposition, and sparse representation classification (SRC) [5], etc. Among these existing methods, 

the traditional SVM and NN methods show high reliability in pattern recognition. However, the 

relevant computation cost is expensive, and they are easily affected by the selection of features. SRC, 

which is based on sparse representation and was proposed by Mallat and Zhang [6], has been proven 

to be an extremely powerful tool in image processing and can obtain good performance in the final 

processing results [7–15]. 

The basic ideas of SRC are the linear description hypothesis and spatial joint representation 

mechanism. This is based on the minimum residual between the original and the reconstruction 

signal. The sparse coefficients associated with the different classes are selected to reconstruct the 
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original signal. Actually, SRC cannot be directly applied to SAR image classification due to the 

imaging mechanisms of SAR being different to those of nature imagery. However, if an SAR image 

is transformed into a specific feature space, the SRC can be efficiently used in SAR image classification. 

A joint sparsity model (JSRM) is proposed based on SRC [16], in which the small neighborhood 

around the test pixel are represented by linear combinations of a few common training samples. 

Furthermore, the features cannot be represented well on a single scale, which results in the low 

accuracy of classification results. Neighboring regions of different scales correspond to the same test 

pixel and they should offer complementary and correlated information for classification. Different 

sizes of textures in an image have different performance in different scales. The hierarchical sparse 

representation-based classification (HSRC) [17] can solve the problem in a previous reference [16] to 

a certain extent, but the HSRC belongs to classification based on each pixel, which only depends on 

the selection of features in the spatial domain and the selected scale for each layer. This may lead to 

a loss or misrepresentation of information, resulting in poor classification accuracy and time-

consuming training requirements. 

In this paper, aiming to overcome the above-mentioned problems, we proposed a novel 

approach, which is called the multi-layer with multi-scale and multi-feature fusion model (ML–

MFM), for SAR image classification. This maintains high accuracy and robustness in addition to 

having reduced time requirements. Firstly, in order to fix the deficiency of using a single feature and 

to provide more textural and gray statistical level information [5,12,16], we extracted three types of 

features of a SAR image for different classes and different scales, which are respectively the gray-

level histogram, gray-level co-occurrence matrix (GLCM), and Gabor filter [18–21]. In other words, a 

discriminative feature vector is composed of the gray-level histogram, GLCM and Gabor filter for 

each class, while the feature matrix is constructed by the column vector composed of discriminative 

feature vectors of all classes and row vectors composed of discriminative feature vectors of all scales. 

Moreover, motivated by the fusion of characteristics from multiple frames in reference [22], a multi-

scale fusion strategy was used to construct the dictionary. Thus, the extracted features under different 

scales can be merged together to construct the column vectors of the dictionary (see Figure 1), which 

can allow complementation between sample information and reduce the time complexity. Following 

this, we should segment an SAR image into a host of homogeneous regions called superpixels, with 

the structural information captured by a discriminative feature vector extraction for each superpixel. 

Finally, inspired by the idea of layers in the spatial pyramid in reference [21], the multi-layer 

operation is utilized to refine the classification results by adding a threshold decision condition to 

SRC in an iterative way. If a superpixel meets the condition as the new atoms in the dictionary, the 

category is recorded. Otherwise, it will be used as the testing sample for the next layer (Figure 3 

depicts the above-mentioned basic framework). Compared with other methods, the final 

classification results of the proposed method have higher accuracy. 

 

Figure 1. The model of multi-scale fusion strategy. 
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The remainder of this paper is organized as follows. In Section 2, we briefly review the SRC, 

while the procedure of our novel model regarding the use of ML–MFM for SAR image classification 

is explored. The experimental results for synthetic and real SAR images are presented and compared 

with others in Section 3. Comparison with the HSRC [17] and the major innovation points are 

provided in Section 4. Finally, conclusions are drawn and future research directions are described in 

Section 5. 

2. Materials and Methods 

2.1. SRC 

We assume an SAR image contains K classes. KD  is the kth class of the sub-dictionary 

constructed by concatenating feature vectors of the kth class. We can define a dictionary D  

constructed by 1 2[ , ..., ]KD D D，  for an SAR image. The testing sample y  can be formulated by a series 

of training samples as follows: 

where )(  is an Eigen function which can be used to realize the transformation from pixel to feature 

space and ,1 ,[0,...,0, ,..., ,0,...,0]
i

n

i i nx x x R   is a sparse coefficient vector whose entries are zeros 

except those associated with the ith class. A sparse coefficient x  indicates that it will be easier to 

estimate the identity of the testing sample y . A sparse coefficient x  can be obtained by solving the 

following error-constrained Equation (2) or the sparsity-constrained Equation (3): 

where   is the error tolerant limit and sl  is the sparsity level which can represent the maximum 

number of selected atoms in the dictionary. Moreover, 
0

.  and 
2

  denote 0l  and 2l norms, 

respectively. Usually, the problem of solving sparse coefficients can be performed using the 

orthogonal matching pursuit (OMP) method [23]. 

After obtaining the sparse coefficient x̂ , the class label k̂  of the test pixel y  can be determined 

by the minimal error between y  and its approximation from the sub-dictionary of each class: 

where ˆ
kx  represents the coefficients in x̂  belonging to the thk  class. In order to demonstrate the 

drawback of the SRC algorithm clearly, a simple experiment was performed on two real SAR images 

(the original SAR image is in Figures 10a and 12a), observed in Figure 2. We can see that the final 

SRC results are unacceptable from Figure 2a,b. This is mainly because the SRC algorithm extracts 

features of SAR images only by using the pixel-by-pixel method, resulting in a lack of 

complementation between sample information. Therefore, to solve this problem, superpixels and 

more complete features need to be taken into account. 

( ) My y Dx R    (1) 

0
ˆ arg min || ||x x  subject to 2|| ||y Dx    (2) 

2
ˆ arg min || ||x y Dx   subject to 0|| ||x sl  (3) 

2

ˆ ˆarg min ,   1,...,k
k

k y Dx k K    (4) 
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(a) (b) 

Figure 2. Classification results with the sparse representation classification (SRC) algorithm of a 

previous study [5] on (a) SAR1 and (b) SAR2. 

2.2. Proposed Multi-Layer and Multi-Feature Model (ML–MFM) 

In this section, the multi-layers and multi-feature model (ML–MFM) based on the SRC algorithm 

is proposed. The basic framework of the proposed method is shown in Figure 3. 

 

Figure 3. The basic framework of multi-layers and multi-feature model (ML–MFM). 

Figure 3 can be understood in four parts: superpixel generation, multi-feature extraction, multi-

scale with fusion strategy and multi-layer sparse representation classification. In the first stage, the 

over-segment algorithm is used. The initialization dictionary is subsequently used in different scales, 

before being fused by the fusion strategy, which is introduced in Section 2.2.2. The first classification 

is performed using the initialization dictionary and the superpixels. Finally, SRC is used in multi-

layers through iterations to obtain the final result. 

2.2.1. Multilayer SRC 

There are some difference between SAR image classification and face recognition, the training 

samples of which can be controlled by a human in a standard data set. SAR images contain various 

complex terrains. It is difficult to guarantee enough training samples to represent each pixel. To deal 
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with the challenge, reference [17] developed a hierarchical sparse representation classifier to improve 

the classification of the SAR image, which we called the multi-layer SRC. 

In this classifier, ）（ Hhh 1  represents the layer of classification. Sparse representation is 

used for each layer. Thus, we performed sparse representation h  times. As the number of layers 

）（ Hhh 1  increases, the classification map becomes closer to the final result. Finally, the number 

of h  is analyzed in Section 3.1. 

2.2.2. Multiscale Fusion-Based Dictionary 

In the application of sparse representation, a dictionary is first constructed. To counter the 

existence of speckle and the complex appearance in the SAR image, we transform the pixel value 

space into a feature space, which reduces the computational complexity and extracts the 

discriminative features from the SAR image. The gray-level histogram, GLCM and Gabor filter 

features are extracted to capture statistical properties in the SAR image. We concentrated on these 

three types of features to form a feature vector for representing each pixel or superpixel. This non-

linear feature will provide competitive performance by representing statistical information and 

capturing texture information in adjacent areas. 

Moreover, different texture features of images show different performances in different scales 

[24]. In the classification of the image, many experiments have proved that different scales correspond 

to the same test sample y . The information from different scales complements each other, which is 

useful to classify each pixel.  

We selected 
in  vectors of the lth scale training samples from the ith class in the hth layer as 

columns to construct a matrix 
, , ,1 , ,2 , ,[ , ,..., ] i

i

m nh h h h

i l i l i l i l nA f f f R


  , where m  denotes the dimension of 

the extracted feature vector. Scale l  means the scale sizes (2 1) (2 1)l l    of the extracted features. 

Therefore, 1l   is the finest scale and l L  is coarsest scale, which depends on the resolution of the 

image. This can be calculated by ( *3/ 2)L floor resolution . We constructed a matrix by the 

concatenation of the in  training sample vectors of all K  defined classes and all L  scales in the 

fixed hth layer as follows: 

Following the dictionary hD  in the fixed hth layer is defined by row element using the average 

fusion strategy in matrix hA . This is shown as follows: 

2.2.3. Multi-Layer and Multi-Feature Model 

It is well-known that pixels are not natural entities but a result of the discrete representation of 

an image, with structural information captured in a region rather than a pixel. Furthermore, the 

computational complexity increases rapidly with an increase in the scale of pixels used. Therefore, 

we first divided the SAR image into superpixels to integrate the contextual information of 

neighboring pixels and to reduce computational complexity. In our method, the operation of 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

h h h

L

h h h

Lh

h h h

K K K L

A A A

A A A
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superpixel generation uses the TurboPixel algorithm [25]. Furthermore, in order to encode gray, 

textural and spatial information into superpixels, we described each superpixel 

{ 1 }t tsp sp sp t N     by a m  dimensional feature vector ,1 ,2 ,[ , ,..., ]
tsp t t t mf f f f , in which N  is 

the maximum number of superpixels.  

Unlike other recognition methods, SAR image classification lacks training samples to effectively 

represent each pixel. To deal with the challenge, inspired by the idea of the hierarchical sparse 

representation [17], we proposed a multi-layer operation based on SRC and the multi-fusion scale 

dictionary for SAR image classification. 

Based on dictionary construction and the superpixel tsp , we used Equation (2) with the 0l  

norm to ensure a sparse solution. The sparse coefficient can be solved by OMP to obtain x̂ . We define 

the thh  layer of the minimum residual error and class as Equations (7) and (8), respectively. 

where the ( ( ))h

i tres sp  is the residual error in the hth layer under the fusion scale; hr  is the 

minimum residual error; and hc  is the category of tsp . Different from Equation (4), we introduce a 

parameter   as the threshold value to limit the superpixel and judge whether it belongs to this 

class instead. If the hr  is within the specified tolerance limit, the pixel belongs to the current class 

i . Otherwise, the uncertain samples are classified again in the next layer. Following this, the class of 

superpixels in hth (1 1h H   , where H  is layer number) layer are expressed as: 

where hr    is a restricted condition to ensure that the superpixel belongs to the category. In fact, 

the choice of the threshold value   will influence our final results to some extent and it will be 

further discussed in Section 3.1.  

The uncertain superpixels in the (h + 1)th 
,1 ,2 ,[ , ,..., ] i

i

m nh h h h

i i i i nA f f f R


   (1 )h H   layer will be 

classified by Equations (7)–(9). We selected superpixels from each class, which are labeled as the new 

training samples in the hth layer. Following this, we extract the feature vector at the hth layer. 

Arranging these vectors as the columns vector 1 2[ , ,..., ]h h h h

sp KA A A A , we define the dictionary ( 1)hD   

in the fixed (h + 1)th layer based on the dictionary hD  in the fixed hth layer. 

In fact, the uncertain superpixels decrease with an increase of layers. When h H , there is still 

a small number of uncertain points (marked by yellow in Figure 3). However, the dictionary HD  is 

modified by Equation (10), before the remaining pixels will be classified by a traditional sparse 

representation classifier until it outputs the final result. The whole ML–MFM for the SAR image 

classification algorithm is summarized as follows: 

  

min
1,...,

( ( )) min ( ( ))h h h

t i t
i K

r res sp res sp 


   (7) 

2

ˆ ˆarg min ( ) , 1,2,...,h h

t i
i

k sp D x i K    (8) 

2
ˆarg min ( ) , 1,2,..., ;

( )
,                       

h h

t i
i

t

sp D x i K r
label sp

uncertain otherwise

    
 


 (9) 

( 1)

1, 1, 1

( 1)

2, 2,( 1) 2

( 1)

, ,

( , )

h h h
fusion fusion

h h h
fusion fusionh h h

sp

h h h
K fusion K fusion K

D D A

D D A
D Average Average D A

D D A









      
      
        
      
      
           

，  (10) 



Remote Sens. 2017, 9, 1085  7 of 16 

 

Algorithm 1. ML–MFM for synthetic aperture radar (SAR) Image Classification 

Input： SAR image, threshold  , class number K , layer H . 

Output: classification map. 

1. Segment the SAR image into superpixels by [25]. 

2. Construct the initial fusion dictionary 1D  by Equations (5) and (6), while the fusion dictionary contains 

K  class, 
1 1 1 1

1, 2, ,[ , ,..., ]fusion fusion K fusionD D D D . Choosing a specified number of pixels in  from the original 

SAR image as the samples, each sample can be represented by the m  dimension extracted variety of 

features. 

3. Multi-layer SRC and dictionary in layers are constructed. 

● Classify all superpixels in the first layer by Equations (7) and (8) with orthogonal matching pursuit 

(OMP); 

● Find the best representative atom’s label by Equation (9); 

while 1 h H   

if hr    

min ( ( ))h

i t
i

res sp ； 

；isplabel t )(  

updating dictionary by (10) 

);,()1(
sp

hh ADAverageD   

else ；)()( tt
h

t spspspuncertain 
 

1 hh ; 

end while 

3. Results 

In this section, the proposed model is now applied in the classification of synthetic and real SAR 

images. To validate the performance of the proposed method, we use both types of images in 

quantitative evaluation and visualization results. We mainly compare our results with the results of 

previous studies [3,5,16,17], in which their parameters are tuned to obtain the best results. Figures 8a, 

9a and 10a are the synthetic SAR images, which are from the Brodatz database. These synthetic SAR 

images have three, four and five types of different textural regions, while the size of each image is 

512 × 512, 335 × 335, and 512 × 512, respectively. The test images are named Syn1, Syn2 and Syn3, 

respectively. In addition, three real SAR images (SAR1, SAR2 and SAR3) were tested in experiments. 

SAR1 has a size of 256 × 256, which covers the China Lake Airport, California, with a Ku-Band radar 

with a 3-m resolution. SAR2 has a size of 321 × 258, which covers the pipeline over the Rio Grande 

river near Albuquerque, New Mexico, with a Ku-Band radar with 1-m resolution. SAR3 has a size of 

284 × 284, which covers the X-Band radar with 3-m resolution. The central processing unit time was 

obtained by running the Matlab code on a DELL computer with Inter (R) Core (TM) i7CPU, 3.4 GHz, 

16 GB RAM with MATLAB 2014(a) on Windows 10 (64-bit operating system) in our experiment. 

3.1. Experimental Settings 

In the experiment, we used the TurboPixel [25] algorithm to over-segment the original image 

into homogeneous regions and to obtain the superpixels. As each superpixel has different sizes, the 

features of each superpixel need to be processed so that the fusion features of all superpixels have 

the same dimensions (i.e., m = 60 in our method). Sixteen effective distribution features and four 

statistical features suggested by a previous study [17] were used. Thus, the features extracted by gray-

level histogram and GLCM have 16 dimensions and four dimensions for each superpixel, 

respectively. After calculating the convolution of the initial bank of Gabor filters, which consists of 

40 filters with five scales and eight orientations, the mean value of the filter response corresponding 

to each superpixel was computed for every filter. Therefore, the Gabor feature of each superpixel was 

a 40-dimension vector corresponding to 40 Gabor filters with the total number of dimensions being 
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60. In addition, the ranges of the radial basis function kernel width and penalty coefficients are (0.0001, 

0.001, 0.01, 0.1, 1, 10) and (0.1, 1, 10, 100, 500, 1000) respectively. 

3.1.1. Influence of Parameters 

It is necessary to set ideal parameters to obtain satisfactory results. There are two main 

parameters that need to be set in our model, namely H  and   (threshold). Based on plenty of 

experimental data and the analysis of results, each parameter should satisfy the following condition: 

1 6H  , 0.07 0.24T   . We noted that the parameter H  is influenced by the resolution of the SAR 

images (similar to a previous reference [17]), as mentioned in Section 2.2. We used an experiment to 

show the influence of H , which is depicted in Figure 4. The horizontal axis represents the layer h , 

while the vertical axis represents a certain superpixel number. Here, we artificially set the total 

superpixel number to 1000 of SAR1. From Figure 4, it is more intuitive to find the most suitable layer 

range. This is because when 6H  , the speed of the growth of certain points slow significantly in 

histogram and line chart. In many experiments, if we set 6H   as the maximum number of layers, 

it is the best choice with regards to time and precision. In addition, it is worth noting that   is the 

threshold to control the categories of accuracy (blue solid line) and the kappa coefficient (green dotted 

line) with our proposed method. From Figure 5, we can see that when   is too small, there are 

many uncertain superpixels until h H . However, when   is too large, the finer areas cannot be 

placed into classes. Therefore, appropriate parameter selection is very important. 

 

Figure 4. Illustration of certain and uncertain superpixels with different layers corresponding to SAR1 

(Figure 7a) in our method (the total number of superpixels is 1000). 

 

Figure 5. Influence of threshold   in classification accuracy (blue solid line) and Kappa coefficient 

(green dotted line) corresponding to SAR1 (Figure 7a). 
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3.1.2. Analysis of Multi-Feature Fusion and Multi-Scale Fusion 

Multi-Feature Fusion 

In this part, the multi-feature fusion is analyzed to verify its effectiveness in obtaining 

satisfactory results. In our paper, the fusion strategy is introduced to construct the dictionary. We 

perform an experiment on the original SAR1 (Figure 6a) to show the influence of multi-feature fusion 

on the dictionary and the impact of classification results. The rectangular areas of Figure 6a–e are 

marked by red, yellow and green, respectively. Figure 6b shows the results of the method with the 

gray-level histogram; Figure 6c shows the results of the GLCM; Figure 6d shows the results of the 

Gabor method; and Figure 6e shows the results of the multi-features method. We can see that Figure 

6e has fewer miscellaneous points than Figure 6b–d. The reason is that the fusion features includes 

distribution features and four statistical features. Therefore, the dictionary hD  includes more 

information to obtain better results, which is an advantage that is absent in the method with single 

features. Therefore, the multi-feature fusion strategy is important. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. Comparison of (a) the original SAR1 with (b) gray-level histogram; (c) gray-level co-

occurrence matrix (GLCM); (d) with Gabor; (e) with multi-features. 

Multi-Scale Fusion 

In this part, multi-scale fusion is analyzed to verify its effectiveness in obtaining satisfactory 

results. In our paper, the fusion strategy is introduced to construct the dictionary. We perform an 

experiment on the original SAR1 (Figure 7a) to show the influence of the fusion strategy on the 

dictionary after merging features under different scales. The rectangular areas of Figure 7b,c are both 

marked by red, yellow and green. Figure 7b shows the results method with the fusion strategy; Figure 

7c shows the results method without the fusion strategy. We can see that Figure 7b has fewer 

miscellaneous points than Figure 7c. The reason for this is that the fusion dictionary hD  includes 
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each scale information (homogeneous and marginal regions). This has similar effects on the 

dictionary under multi-scales, which are absent in the method without the fusion dictionary and are 

important to SAR image processing. Therefore, the multi-scale fusion strategy is important. 

   
(a) (b) (c) 

Figure 7. Comparison of (a) the original SAR1 (b) with fusion strategy; and (c) without fusion strategy. 

3.2. Results on Synthetic SAR Images 

In this section, we test the capability of the proposed algorithm by applying it to the synthetic 

SAR images Syn1, Syn2, and Syn3. The superpixels of Syn1, Syn2, and Syn3 are 2800, 1500 and 2800, 

respectively. In our method, 6H   and   is 0.221. The scale (patch) size in the support vector 

machine (SVM) [3], SRC [5] and JSRM [16] is fixed and we set it to be 3 × 3. The ground truth was 

used to calculate the accuracy of the classification results to evaluate the contrast algorithms. We can 

see that the proposed method can obtain a higher accuracy of classification than the results of 

previous studies [3,5,16] and can reduce the processing time found in reference [17]. Moreover, as 

shown Figures 8–10, as well as Table 1, the proposed method can keep the details (edges) in a similar 

way to reference [17] in the visual representation. However, the results of the other methods in finer 

textural regions (marked with pink and yellow), such as Figure 9e–g, have significantly different 

degrees of error, which is caused by the lack of samples. Although our method has no significant 

improvement in accuracy compared to the method in reference [17], there are benefits to not requiring 

an extensive amount of time in pixel-by-pixel training and having less miscellaneous points existing 

in the final classification. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. Results of different methods in Syn1: (a) Synthetic SAR images; (b) Ground truth; (c) 

Superpixels map; (d) Proposed method; (e) support vector machine (SVM) [3]; (f) SRC [5]; (g) joint 

sparsity model (JSRM) [16]; (h) hierarchical sparse representation-based classification (HSRC) [17]. 

file:///D:/youdao/Dict/7.2.0.0703/resultui/dict/
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9. Results of different methods in Syn2: (a) Synthetic SAR images; (b) Ground truth; (c) 

Superpixels map; (d) Proposed method; (e) support vector machine (SVM) [3]; (f) SRC [5]; (g) joint 

sparsity model (JSRM) [16]; (h) hierarchical sparse representation-based classification (HSRC) [17]. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 10. Results of different methods in Syn3: (a) Synthetic SAR images; (b) Ground truth; (c) 

Superpixels map; (d) Proposed method; (e) support vector machine (SVM) [3]; (f) SRC [5]; (g) joint 

sparsity model (JSRM) [16]; (h) hierarchical sparse representation-based classification (HSRC) [17]. 

Table 1. Comparison of the run times (s) and classification accuracy (%) of different methods. 

 Proposed Method SVM [3] SRC [5] JSRM [16] HSRC [17] 

SAR Image Accuracy Time Accuracy Time Accuracy Time (s) Accuracy Time Accuracy Time 

Syn1 98.79 120.32 80.35 51.88 76.38 101.37 91.73 161.37 98.89 230.59 

Syn2 97.76 103.96 88.73 54.89 80.83 85.74 94.78 137.49 98.12 201.14 

Syn3 96.04 124.48 73.29 48.14 70.86 106.84 89.14 153.26 96.24 243.32 

3.3. Results of Real SAR Images 

In this section, three real SAR images are used for further analysis. The compared methods are 

the same as those used on synthetic SAR images. The results are shown in Figures 11–13. These 
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original real images have three, three and four types of different regions as shown in Figure 11b, 

Figures 12b and 13b, respectively. The superpixels of SAR1, SAR2 and SAR3 are 1000, 1200 and 1100 

as shown in Figure 11b, Figure 12b and Figure 13b, respectively. The evaluation of the classification 

method is based on the visual inspection of the classification and the run time, accuracy, as well as 

the kappa coefficient. The scale in SVM, SRC and JSRM is set to 7 × 7, which represents the best result 

in the experiments.  

From Figure 11c–g, we can see that the proposed method can achieve the classification in 

different areas and eliminate the influence of shadows, which always leads to categories by mistake. 

However, when we compare Figure 11c with 11g, it is difficult to know whether our proposed 

method is better, as it seems that Figure 11g [17] has better visualization results, albeit with some 

miscellaneous points. Therefore, the accuracy of the quantitative analysis is required for further 

analysis. From Table 2, it can be seen that the accuracy of the previous study [17] is only slightly 

higher than our proposed method, but the required running time is too long, as previously seen with 

synthetic SAR images.  

   
(a) (b) (c) 

    
(d) (e) (f) (g) 

Figure 11. Results of different methods in real SAR1: (a) Real SAR images; (b) Superpixels map; (c) 

Proposed method; (d) support vector machine (SVM) [3]; (e) SRC [5]; (f) joint sparsity model (JSRM) 

[16]; and (g) hierarchical sparse representation-based classification (HSRC) [17]. 

From Figure 12c–g, we can see the classification results of different methods, especially in the 

yellow and red rectangle regions. The yellow and red rectangles of the proposed method in Figure 

12c have less miscellaneous points than Figure 12d–f. In general, a smaller number of miscellaneous 

points indicates a more complete extraction of information and a more stable performance of the 

algorithm. The different rectangle regions highlight the superiority of the proposed algorithm. 

However, when we compare Figure 12c with 12g, it is difficult to know whether our proposed 

method is better, as it seems that Figure 12g [17] has better visualization results, albeit with some 

miscellaneous points. Therefore, data analysis was used (accuracy, run time and kappa coefficient) 

for further analysis. From Table 2, it can be seen that the accuracy of the previous method [17] is only 

slightly higher than our proposed method, but the required running time was too long, as previously 

seen with synthetic SAR images. 
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(d) (e) (f) (g) 

Figure 12. Results of different methods in real SAR2: (a) Real SAR images; (b) Superpixels map; (c) 

Proposed method; (d) support vector machine (SVM) [3]; (e) SRC [5]; (f) joint sparsity model (JSRM) 

[16]; and (g) hierarchical sparse representation-based classification (HSRC) [17]. 

The analysis of Figure 13 is similar to Figures 11 and 12. From Figures 11–13, the proposed 

method is shown to be suitable for the SAR image classification and obtains the optimal results. Table 

2 provides the quantitative evaluation of different methods. Although the HSRC obtains higher 

classification accuracy compared with the others, the running time is too long among the different 

methods. Our method has the absolute advantage in the running time, with competitive accuracy 

that is only slightly lower than HSRC. Moreover, our method gets the highest robustness, which is 

reflected by the kappa coefficient. Above all, our method outperforms the others in terms of time 

consumption and robustness.  

   
(a) (b) (c) 

    
(d) (e) (f) (g) 

Figure 13. Results of different methods in real SAR3: (a) Real SAR images; (b) Superpixels map; (c) 

Proposed method; (d) support vector machine (SVM) [3]; (e) SRC [5]; (f) joint sparsity model (JSRM) 

[16]; and (g) hierarchical sparse representation-based classification (HSRC) [17]. 
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Table 2. Comparison of the average criteria and accuracy (%) of different methods. 

 Proposed Method SVM [3] SRC [5] JSRM [16] HSRC [17] 

SAR Image Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time 

SAR1 96.18 102.38 89.79 48.68 85.38 98.67 93.67 147.73 96.20 238.95 

SAR2 97.57 121.35 87.68 43.19 87.33 99.24 92.48 139.58 97.62 253.48 

SAR3 97.52 124.41 83.59 51.94 79.96 102.68 91.04 160.36 96.74 258.72 

AA 1 97.42 87.02 84.22 92.40 97.83 

K 2 0.961 0.713 0.806 0.941 0.959 

1 AA is average accuracy; 2 K is kappa coefficient. 

4. Discussion 

Traditional SVM [3] is limited by lacking samples, which results in low classification accuracy. 

For instance, the number of training samples is 300, which is 0.46% of the total samples. Fewer 

samples affect the selection of optimal parameters by SVM for the testing samples, which will 

decrease the classification accuracy. In the sparse representation method, the HSRC [13] can solve the 

problem of reference [16] to a certain extent. It introduces the hierarchical concept and multi-size 

patch feature to solve the problem of lacking samples. Using SRC in SAR classification for both these 

methods improves the accuracy and stability. However, HSRC classifies images based on each pixel, 

which only depends on the selection of features in the spatial domain and the selected scale for each 

layer. This may lead to the loss or misrepresentation of information, which requires a long time for 

training. 

In our paper, we inherit the advantages of reference [17], such as multi-layer. However, the 

difference is the multi-scale and multi-feature fusion. In the multi-feature fusion stage, we take three 

different methods to extract the gray and texture characteristics, which are stable in the presence of 

noise and changes in view, and can enrich the information of images. Moreover, the strategy of the 

multi-feature fusion was inspired by [23], which fused the different features from multiple layers. We 

fused the different features from different scales. This reduces the computational time and ensures a 

rich amount of information. Furthermore, classification based on superpixels can improve the speed 

of algorithms effectively. Three evaluation metrics (i.e., run time (time), average accuracy (AA) and 

the Kappa coefficient (K)) are adopted in these experiments to evaluate the quality of classification 

results. AA represents the mean of the percentage of correctly classified pixels for each class. K 

estimates the percentage of classified pixels corrected by the number of agreements. We performed 

comparative experiments with four other methods. The proposed method can solve the time 

redundancy problem of HSRC, but has its uncertainties. For instance, the uncertain points are always 

in the process of the algorithm until Hh  . That is the reason we use the traditional SRC (this step 

is same as reference [17]) in the last step. 

5. Conclusions 

In this paper, based on superpixels, we presented a new model of classification of SAR images. 

It validates that adding multiple features, scales and layers can benefit the results of SRC classification 

and enrich the information of the images. Furthermore, using multiple layers can decrease the 

computational time due to the use of superpixels. The fusion strategy was introduced to merge each 

scale together to form a multi-fusion dictionary. With the added benefits, robustness was enhanced 

and the classification accuracy was improved significantly. The comparison experiments based on 

synthetic SAR images and real SAR images clearly demonstrate the efficiency and advantages of the 

proposed classification method. Moreover, the proposed classification method is also able to achieve 

lower computational costs. These added benefits are general for SAR image classification, and can be 

suitable for utility in more applications in the area of SAR image classification, as well as in other 

areas where the SRC method could be applied.  
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This method provides a slight improvement in calculation time for SAR image classification and 

application. Moreover, future research will focus on developing more efficient algorithms to cope 

with the large-scale SAR images. 

Acknowledgments: This work is supported by National Natural Science Foundation of China (No. 61472278 

and 61102125). The author would like to thank numerous colleagues for their contribution to this work and three 

reviewers and editors for improving the manuscript. 

Author Contributions: This work was prepared and accomplished by Ao-bo Zhai, who also wrote the 

manuscript. Xian-bin Wen outlined the research and supported the analysis. He also revised the work in 

presenting the technical details. Li-ming Yuan, Hai-xia Xu both suggested the design of comparison experiments 

and supervised the writing of the manuscript at all stages. Qing-xia Meng provided writing suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA, 

2004. 

2. Adragna, F.; Nicolas, J. Processing of Synthetic Aperture Radar Images; Wiley: New York, NY, USA, 2010. 

3. Akbarizadeh, G. A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR 

images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4358–4368. 

4. Xue, X.R.; Wang, X.J.; Xiang, F.; Wang, H.F. A new method of SAR image segmentation based on the gray 

level co-occurrence matrix and fuzzy neural network. In Proceedings of the IEEE 6th International 

Conference Wireless Communications Networking and Mobile Computing, Chengdu, China, 23–25 

September 2010. 

5. Wright, J.; Yang, A.Y.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. 

Pattern Anal. Mach. Intell. 2009, 31, 210–227. 

6. Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 

41, 3397–3415. 

7. Elad, M.; Aharon, M. Image Denoising Via Sparse and Redundant Representations over Learned 

Dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. 

8. Buades, A.; Coll, B.; Morel, J.M. A Non-Local Algorithm for Image Denoising. In Proceedings of the IEEE 

Conference Computer Vision Pattern Recognition, San Diego, CA, USA, 20–26 June 2005. 

9. Yue, C.; Jiang, W. An algorithm of SAR image denoising in nonsubsampled contourlet transform domain 

based on maximum a posteriori and non-local restriction. Remote Sens. Lett. 2013, 4, 270–278. 

10. Fang, L.Y.; Li, S.T.; Mcnabb, R.P.; Nie, Q.; Kuo, A.N.; Toth, C.A.; Izatt, J.A.; Farsiu, S. Fast Acquisition and 

Reconstruction of Optical Coherence Tomography Images via Sparse Representation. IEEE Trans. Med. 

Imaging 2013, 32, 2034–2049. 

11. Li, S.; Yin, H.; Fang, L. Remote Sensing Image Fusion via Sparse Representations over Learned Dictionaries. 

IEEE Trans. Geosci. Remote Sens. 2013, 51, 4779–4789. 

12. Xiang, D.; Tang, T.; Hu, C.; Li, Y.; Su, Y. A kernel clustering algorithm with fuzzy factor: Application to 

SAR image segmentation. IEEE Geosci. Remote Sens. Lett. 2011, 7, 1290–1294. 

13. Wang, W.; Xiang, D.; Ban, Y.; Zhang, J.; Wan, J. Superpixel Segmentation of Polarimetric SAR Images Based 

on Integrated Distance Measure and Entropy Rate Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 

2017, 99, 1–14. 

14. Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-Based Classification with an Adaptive 

Number of Classes for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924. 

15. Zhang, X.; Wen, X.; Xu, H.; Meng, Q. Synthetic aperture radar image segmentation based on edge-region 

active contour model. J. Appl. Remote Sens. 2016, 10, 036014, doi:10.1117/1.jrs.10.036014. 

16. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification Using Dictionary-Based Sparse 

Representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. 

17. Hou, B.; Ren, B.; Ju, G.; Li, H.; Jiao, L.; Zhao, J. SAR Image Classification via Hierarchical Sparse 

Representation and Multisize Patch Features. IEEE Geosci. Remote Sens. Lett. 2016, 13, 33–37. 

18. Swain, M.J.; Ballard, D.H. Color indexing. Int. J. Comput. Vis. 1991, 7, 11–32. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nie%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=23846467
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kuo%20AN%5BAuthor%5D&cauthor=true&cauthor_uid=23846467
https://www.ncbi.nlm.nih.gov/pubmed/?term=Toth%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=23846467
https://www.ncbi.nlm.nih.gov/pubmed/?term=Izatt%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=23846467
https://www.ncbi.nlm.nih.gov/pubmed/?term=Farsiu%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23846467


Remote Sens. 2017, 9, 1085  16 of 16 

 

19. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. 

Man Cybern. 1973, 3, 610–621. 

20. Yan, X.; Jiao, L.; Xu, S. SAR image segmentation based on Gabor filters of adaptive window in overcomplete 

brushlet domain. In Proceedings of the 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, 

China, 26–30 October 2009. 

21. Gu, J.; Jiao, L.; Yang, S.; Liu, F.; Hou, B.; Zhao, Z. A Multi-kernel Joint Sparse Graph for SAR Image 

Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1265–1285. 

22. Zhao, S.; Liu, Y.; Han, Y.; Hong, R.; Hu, Q.; Tian, Q. Pooling the Convolutional Layers in Deep ConvNets 

for Video Action Recognition. IEEE Trans. Circuits Syst. Video Technol. 2015, 1, 

doi:10.1109/TCSVT.2017.2682196. 

23. Tan, M.; Tsang, I.W.; Wang, L.; Zhang, X. Convex Matching Pursuit for Large-scale Sparse Coding and 

Subset Selection. In Proceedings of the AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 

22–26 July 2012.  

24. Mo, X.; Monga, V.; Bala, R.; Bala, R.; Fan, Z.G. Adaptive Sparse Representations for Video Anomaly 

Detection. IEEE Trans. Circuits Syst. Video Technol. 2013, 24, 631–645. 

25. Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. TurboPixels: Fast 

Superpixels Using Geometric Flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. 

©  2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


