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Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding
abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various
constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can
be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in
a hyperspectral image may possess different sparsity levels across locations. The problem remains
as to how to impose constraints accordingly when the level of sparsity varies. We propose a novel
nonnegative matrix factorization with data-guided constraints (DGC-NMF). The DGC-NMF imposes
on the unknown abundance vector of each pixel with either an L1/2 constraint or an L2 constraint
according to its estimated mixture level. Experiments on the synthetic data and real hyperspectral
data validate the proposed algorithm.
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1. Introduction

Hyperspectral data consists of hundreds of contiguous narrow spectral bands and has been
widely used in many fields [1]. Due to the limitation of the sensor’s spatial resolution, there exist
mixed pixels consisting of several material signatures. To address this problem, hyperspectral
unmixing (HU) has been adopted to decompose mixed pixels into endmember signatures and their
corresponding proportions. According to the availablity of the prior knowledge, HU methods
can be divided into three categories: unsupervised [2–5], semisupervised [6], and supervised [7]
methods. We can also categorize HU methods into geometric methods and statistical methods.
The pixel purity index (PPI) [8], N-FINDR [9], vertex component analysis (VCA) [10] and the simplex
growing algorithm (SGA) [11] are the most famous geometric methods. The relationships among
these methods are explored in [12–14]. There are also many statistical methods for hyperspectral
unmixing [15–17]. Nonnegative matrix factorization (NMF) [18] is a typical statistical method [19].
It has been shown to be promising in extracting sparse and interpretable representations from
a data matrix. The NMF decomposes a data matrix into two low-rank matrices with nonnegative
constraint [20]. The decomposition results of NMF consist of a basis matrix and a coefficient matrix,
which provide an intuitive and interpretable representation of data. As an unsupervised method,
NMF is applied to hyperspectral unmixing and shows its advantages in many situations. To reduce the
solution space, constraints on endmembers [21–24] and abundances [25,26] have been exploited and
used in NMF. Recently, a sparseness constraint has been added to NMF to generate unique solutions
and leads to better results [25,27]. The L1 constraint is a widely-used sparseness constraint. However,
L1 regularization has the limitation that it cannot enforce further sparseness when the abundance
sum-to-one constraint is used. The L1/2 constraint is representative of Lp(0 < p < 1). The solution
of the L1/2 regularizer is sparser compared with that of the L1 regularizer. However, the L1/2
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regularizer also brings nonconvexity to the optimization problem. The nonconvex optimization
problem with the L1/2 regularizer can be solved by transforming the L1/2 regularizer into a series
of convex weighted L1 regularizers [28]. L1/2-NMF is a popular NMF regularization method [29].
The authors have shown that the L1/2 regularizer can overcome the limitation of the L1 regularizer
and enforce a sufficiently sparse solution. On the contrary, L2-NMF generates smooth results
rather than sparse results [30]. In [31], piecewise smooth nonsmooth (PSnsNMF) and piecewise
smooth NMF with sparseness constraints (PSNMFSC) are proposed by incorporating the piecewise
smoothness of spectral data and sparseness of endmember abundances. The authors of [32] propose
NMF with sparseness and smoothness constraints (NMFSSC). However, NMFSSC does not consider
the sparsity level of data and just imposes sparseness and smoothness constraints simultaneously.
In data-guided sparsity-regularized nonnegative matrix factorization (DgS-NMF) [33], the sudden
change areas are assumed to be highly mixed and a heuristic method is proposed to employ the
spatial similarity to learn the mixed level in the hyperspectral images. The pixel with a higher sparsity
level corresponds to a sparser constraint (from the L1 norm to the L0 norm). In [34], a learning-based
sparsity method is proposed to learn a guidance map from the unmixing results and impose an adaptive
lp(0 < p ≤ 1)-constraint.

In this paper, we propose a nonnegative matrix factorization with data-guided constraints
(DGC-NMF). Unlike traditional constrained NMF methods that impose the same constraint over
entire data, DGC-NMF firstly evaluates the sparsity level of each pixels’ abundances and then
decides which kind of constraint should be imposed on the abundances of a pixel adaptively. In
real hyperspectral images, the sparsity levels of the pixels’ abundances are varied and the pixels do
not necessarily possess spatial dependence with their neighboring pixels. To preserve the distinctive
sparsity information of each pixel’s abundances, the sparsity levels of pixels can be learnt via an NMF
unmixing process without any sparseness constraint imposed. Therefore, each pixel’s abundances
could enjoy a individual constraint according to its sparsity level in our method. In evenly mixed
areas, the sparseness constraint may not contribute to achieving a smooth abundance vector of a pixel.
Therefore, we also introduce the L2 constraint to reduce extreme abundance values and promote the
evenness of pixels’ abundance vector. Whether an L1/2 constraint or an L2 constraint is imposed on a
pixel is learnt from its abundances’ sparsity level. In this way, our method could adaptively enforce
sparse or smooth abundance results in regions with different mixed levels. The experimental results of
synthetic and real data demonstrate the effectiveness of DGC-NMF.

The main contributions of this paper include two aspects. Firstly, we provide a method to evaluate
the sparsity level of data in different areas and obtain the sparseness map of data. The effectiveness
of this method has been verified using data with various sparsity levels. Secondly, we propose
a novel NMF method which makes use of the sparsity information from data and adaptively imposes
constraints according to the mixed levels of pixels. We analyze the sparsity behaviors of NMF
with different regularizations and indicate that NMF with fixed constraints may be not applicable
for a hyperspectral image with various sparsity levels, while it has been proven that the proposed
DGC-NMF is capable.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction of the
NMF algorithm and the NMF with the L1/2 or the L2 constraint. Section 3 presents the proposed
DGC-NMF and provides the proof that the objective decreases along the iterates of the algorithm.
Section 4 validates the effectiveness of the proposed method on synthetic data and real hyperspectral
images. Finally, Section 5 concludes this paper.
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2. Preliminaries

2.1. NMF

Consider the hyperspectral image data X = [x1, x2 , · · · , xN ], where X ∈ RL×N and N is the
number of pixels. In the linear mixing model, the hyperspectral data X could be represented as:

X = WH + E (1)

where W = [w1, w2, . . . wP] ∈ RL×P denotes the endmember matrix, H ∈ RP×N denotes the
abundances of respective endmembers, and E is a residual term. The NMF algorithm is designed to
find an approximate factorization of X, such that X ≈WH, where W ≥ 0 and H ≥ 0. To quantify the
quality of the approximate factorization, the Euclidean distance is commonly used to measure the
distance between X and WH. The loss function of NMF based on the Euclidean distance is defined
as follows:

f (W, H) =
1
2
‖X−WH‖ 2

F (2)

where || · ||F is the Frobenius norm. The problem of NMF is globally nonconvex. The problem is
convex for one of the two blocks of variables only when the other is fixed. Estimating the values of
W or H is a convex optimization problem when the other is fixed. A multiplication update rule for
standard NMF algorithm is presented in [18] to locally minimize the cost function in (2)

W = W. ∗ (XHT)./WHHT (3)

H = H. ∗ (WTX)./WTWH (4)

where .* and ./ denote element-wise multiplication and division, respectively.

2.2. NMF with Sparseness Constraints

2.2.1. L1/2-NMF

Sparsity is an inherent property of hyperspectral data. To reduce the solution space and derive
results with expected sparsity levels, some sparseness regularizations are added to constrain the
sparseness of abundances. The L1 regularizer is popular for generating sparse solutions. However,
the L1 regularizer may not enforce a sufficiently sparse solution while preserving the additivity
constraint over the abundances since the sum-to-one constraint is a fixed L1 norm. In [35], Qian et al.
propose the L1/2-NMF, based on the L1/2 regularizer. The L1/2 regularizer possesses two advantages
over the L1 regularizer. It can still enforce sparsity with the full additivity constraint imposed.
Another advantage is that the L1/2 regularizer can obtain sparser solutions than the L1 regularizer
does [36]. The model of NMF with the L1/2 regularizer is as follows: [35]

f (W, H) =
1
2
‖X−WH‖2

F + λ‖H‖1/2 (5)

where

‖H‖1/2 =
P,N

∑
p,n=1

H1/2
pn (6)

and Hpn denotes the (p, n)-th element of H.
The objective in (5) is nonincreasing under the multiplicative update rules:

W = W. ∗ (XHT)./WHHT (7)
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H = H. ∗ (WTX)./(WTWH +
λ

2
H−

1
2 ) (8)

where H−
1
2 denotes the reciprocal element-wise square root for each element in H.

2.2.2. L2-NMF

Due to the needs of application, the L2 constraint can be adopted to generate smooth results
other than sparse results. For areas in hyperspectral images that are evenly mixed with signatures,
we also need the L2 regularizer to promote evenness in the abundances of pixels in these areas.
In [30], Pauca et al. explore the use of L2 regularizer in NMF algorithm. The cost function with L2

regularization term is expressed as:

f (W, H) =
1
2
‖X−WH‖2

F + µ ‖H‖2 (9)

where ‖H‖2 =
P,N
∑

p,n=1
H2

pn.

The objective in (9) is nonincreasing under the multiplicative update rules:

W = W. ∗ (XHT)./WHHT (10)

H = H. ∗ (WTX)./(WTWH + 2µH) (11)

3. Proposed NMF with Data-Guided Constraints for Hyperspectral Unmixing

3.1. Sparsity Analysis

The phenomena of sparsity in abundances commonly exists in hyperspectral images [31].
Sparsity is an inherent property which refers to a representative occasion where mixed pixels could
be represented by a few endmember signatures. Accordingly, sparseness constraints such as the L1/2
regularizer help to obtain unique solutions and lead to better answers in scenes with obvious sparsity.
However, in hyperspectral images there exist pixels located in transition regions which are evenly
mixed and own low sparsity levels. Imposing a sparseness constraint over the entire image may not
contribute to the unmixing accuracy of those evenly mixed pixels. Therefore, we also adopt an L2

regularizer to promote the evenness of pixels’ abundance vectors, achieving an effect on abundances
opposite to that of the L1/2 regularizer. Through imposing the L2 regularizer on a pixel’s abundance
vector, extreme abundance values are reduced and the sparseness level of abundances tends to be lower.
In our method, each pixel enjoys a individual constraint related to its own sparsity level of abundance.
Figure 1 represents the well known Cuprite dataset collected by an airborne visible/infrared imaging
spectrometer (AVIRIS) sensor over the Cuprite mining site and the corresponding sparseness map of
this scene. To evaluate the sparsity levels of pixels, the sparsity level of the nth pixel’s abundances is
defined as [37]

sparseness(Hn) =

√
P− (∑P

1
∣∣Hpn

∣∣)/√∑P
1 H2

pn
√

P− 1
(12)

where Hn denotes the abundance vector of nth pixel, P denotes the number of endmembers, and Hpn

denotes the (p, n)th element of H. As shown in Figure 1b, some regions mainly composed by one
or a few materials possess high sparsity levels, while some other regions show low sparsity levels
where minerals are evenly mixed there. The estimated sparsity levels of pixels range from 0.14
to 1. For hyperspectral data consisting of regions with various sparsity levels, using a simple
kind of constraint on the whole image does not meet the practical situation and may not lead to
a well-defined result.
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Figure 1. (a) Airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral data of the
Cuprite mining district in Nevada, USA; (b) Estimated sparseness map from the obtained abundance.

To solve this problem, we propose the DGC-NMF algorithm which is designed to impose
constraints precisely according to the data’s sparsity levels in different regions. However, the sparsity
levels of abundances are previously unknown since the ground truth of abundance is not available.
In the proposed DGC-NMF algorithm, we firstly carry out an unmixing process based on NMF with no
constraint to derive the sparseness map of data. No sparseness constraint is employed in this unmixing
process to avoid the distinctive sparsity information of a pixel’s abundances being interfered with
by a sparseness constraint without verification. This method of estimating sparseness maps may be
a biased way. However, it is still a good choice for estimating sparsity levels since the ground truth
of real hyperspectral data is not available and a small sparseness error is tolerable in our proposed
DGC-NMF algorithm. To demonstrate the accuracy of the sparseness estimation, experiments are
conducted to make comparison between estimated and real sparsity levels of data. Figure 2 shows that
the estimated sparsity levels fit the real sparsity levels well under various sparsity levels. The estimated
sparseness values could correctly reflect the general trend of the real sparsity levels. Figure 3 presents
the real and the estimated sparseness map of synthetic data. The estimated map coincides with the
real map well. For regions possessing high or low sparsity levels, the estimate sparseness map also
shows high or low values. The estimated sparseness values can represent the real sparsity levels of
pixels well. We also conduct experiments in Section 4.1 to compare DGC-NMF with the real sparseness
map and DGC-NMF with the estimated sparseness map. The results also validate that it is practical to
estimate sparsity levels via the unmixing result of NMF algorithm.
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Figure 2. The real average sparsity level and the estimated average sparsity level.
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Figure 3. (a) The real sparseness map of synthetic data; (b) The estimated sparseness map of
synthetic data.

3.2. DGC-NMF Algorithm

Using the sparsity information learnt in Section 3.1, the proposed NMF with data-guided
constraints decides whether the L1/2 constraint or the L2 constraint should be assigned to a pixel. In
the DGC-NMF algorithm, both the L1/2 regularizer and the L2 regularizer are adopted to achieve
better control of sparsity in each pixel’s abundances. Pixels are split into two categories according to
sparsity levels. For pixels with high sparsity levels, the L1/2 regularizer is adopted to constrain their
abundance. For pixels with low sparsity levels, the L2 regularizer is applied. The model of DGC-NMF
is as follows:

f (W, H) =
1
2
‖X−WH‖2

F + λ‖C. ∗ H‖1/2 + µ‖D. ∗ H‖2 (13)
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where λ and µ are the regularization parameter, and C =1PsT and D = 1P(1N − s)T are the indictor
matrices which decide whether an L1/2 constraint constraint or an L2 constraint is imposed or not for
each pixel. s ∈ RN

+ is obtained by evaluating the sparse levels of abundances of all pixels

s(n) =

{
1
0

sparseness(n) > δ

sparseness(n) ≤ δ
(14)

where δ is a threshold that controls which kind of constraint should be imposed. The threshold
δ is decided by applying Otsu’s method to maximize the separability of pixels with high sparsity
level and pixels with low sparsity level [38]. Figure 4 shows the histogram of estimated sparseness
values for pixels in a synthetic image and the selected value of threshold δ for this synthetic image.
The sparseness histogram is obtained by counting the sparseness of estimated abundance of pixels.
When the sparseness of a pixel’s abundance is higher than δ, the pixel’s abundance will be constrained
by an L1/2 sparsity regularization. Otherwise, the pixel’s abundance will enjoy an L2 constraint to
promote evenness.
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Figure 4. The histogram of estimated sparseness values for pixels in a synthetic image and the selected
threshold value.

Based on the cost function in Equation (13), the update rules are derived as follows

W = W. ∗ (XHT)./WHHT (15)

H = H. ∗ (WTX)./(WTWH +
λ

2
C. ∗ H−

1
2 + 2µD. ∗ H) (16)

The procedure of the proposed DGC-NMF is described in Algorithm 1.
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Algorithm 1 DGC-NMF algorithm

Input: Hyperspectral data X ∈ RL×N ; the number of endmembers P.
Initialization: Initialize endmember matrix W1 and abundance matrix H1 by SGA-FCLS.
1: repeat

2: update W1 by Equation (3).

3: update H1 by Equation (4).

4: until convergence

5: Calculate the sparseness map using H1 by Equation (12).

6: Calculate the threshold δ and get the indictor matrices C and D by Equation (14)

7: Initialize endmember matrix W2, abundance matrix H2 by SGA-FCLS.
8: repeat

9: update W2 by Equation (15).

10: update H2 by Equation (16).

11: until convergence

12: return Endmembers matrix W2 and abundance matrix H2 as the final unmixing results.

The update rule for W in Equation (15) is just the same as that in [18]. The authors of [18] have
proved objective (2) is nonincreasing under the update rule in Equation (3). Therefore, we only need to
focus on proving objective (13) is nonincreasing under the update rule for H in Equation (16).

Theorem 1. The objective (13) is nonincreasing under the update rule in (16).

Since the objective function in Equation (13) is separable by columns, for each column of H,
we could consider each column of H individually. For convenience, let h denote a column of H,
x denotes the corresponding columns in X, and c, d denote the corresponding column in C, D,
respectively. c and d are vectors with all ones or zeros. The objective function by column is expressed
as follows:

F(h) =
1
2
‖x−Wh‖2

2 + λ‖c. ∗ h‖ 1
2
+ µ‖d. ∗ h‖2 (17)

An auxiliary function similar to that used in the expectation-maximization algorithm is defined to
prove Theorem 1 [39,40].

Definition 1. G(h, h′) is an auxiliary function of F(h) with

G(h, h′) ≥ F(h), G(h, h) = F(h) (18)

satisfied

Lemma 1. If G(h, h′) is an auxiliary function of F(h), F(h) is nonincreasing under the update

ht+1 = arg min
h

G(h, ht) (19)

Proof.
F(ht+1) ≤ G(ht+1, ht) ≤ G(ht, ht) = F(h

t
)
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Following [29], we define the function G as:

G(h, ht) = F(h, ht) + (h− ht)T∇F(ht) +
1
2
(h− ht)TK(ht)(h− ht) (20)

where K(ht) is a diagonal matrix with diagonal k

k = (WTWhT +
λ

2
c. ∗ (ht)−

1
2 + 2µd. ∗ ht)./ht (21)

Obviously, the second property of G defined in Definition 1 is satisfied. Writing out the Taylor
expansion of F(h)

F(h) = F(ht) + (h− ht)T∇F(ht)

+
1
2
(h− ht)T [WTW − λ

4
diag(c. ∗ (ht)−

3
2 ) + 2µdiag(d)](h− ht)

+ R(∇(n≥3)F(ht))

where the function R denotes the Lagrange remainder term, which can be omitted.
Comparing F(h) with G(h, ht) in Equation (20), we find the first property G(h, ht) ≥ F(h) is

satisfied when

0 ≤ (h− ht)T [K(ht)−WTW +
λ

4
diag(c. ∗ (ht)−

3
2 ) - 2µdiag(d)](h− ht) (22)

Equivalent to

0 ≤ (h− ht)T [K′(ht) +
3λ

4
diag(c.*(ht)−

3
2 )](h− ht) (23)

where K′ is is a diagonal matrix with diagonal k′

k′ = (WTWhT ./ht)−WTW (24)

The positive semidefiniteness of K′ has been proved in [18]. Another term in Equation (23) is
nonnegative since c and h both are nonnegative. Thus, Equation (22) holds due to the sum of two
positive semidefinite matrices is also positive semidefinite.

It remains to select the minimum of G by taking the gradient and equating to zero

∇sG(h, ht)=WT(Wht−x)+
λ

2
c. ∗ (ht)−

1
2 +2µd. ∗ ht+K(ht)(h−ht)=0 (25)

Solving h gets ht+1

ht+1=ht−K(ht)−1(WT(Wht−x)+
λ

2
c. ∗ (ht)−

1
2 +2µd. ∗ ht)

=ht−ht./(WTWhT+
λ

2
c. ∗ (ht)−

1
2 +2µd. ∗ ht)

. ∗ (WT(Wht−x)+
λ

2
c. ∗ (ht)−

1
2 +2µd. ∗ ht) (26)

= ht. ∗ (WTx)./(WTWhT +
λ

2
c. ∗ (ht)−

1
2 + 2µd. ∗ ht)

which is the desired columnwise form of update rule in Equation (16). The proof of Theorem 1
is completed.
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4. Experimental Results and Analysis

4.1. Experiments on Synthetic Data

In this section, the proposed DGC-NMF algorithm is tested on synthetic data to evaluate its
performance. Three related methods, including NMF [20], L1/2-NMF [35] and L2-NMF [41] are used
for comparison with the proposed method. The synthetic data used to test is generated following [29].
The spectral signatures are randomly selected from the United States Geological Survey (USGS) digital
spectral library to simulate synthetic images [42]. The abundances are generated as follows. Firstly,
a z2 × z2 size image is divided into z× z regions. Each region is initialized with the same kind of
ground material. Secondly, a (z + 1)× (z + 1) low-pass filter is applied to generated mixed pixels
and make the abundance variation smooth. Finally, a threshold θ (0 < θ ≤ 1) is used to reject
pixels with high purity. The pixels with abundance larger than θ will be replaced by mixtures of all
endmembers with equal abundance. θ can be used as the parameter to generate synthetic data with
various sparseness levels. In addition, zero-mean white Gaussian noise is added into the synthetic
data to simulate possible noise. In the experiments on synthetic data and real data, DGC-NMF and
the compared NMF based algorithms are all initialized using SGA-FCLS. SGA-FCLS provides a more
accurate initialization than random initialization. We also compared the unmixing performance of our
proposed DGC-NMF with that of SGA-FCLS in Section 4.2.

Two criteria, spectral angle distance (SAD) and root-mean-square error (RMSE), are adopted to
evaluate the unmixing performance of algorithms. They are defined as follows:

SADp = cos−1(
wT

i ŵi

‖wi‖ ‖ŵi‖
) (27)

RMSEp =

√√√√ 1
N

N

∑
n=1

(hpn − ĥpn)
2

(28)

where wi and ŵi are the reference endmember signatures and their estimates. Respectively, hpn and
ĥpn are the reference and estimated abundances. Before calculating evaluation criteria, the estimated
endmembers should firstly be reordered to match the reference endmembers. The estimated
abundances should also be reordered respectively.

To present the effects of algorithms on the sparseness of unmixing results intuitively, we compare
the sparseness histograms of different algorithms in Figure 5. The histogram are obtained by counting
the sparseness levels of pixels’ abundance estimated by different algorithms. From the histogram in
Figure 5b, it can be seen that the abundance result achieved by L2-NMF generally tends to be smoother.
The histogram of L2-NMF owns more pixels with low sparseness levels compared to other algorithms.
In Figure 5c, the whole histogram of L1/2-NMF has the tendency of a right shift, which demonstrates
that L1/2-NMF can effectively promote sparsity in the unmixing process. The sparseness of pixels’
abundances will be raised when applying L1/2-NMF. The pixels with various sparseness are not able to
receive constraints accommodated to their sparsity levels in L2-NMF and L1/2-NMF. For the histogram
of DGC-NMF in Figure 5d, the right part of the histogram has the tendency towards a right shift
and the left part has a tendency towards a left shift. This validates that the DGC-NMF algorithm can
impose adaptive constraints on pixels according to their sparseness of abundances. Figure 6 shows the
abundance maps of NMF, L1/2-NMF, L2-NMF, and DGC-NMF, respectively, when applied on synthetic
data. It can be seen that DGC-NMF achieves sparser abundance results than NMF and L2-NMF in
areas possessing high sparsity levels. Meanwhile, DGC-NMF obtains more accurate abundance results
than L1/2-NMF in evenly mixed areas.



Remote Sens. 2017, 9, 1074 11 of 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

Fr
eq

ue
nc

y

Sparseness
(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Sparseness
(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Fr
eq

ue
nc

y

Sparseness
(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Sparseness
(d)

Figure 5. Comparison of sparseness histograms for true abundances different algorithms’ estimated
abundance. (a) Ground truth; (b) L2-NMF; (c) L1/2-NMF; (d) DGC-NMF. NMF: nonnegative matrix
factorization; DGC-NMF: NMF with data-guided constraints.
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Figure 6. Abundance maps of synthetic data estimated by NMF, L1/2-NMF, L2-NMF, and DGC-NMF,
respectively. Each row shows the corresponding abundance maps of a same endmember by
different algorithms.

Due to the first unmixing process for learning sparseness maps from data, the proposed DGC-NMF
is more computationally expensive than L2-NMF and L1/2-NMF. However, it is still in the same order
of magnitude as L2-NMF and L1/2-NMF. Table 1 shows the running time of different algorithms on
a 100× 100 size synthetic image. For each algorithm, 20 independent runs are carried out and the
results are averaged. All experiments are performed using a laptop PC with an Intel Core I7 CPU and
8 GB of RAM. The iteration number of the two steps in DGC-NMF is set as 200. The iteration number
of comparative algorithms is also set as 200.

Table 1. Comparison of the time cost of different algorithms.

NMF L2-NMF L1/2-NMF DGC-NMF

7.61 s 7.68 s 8.66 s 18.80 s

To further analyze the performance of algorithms, five experiments are conducted with respect to
the following: (1) sparseness; (2) size of image; (3) number of endmembers; and (4) the signal-to-noise
ratio (SNR). For each experiment, 20 independent runs are carried out and the results are averaged.
Considering DGC-NMF has the same parameters λ and µ as L2-NMF and L1/2-NMF, we set λ and µ in
DGC-NMF to the same values as those of L1/2-NMF and L2-NMF to make fair comparisons. The values
of parameters λ and µ for L1/2-NMF and L2-NMF, respectively, are carefully determined to achieve
best results as in [33]. DGC-NMF adopts the same values of parameters to validate the effectiveness.

Experiment 1: In this experiment, we investigate the performance of algorithms under various
sparsity levels. Since the real abundance maps of synthetic data are available, we also make comparison
between DGC-NMF with a real sparseness map and DGC-NMF with an estimated sparseness map.
The algorithms are tested on synthetic data with different average sparseness levels of abundances.
The size of data used here and in the following experiments is 100× 100, except in Experiment 2.
The endmember number K = 6 and SNR = 20 dB. Figure 7 shows that the proposed DGC-NMF performs
the best at various sparseness levels. The DGC-NMF with estimated sparseness map performs quite
closely with the DGC-NMF with the real sparseness map, which proves the effectiveness of the
proposed method for estimating the sparsity levels of pixels’ abundances. For SAD, DGC-NMF
performs the best, while L2-NMF has the poorest performance. With the sparseness level rises to 0.6,
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L1/2-NMF achieves better performance than L2-NMF and NMF, while still being inferior to DGC-NMF.
Considering RMSE, DGC-NMF also achieves the best performance under different sparseness levels.
L2-NMF achieves more accurate results than L1/2-NMF when applied to data with relatively low
sparsity levels.

Experiment 2: The algorithms are also tested on synthetic data with different sizes to validate
the performance. The image size is set as 36 × 36, 49 × 49, ..., 144 × 144, respectively, with K = 6,
and SNR = 20 dB. In this experiment and following experiments, the threshold θ is set as 0.91. Figure 8
shows that the proposed DGC-NMF achieves best results for either SAD or RMSE when applied to
different sizes of images. For larger images, L1/2-NMF and L2-NMF may not obtain a satisfactory
result since the images consist of areas with various sparsity levels and a simple constraint is not
applicable. The proposed method provides a reliable way for images possessing areas with various
sparsity levels and requiring adaptive constraints.
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Figure 7. Performance comparison of the algorithms when sparseness level of abundance varies.
(a) spectral angle distance (SAD); (b) root-mean-square error (RMSE).
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Figure 8. Performance comparison of the algorithms with respect to the different sizes of images.
(a) SAD; (b) RMSE.

Experiment 3: The algorithms’ performance when the number of endmembers changes is presented
in Figure 9a,b. The number of endmembers is set from 4 to 8 and the SNR is also set as 20 dB. Generally,
DGC-NMF performs the best while L2-NMF performs the worst when the number of endmembers
varies. For SAD, DGC-NMF still gains the best results, while L2-NMF performs the worst and
L1/2-NMF and NMF have similar performance. From Figure 9b, we can see that DGC-NMF also
achieves the lowest RMSE values when applied to data with different number of endmembers.
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Experiment 4: To test the robustness of the proposed method, synthetic data with different noise
levels are used to examine the performance of algorithms. We change the SNR of synthetic data from
10 dB to 30 dB at the steps of 5 dB. With the increase of noise level, the performance of algorithms
degrades as expected. The DGC-NMF shows the best performance as the SNR varies. For SAD,
L1/2-NMF yields better results than L2-NMF and NMF when SNR = 20. For RMSE, NMF is better than
L1/2-NMF and L2-NMF. It can be seen from the Figure 10 that the proposed DGC-NMF is not sensitive
to noise compared to other three algorithms.
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Figure 9. Performance comparison of the algorithms when the number of endmembers varies. (a) SAD;
(b) RMSE.

10 15 20 25 30
SNR

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S
A
D

NMF
L

1/2
-NMF

L
2
-NMF

DGC-NMF

(a)

10 15 20 25 30
SNR

0.02

0.04

0.06

0.08

0.1

0.12

R
M
S
E

NMF
L

1/2
-NMF

L
2
-NMF

DGC-NMF

(b)

Figure 10. Performance comparison of the algorithms under various noise levels. (a) SAD; (b) RMSE.

4.2. Experiments on Real Data

In this section, we present the experimental results of the proposed method on real hyperspectral
data. Two hyperspectral datasets which include regions with different sparsity levels in an urban scene
and a regional mineral scene are used in the experiments. To verify the performance of the proposed
method, the results of DGC-NMF are compared with NMF [20], L1/2-NMF [35], and L2-NMF [41].
VCA-FCLS and SGA-FCLS are also adopted to compare with the proposed method. The dimensionality
reduction (DR) method adopted for SGA here is principal component analysis (PCA) [43]. The initial
condition for SGA in this paper is set as starting with two endmembers with maximal segment
produced by the one-dimensional two-vertex simplex with maximal distance. The experiment for
VCA-FCLS is repeated 10 times. The results are averaged values and the standard deviations are
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taken. Since the result of SGA is consistent, there is no standard deviation reported for SGA-FCLS and
NMF-based methods. The standard deviation of VCA-FCLS comes from the randomness of VCA.

The first hyperspectral scene to be used is the urban dataset collected by a Hyperspectral Digital
Imagery Collection Experiment (HYDICE) sensor over an area located at Copperas Cove near Fort
Hood, TX, U.S., in October 1995. The spectral and spatial resolutions are 10 nm and 2 m, respectively.
After the bands with low SNR are removed from the original dataset, only 162 bands remain in
the experiment (i.e., L = 162). The image is 307 × 307 pixels in size and consists of a suburban
residential area as shown in Figure 11a. There are four targets of interest existing in this area:
asphalt, grass, roofs, and trees. Since the ground truth of Urban dataset is not available. We use the
reference abundance maps obtained from [44] to evaluate the algorithms’ performance. Two criteria,
spectral angle distance (SAD) and root-mean-square error (RMSE), are adopted to evaluate the accuracy
of estimated endmembers and abundances, respectively.

(a) (b)

Figure 11. The two real hyperspectral data used in the experiments. (a) The Hyperspectral Digital
Imagery Collection Experiment (HYDICE) urban dataset; (b) The airborne visible/infrared imaging
spectrometer (AVIRIS) Cuprite dataset.

Table 2 represents the mean values and standard deviations of SAD of different methods on urban
data. The rows respectively show the results of four targets of interest, i.e., ‘asphalt’, ‘grass’, ‘trees’ and
‘roofs’, along with the mean values. From the Table 2, it can be seen that the SAD results achieved by
DGC-NMF are better than those of other methods in general. For target ’roofs’ and the mean value,
the proposed DGC-NMF achieves the best results. For ‘asphalt’ and ‘trees’, DGC-NMF achieves the
second best result. The RMSE results of algorithms are illustrated in Table 3. We can also find that
the DGC-NMF’s results are generally better than those yielded by the other algorithms. For ‘asphalt’,
‘grass’ and the mean value, DGC-NMF achieves the best results. For ‘trees’ and ‘roofs’, DGC-NMF
achieves the second best results.

In Figure 12, the endmember signatures obtained by different methods are displayed with
reference to the ground truth for visual comparison. It is shown that the endmember signatures
obtained by DGC-NMF are in good accordance with the ground truth. Figure 13 shows the sparseness
maps of abundance results obtained by L2-NMF, L1/2-NMF, and DGC-NMF, respectively. It can be seen
that the sparseness values in the map of L2-NMF are low as a whole, while those of L1/2-NMF show
relatively high levels. For the proposed DGC-NMF, the sparseness values are in better accordance
with the distribution of ground covers in hyperspectral data. In high sparsity level areas such as
the areas composed of asphalt, DGC-NMF acts in a similar manner to L1/2-NMF. In these areas,
DGC-NMF promotes L1/2 constraint and obtains sparser abundance results. In areas with low sparsity
levels that are evenly mixed with signatures such as the areas with both trees and grass, DGC-NMF
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promotes L2 constraint adaptively and obtains smoother abundance results of pixels. Therefore,
the sparseness values are lower than those of L1/2-NMF, similar to L2-NMF. Figure 14 shows the
separated abundance maps of each endmember by VCA-FCLS, SGA-FCLS, NMF, L2-NMF, L1/2-NMF,
and DGC-NMF, respectively. As shown in the figure, all algorithms separate out the four targets
successfully. Through visual comparison, we can see that L2-NMF and L1/2-NMF obtain smoother
and sparser results than NMF, respectively. L1/2-NMF achieves great results in high sparsity level
areas, but fails to capture mixed information in evenly mixed areas. The proposed DGC-NMF achieves
sparser abundance maps than L2-NMF, and has better abundance estimation than L1/2-NMF in
transition regions. Generally, Figures 13 and 14 demonstrate that the proposed DGC-NMF could
promote adaptive constraints on areas in hyperspectral images with various sparsity levels and achieve
better unmixing results of abundance.

Table 2. The spectral angle distance and their standard deviations of algorithms on the urban dataset.
Numbers in bold and red color represent the best results, numbers in bold and blue color represent the
second-best results. FCLS: full constrained least squares.

Endmember
Spectral Angle Distance (10−2)

VCA-FCLS SGA-FCLS NMF L2-NMF L1/2-NMF DGC-NMF

Asphalt 21.04 ± 3.64 13.16 32.33 23.04 96.14 20.82

Grass 36.95 ± 0.28 109.21 124.92 81.87 36.06 51.53

Trees 28.38 ± 7.78 7.43 10.19 15.93 12.70 10.07

Roofs 77.01 ± 0.07 21.74 39.54 138.98 38.94 6.20

Mean 40.84 ± 2.87 37.89 51.75 64.96 45.96 22.16

Table 3. RMSEs and their standard derivations of algorithms on the urban dataset.

Endmember
Root Mean Square Error (10−2)

VCA-FCLS SGA-FCLS NMF L2-NMF L1/2-NMF DGC-NMF

Asphalt 42.42 ± 12.41 30.63 23.68 32.23 41.79 20.72

Grass 47.46 ± 1.23 47.19 39.00 48.24 50.00 36.57

Trees 26.92 ± 11.79 26.96 23.05 19.36 27.66 21.23

Roofs 18.33 ± 2.00 19.40 20.30 24.18 8.84 15.08

Mean 33.78 ± 6.86 31.05 26.51 31.00 32.07 23.40
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Figure 12. Comparison of endmember signatures estimated by different methods over urban
data. (a) asphalt; (b) grass; (c) trees; (c) roofs. VCA: vertex component analysis; SGA: simplex
growing algorithm.
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Figure 13. The sparseness maps of abundance results obtained by different algorithms. (a) L2-NMF;
(b) L1/2-NMF; (c) DGC-NMF.
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Figure 14. Abundance maps of urban data estimated by VCA-FCLS, SGA-FCLS, NMF, L2-NMF,
L1/2-NMF, and DGC-NMF, respectively, from right column to left column. Each row shows the
corresponding abundance maps of a same endmember.

To validate the performance of our proposed method on hyperspectral data with various sparsity
levels, we also conduct an experiment on the Cuprite data. The well known Cuprite dataset is
collected by an airborne visible/infrared imaging spectrometer (AVIRIS) sensor over Cuprite mining
site, Nevada. The raw images have 224 spectral bands covering the wavelength ranging from 0.4 µm to
2.5 µm. The spatial resolution is 20 m and the spectral resolution is 10 nm. Approximate distributions
of the minerals have been illustrated in many pieces of research [10,22,26]. The image used in our
experiment is a 250 × 190 pixel subset of the Cuprite scene, as shown in Figure 11b. Due to the
water absorption and low SNR, several bands are removed, including bands 1–2, 104–113, 148–167,
and 221–224. Hence, 188 bands are used in the experiment. According to [10], there are 14 kinds of
minerals existing in the scene. However, the variants of the same mineral have minor differences
between each other and could be considered as the same endmember. Therefore, we set the number
of endmembers in the scene to 12 [25,33]. Figure 15 presents the extracted endmembers and their
corresponding abundance maps by DGC-NMF. In the figure, the extracted signatures are compared
with USGS library spectra and show good accordance with them. Table 4 presents the SAD results of
the proposed DGC-NMF, along with those of other methods. It shows that DGC-NMF achieves the
greatest number of cases of best SAD results, outperforming NMF, L1/2-NMF, and L2-NMF. L1/2-NMF
obtains the most second-best SAD results of endmembers. In the terms of mean value, DGC-NMF
performs the best.
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Figure 15. The extracted endmembers by DGC-NMF and their corresponding United States Geological
Survey (USGS) library signatures, along with the estimated abundance maps. (a) alunite; (b) andradite;
(c) buddingtonite; (d) dumortierite; (e) kaolinite #1; (f) kaolinite #2; (g) muscovite; (h) montmorillonite;
(i) nontronite; (j) pyrope; (k) sphene; and (l) chalcedony.
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Table 4. The spectral angle distance and their standard derivations of algorithms on the Cuprite data.
Numbers in bold and red color represent the best results; numbers in bold and blue color represent the
second-best results.

Endmember
Spectral Angle Distance (10−2)

VCA-FCLS SGA-FCLS NMF L2-NMF L1/2-NMF DGC-NMF

Alunite 17.85 ± 9.39 11.05 10.03 10.18 16.01 9.91

Andradite 8.21 ± 2.29 8.44 13.12 7.65 12.48 12.17

Buddingtonite 9.82 ± 2.33 11.27 6.71 9.10 8.24 8.97

Dumortierite 13.36 ± 3.56 13.65 13.19 10.37 6.84 10.71

Kaolinite #1 7.68 ± 0.18 17.90 7.33 10.88 6.88 6.40

Kaolinite #2 9.82 ± 2.35 7.00 8.87 9.50 8.37 14.02

Muscovite 16.51 ± 7.09 8.72 10.05 10.47 20.31 10.42

Montmorillonite 11.07 ± 4.63 6.81 6.42 8.76 5.89 5.88

Nontronite 7.48 ± 0.15 13.39 12.53 10.52 10.90 8.69

Pyrope 9.30 ± 3.25 14.69 25.36 15.67 6.24 6.12

Sphene 10.30 ± 5.48 23.64 5.58 65.07 28.27 24.23

Chalcedony 12.31 ± 5.22 11.66 13.20 12.62 12.28 12.41

Mean 11.14 ± 3.83 12.35 11.03 15.07 11.89 10.83

5. Conclusions

In this paper, we provide a novel nonnegative matrix factorization with data-guided constraint
(DGC-NMF), which is based on the data’s sparsity levels in different areas. Since the sparseness
of abundances is previously unknown, we provide a method to evaluate the sparsity level of each
pixel’s abundances. The sparseness map of data is estimated by using the obtained abundances in a
NMF unmixing process with no constraint. The experiments results validate that the estimated
sparseness values can represent the real sparsity levels of pixels well. Through the estimated
sparseness map, sparseness constraints on pixels’ abundances could be adaptively imposed and
lead to better unmixing results. We have proven monotone decrease of the objective by our algorithm
and illustrated the effectiveness and practicability of the algorithm by experiments on synthetic
data and real hyperspectral images. For the future work, the performance of our method could be
further improved by achieving a more accurate estimation of sparsity levels and by introducing more
reasonable constraints imposing strategy. More methods based on mining and using the information
latent in data itself would also be worthy of further study.
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