
remote sensing  

Article

Evaluation of MODIS-Aqua Atmospheric Correction
and Chlorophyll Products of Western North American
Coastal Waters Based on 13 Years of Data

Tyson Carswell 1,* ID , Maycira Costa 1,*, Erika Young 1, Nicholas Komick 2, Jim Gower 3 and
Ruston Sweeting 4

1 Spectral and Remote Sensing Laboratory, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2,
Canada; young.erika.louise@gmail.com

2 Komick Research, 3251 Upland Dr, Nanaimo, BC V9T 2T2, Canada; nick@komickresearch.com
3 Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC V8L 4B2,

Canada; jim.gower@dfo-mpo.gc.ca
4 Pacific Biological Station Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7,

Canada; Ruston.Sweeting@dfo-mpo.gc.ca
* Correspondence: carswelltyson@gmail.com (T.C.); maycira@uvic.ca (M.C.); Tel.: +1-250-7217334 (M.C.)

Received: 26 July 2017; Accepted: 8 October 2017; Published: 19 October 2017

Abstract: There is an increasing need for satellite-derived accurate chlorophyll-a concentration
(chla) products to improve fisheries management in coastal regions. However, the methods used
to derive these products have to be evaluated, so the associated uncertainties are known. The
performance of three atmospheric correction methods, the near infrared (NIR), the shortwave infrared
(SWIR), and the Management Unit of the North Seas Mathematical Models with an additional
modification (MUMM + SWIR), and derived chla products based on the Moderate Resolution Imaging
Spectroradiometer AQUA (MODIS) images acquired from 2002 to 2014 over the west coast of Canada
and the United States were evaluated. The atmospherically corrected products and above-water
reflectance were compared with in situ AERONET (N ~ 650) and above-water reflectance (N ~ 34) data,
and the Ocean Color 3 MODIS (OC3M)-derived chla were compared with in situ chla measurements
(N ~ 82). The statistical analysis indicated that the MUMM + SWIR method was the most appropriate
for this region, with relatively good retrievals of the atmospheric products, improved retrieval of
remote sensing reflectance with bias lower than 20% for the OC3M bands, and improved retrievals
of chla (r = 0.83, slope = 0.89, logRMSE = 0.33 mg m−3 for ±1 h). The poorest chla retrievals were
achieved with the SWIR and NIR methods. These results represent the most comprehensive satellite
data analysis of MODIS retrievals for this region and provide a framework for the MUMM + SWIR
method that can be further tested in other coastal regions of the world.

Keywords: ocean colour; MODIS; coastal waters; chlorophyll-a; atmospheric correction; west coast
of North America

1. Introduction

There is a need for improved monitoring of dynamic coastal processes including productivity,
critical habitats, and fisheries given the effects of increasing human pressures and a changing climate [1].
Traditional methods for monitoring coastal water properties typically rely on in situ sampling from
a ship or buoy based systems, which are often prohibitively costly and spatio-temporally limited.
Inability to effectively monitor and characterize dynamic zones poses a significant barrier, for instance,
to fisheries management. As an example, in the west coast of Canada, improved understanding of
the impacts of bottom-up forcing on fish populations requires long-term spatio-temporal productivity
data [1]. Long-term data derived from ocean colour satellites, for instance, MODIS-Aqua, offer
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an unparalleled tool for synoptic surface chlorophyll-a concentration (chla) associated with high
(near daily) sampling frequencies, thus providing data at the required resolution for improving
ecosystem-based fisheries management [2,3]. However, effective use of these data has some challenges,
including effective removal of atmospheric interference from at-sensor signals and development of
robust satellite-based chla algorithms [4–6]. Many models are available for atmospheric correction
(e.g., [7–11]) and chla retrieval (e.g., [4] for a review of several methods) from ocean colour images.
However, a combination of the most appropriate models is required for robust products desired by the
user community [12].

The objective of this research is to evaluate three atmospheric correction methods for MODIS-Aqua
(hereafter MODIS) and derived chla products for the estuarine system, the Salish Sea, located on the
west coast of Canada and the United States. To accomplish this, the first step was to process MODIS
imagery acquired from 2002 to 2014 based on three different atmospheric correction methods: (i) the
NASA algorithm using a 2-Band relative humidity based model selection and a iterative NIR correction
(hereafter, “NIR” method); (ii) the NASA algorithm with a substitution of SWIR bands (1240 nm,
2130 nm) (“SWIR” method); and (iii) the GW94-based algorithm that assumes spatial homogeneity of
the atmosphere over the region of interest [10], but with an additional modification using advantages
of the SWIR bands to estimate NIR aerosol contributions (“MUMM + SWIR” method). The different
methods were evaluated in comparison to AERONET data and in situ above-water spectral data.
Subsequently, atmospherically corrected images were subjected to the OC3M chlorophyll algorithm
and retrievals assessed in comparison to in situ chla at the different match up time windows.

2. Materials and Methods

2.1. Study Area

The Salish Sea, composed of the Strait of Georgia, Puget Sound, and Strait of Juan de Fuca systems,
is a large, deep (max ~400 m, mean ~150 m), estuarine-forced temperate sea, located on the Pacific
southwest coast of Canada and northwest coast of the US, and it is connected to the Pacific Ocean by
outlets at its north and south extremities (Figure 1). A key feature of this region is inputs from the
Fraser River, which discharges ~140 km3 of fresh water and ~20 megatons of sediment annually [13],
providing up to 80% of its freshwater inputs [14]. These inputs drive southward estuarine circulation,
forming brackish surface plumes that dominate the southern and central portions of the Strait of
Georgia [15].

High particulate inputs in the Salish Sea produce optically complex waters [16] with the highest
light attenuation due to suspended matter occurring particularly in the spring and summer [16,17].
Sutton et al. [18] demonstrated spatial variability in the suspended matter, in that northern waters
are dominated by phytoplankton when compared to the central and southern regions; this is
similarly observed with bio-optical data [16]. Biologically, this region exhibits typical temperate
diatom-dominated spring blooms followed by weaker fall bloom events [19], where primary
assemblages are Thalassiosira spp., Skeletonema costatum, and Chaetoceros spp. [20]. The timing of
the spring bloom is observed to vary interannually [19,21,22], mediated by light availability [21],
wind events controlling the mixed-layer depth, and timing of outflow from the spring freshet [19].
Dinoflagellates are the second most abundant group of phytoplankton, dominating the total biomass
in the summer and early fall [23] when productivity is nitrate-limited [24]. During winter months,
nutrients tend to be above limitation level, creating a situation where phytoplankton growth is
light-limited [19].

The aerosol optical depth distribution in the northeastern Pacific is mostly due to biogenic and
sea salt sulphate emissions [25]. In the Salish Sea, significant loads of aerosols are emitted from major
urban sites in the southern and central regions [26,27]. These tend to be carbonaceous and roughly
divided into either “organic” or “black” groups. While both are emitted from biomass and fossil fuel
combustion, organics tend to scatter while black aerosols strongly absorb radiation [28].
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Figure 1. Salish Sea study area (Central and North Strait of Georgia (SoG), Puget Sound, and Strait of
Juan de Fuca). Chlorophyll-a in situ sampling stations for 2012 and 2013 are represented by grey points;
HyperSAS acquisition sites are represented by triangles; AERONET site is represented by a large
yellow triangle.

2.2. Data Set and Analysis

2.2.1. Satellite Data and Image Processing

All available Level-1A files of the Salish Sea (June 2002–2014) were downloaded from the Ocean
Biology Processing Group (OBPG) at ~1 km2 nadir spatial resolution. A total of 3396 L1A files
were evaluated and selected for further processing. The L2GEN program in the SeaWiFS Data
Analysis System 6.4 (SeaDAS) was used to generate the standard Level-2 files containing water-leaving
reflectance, spectral aerosol optical thickness, and Ångstrom exponents, required for the evaluation of
the atmospheric correction methods.

Atmospheric Correction Approach

The MODIS sensor-measured reflectance at top of atmosphere (ρt) is expressed as the sum of
atmospheric and water contributions [7]:

ρt(λ) = ρr(λ) + ρa(λ) + ρra(λ) + ρg(λ) + t(λ)ρw(λ) (1)

Here, ρw(λ) is water-leaving reflectance containing the useful water properties information to
be isolated from ρt (λ) through atmospheric correction [7,10]; t(λ) is the diffuse transmittance of
the atmosphere, available through lookup tables; and ρg represents reflectance from sun glint and
whitecaps, and is estimated by using ancillary data, including windspeed and solar and sensor
geometry, and recommended flags [29]. Confounding signal contributions detected by the satellite
originate from absorption and scattering by gases (ρr(λ)) and aerosols (ρa(λ)) [30], as well as gas and
aerosol interactions (ρra(λ)) [31]. The ρr(λ) term is accurately derived from lookup tables computed for
different solar and viewing geometries, atmospheric pressure, and wind speed [32]. The ρa(λ) + ρra(λ)

terms, however, are highly variable and cannot be predicted a priori.



Remote Sens. 2017, 9, 1063 4 of 24

The Gordon and Wang’s approach [7] solves Equation (1) by quantifying aerosol reflectance, ρa(λ)

at two NIR bands where water-leaving reflectance is assumed to be zero (t(λ)ρw(λ) ≈ 0) due to high
water absorption. One band is used to evaluate magnitude of aerosol contribution and the second for
evaluating wavelength dependence [7]. Any detected signal at these bands is assumed to correspond
to atmospheric contributions to total signal. The effects of aerosols and Rayleigh-aerosol interactions,
ρa(λ) + ρra(λ), are then estimated at the two NIR bands from sensor-measured radiances, computed
Rayleigh scattering, and estimated whitecap contributions. ρra(λ) is zero where radiation is only
scattered once by either aerosols or air. This is true for low aerosol optical thicknesses (sensor near
nadir); therefore in Equation (1), ρa(λ) + ρra(λ) are replaced by aerosol single scattering reflectance,
ρas(λ) [33,34]:

ρt(λ) = ρr(λ) + ρas(λ) + t(λ)ρw(λ) (2)

ρas(λ) is used to calculate the single scattering epsilon, ε(λi,λj), which is in turn used to define
the aerosol model to correct the visible wavelengths. ε(λi,λj) is defined as:

ε(λi, λj) =
ρas(λi)
ρas(λj)

(3)

where (λi,λj) represent the shorter and longer wavelengths, respectively. The value of ε(λi,λj)
characterizes the spectral variation of the aerosol extinction coefficient, which includes the aerosol
optical thickness, single scattering albedo, and aerosol phase function. It is then used to retrieve
appropriate atmospheric optical properties in the visible wavelengths through predefined lookup
tables [8].

Three atmospheric correction methods were investigated for their ability to characterize and
correct for atmospheric aerosols: (1) the 2-Band iterative NIR, which is the standard NASA correction
method; (2) the SWIR, which has shown improved results in highly turbid waters; and (3) the
MUMM + SWIR, which is a modified method and, in its original form, has also shown improved
results for turbid waters.

Method 1 (NIR): The 2-Band iterative NIR correction algorithm builds on the black-pixel
assumption approach [7], and is designed to address algorithm failure occurring in high particulate
backscattering waters [35,36]. The method uses an iterative bio-optical model considering convergence
to NIR reflectance to quantify particulate contributions to the Rrs (NIR). From that, the effects of
aerosols at the two NIR bands is then extrapolated and removed in the visible spectra through
predefined lookup tables; further details of this method can be found in the literature [8].

Method 2 (SWIR): First proposed by [9], this method replaces the assumption of black pixels in
NIR with the SWIR bands, 1240 and 2130 nm, in highly turbid waters where the NIR method fails.
This is generally valid, as water absorption is several orders of magnitude larger at 2130 nm (2200 m−1)
than in the NIR (5 m−1) [37].

Method 3 (MUMM + SWIR): The MUMM method uses an approach whereby the assumption of
zero water-leaving reflectance in the NIR bands is replaced by the assumption of spatial homogeneity
of the aerosol type in the region of interest [10]. The method requires a priori knowledge of the
normalized reflectance ratios for water at two NIR bands, 748 nm and 869 nm, α(λi,λj), and aerosol,
ε(λi,λj), then the reflectance from aerosols and water can be separated in the Rayleigh-corrected
reflectance [10].

α(λi, λj) =
ρw(λi)
ρw(λj)

(4)

Using an estimated value of ε(748, 869) and α, the following equations can be solved to separate
the reflectance from aerosols and water in the Rayleigh-corrected reflectance, ρrc [10].

ρA(869) =
αρrc(869)− ρrc(748)

α− ε(748, 869)
(5)
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t(869)ρw(869) =
ρrc(748)− ε(748, 869)ρrc(869)

α− ε(748, 869)
(6)

ρA(748) = ε(748, 869)
[

αρrc(869)− ρrc(748)
α− ε(748, 869)

]
(7)

t(748)ρw(748) = α

[
ρrc(748)− ε(748, 869)ρrc(869)

α− ε(748, 869)

]
(8)

The method also accounts for the effect of diffuse atmospheric transmittance, t(λ), by multiplying
α by γ, which is defined as [10]:

γ =
tv(748) t0(748)
tv(869) t0(869)

(9)

where tv(λ) and t0(λ) are the sensor diffuse transmittance and the solar diffuse
transmittance, respectively.

Following the separation of ρw and ρA from ρrc, ρA(748) and ρA(869) are passed to the standard
NIR atmospheric correction. With the iterative fit of the standard NIR atmospheric correction [10],
some degree of variability in the aerosol type and optical thickness is allowed. This approach is
commonly referred to as the Management Unit of the North Sea Mathematical Models (MUMM)
atmospheric correction.

Successful results from the MUMM method requires the accurate definition of α(λi, λj) and
ε(λi, λj) representing clear waters in the image to apply to areas of turbid waters in the image.
However, in the Salish Sea, high surface chla and terrestrial particulates [16,38,39] can contribute to
the water-leaving reflectance at the NIR bands, especially during spring and summer conditions.
For this reason, the spatially averaged aerosol property, ε(748, 869), was estimated from previous
corrected images according to the SWIR method. In the Salish Sea, the mean ε(748, 869) was derived
from a region farther from the coastline and away from known areas of high scattering [16] to limit
potential land adjacency and turbid water effects, respectively. Specifically, a 5 × 5 pixel-box centred at
49.404◦N/−123.965◦W was used to produce an average α and ε for input into the MUMM + SWIR
method. For images with cloud contamination at this specific location, the nearest location with no
clouds was used. A similar approach using spatial averaging of aerosol properties estimated by the
SWIR atmospheric correction has also been applied in the atmospheric correction used by [40]. In that
study, the Ångström exponent value was spatially averaged over an approximate 4 km × 4 km area in
the central portion of Lake Taihu. However, the average Ångström exponent value was used to fix
the model type at 2130 nm, and an iterative correction method was applied to the single band. In our
study, a slightly different approach is applied, where the aerosol model is captured for the NIR bands
using the SWIR correction estimated ε(748, 869) value.

chla Retrievals

For this study, chlorophyll concentrations were derived from all atmospherically corrected images
using the standard OBPG chlorophyll algorithm, OC3M [41] and a possible switch to the OCI [42].
OC3M is an empirically derived algorithm developed as an extension of the OC4 and OC2 SeaWiFS
algorithms adapted for the specific spectral bands of the MODIS sensor. It was statistically derived
from chlorophyll concentrations ranging from 0.0008 to 90 mg m−3, with the majority of concentrations
ranging between 0.08 to 3.0 mg m−3 using the SeaWiFS Bio-optical Algorithm Mini-Workshop
(SeaBAM) dataset [43]. The OC3M algorithm is stated as:

Log10[chla] = ao + a1X + a2X2 + a3X3 + a4X4 (10)

where

X = log
[

max(Rrs(443), Rrs(488))
Rrs(547)

]
(11)



Remote Sens. 2017, 9, 1063 6 of 24

The coefficients a0, a1, a2, a3, and a4 are 0.2424, −2.7423, 1.8017, 0.0015, and −1.2280, respectively.
Here, the larger observed value of Rrs(443) and Rrs(488) nm bands is chosen as dividend to the Rrs(547)
value in calculating reflectance ratio X.

Previous research in the Salish Sea has shown that the simple band ratio OC3M algorithm
generally performs better than, for example, the GSM1 algorithm, especially when the heavily turbid
river waters are masked from the analysis [39]. All OC3M MODIS-derived surface chlorophyll values
were extracted using a 3 × 3 km average pixel-box from the three different atmospheric correction
products. Subsequently, we investigated the efficacy of the atmospheric correction methods and
associated OC3M chla products with decreased temporal match-up windows of ±8, ±6, ±4, ±2, and
±1 h intervals.

Processing Flags

Processing flags were used to exclude data with a high solar zenith angle, land, clouds, and
straylight to prevent chla overestimation due to increased path length [44]. To account for the size
of our study area, we adopted a 3 × 3 pixel straylight flag mask, which captures 99.6% of the
intensity of the theoretical PSF [45]. The 3 × 3 mask was found to conserve good quality data while
eliminating sharply different reflectance values present near cloud and land. A final step in the flagging
criteria excludes any remaining pixels with negative reflectance values in the blue wavelength bands
(412, 443 nm) due to obvious atmospheric correction failure [46].

2.2.2. In Situ Data for Method Validation

In Situ Radiometric Measurements

Two in situ radiometric datasets were used to evaluate satellite atmospheric correction methods:
Aerosol Robotic Network (AERONET) Ångstrom exponent and aerosol optical thickness, and in situ
above-water reflectance. The first dataset was downloaded, cloud-screened, and quality controlled
(level 2.0) from AERONET, located on Saturna Island and maintained by AEROCAN [25]. Data used
included of the Ångstrom exponent, Å (440 nm/870 nm), and aerosol optical thickness, τa (440, 675,
870 nm), and were extracted to match up with coincident atmospheric corrected imagery (±15 min)
from 2002–2014, for a total of 684 samples corresponding to the number of good quality MODIS images.
The Ångstrom exponent describes the wavelength dependence of τa, thus providing basic information
of prevailing aerosol size as spectral shape is directly related to particle size [47]. Values of Åaround
1.0 indicate aerosols typically associated with a mixture of sea salts (marine aerosols), and values
greater than 2.0 generally indicate finer aerosols associated with urban influence of by-products of
organic combustion [8]. MODIS-AERONET match-up locations were extracted from a 3 × 3 averaged
pixel-box representing waters centred on 48.7327◦N, −123.1181◦W, close to the AERONET site, and
away from direct influence of the Fraser River plume.

The second set of radiometric data included in situ above-water Rrs(λ) collected during cruises
using a manufacture calibrated Hyperspectral Surface Acquisition System (HyperSAS). This system
features sensors for measuring sea surface radiance (Lt(λ)), sky radiance (Ls(λ)), and sky irradiance
(Es(λ)) at 136 channels in the 350–800 nm range with a 3.0◦ half-angle field of view (FOV) for the Lt

and Ls sensors. Data was acquired at optimum acquisition geometry [48] and processed following the
protocols by [49,50], converted to above-water remote sensing reflectance [49], and convolved with the
MODIS Spectral Response Functions [50]. A total of 194 spectra were acquired for this study, including
15 spectra from [39] that were acquired and processed using the same methods (Table 1).
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Table 1. In situ data used in this study and associated sources. N is the number of samples.

Source Period N Data

Institute of Ocean Sciences 2002–2014 618 chla
Pacific Biological Station 2012, 2013 192/194 chla/Rrs

[39] 2006 15 Rrs

For the comparison of the MODIS-derived Rrs(λ) and in situ HyperSAS Rrs(λ) match-ups
corresponding to 3 × 3 pixel-box averaged Rrs(λ) were extracted from the images at HyperSAS
sampling locations (±3 h). Only match-ups with data for all methods were used for a direct comparison
to HyperSAS Rrs(λ) since the different approaches to atmospheric correction created disparate
valid-pixel distributions for the same daily acquisitions. Out of the 194 HyperSAS spectra acquired,
only 16 samples were available for direct comparison to imagery with the given constraints. Relaxing
the need for completely coincident Rrs(λ) values between all atmospheric methods, the total number
of match-ups increased to a maximum of 34 (Table 1).

In Situ Chlorophyll Data

In situ chlorophyll surface concentrations from two separate datasets were used for validation
of the imagery-derived chla products for each atmospheric correction method (Table 1). The first
dataset corresponds to samples collected aboard the CCGS W.E. Ricker during the summer and fall
of 2012. All chlorophyll samples (n = 192) were collected at the surface (≤3.0 m; this represents, on
average, the first optical depth in this region [16]) using the continuous shipboard laboratory pump.
Triplicate 1L samples were filtered using 0.7 µm Whatman GF/F glass fibre filters following the
Ocean Optics protocols [51]. Samples were stored at −25 ◦C during the cruise and then transferred to
a −80 ◦C facility at the University of Victoria until pigment extraction. Chla pigment concentrations
were determined using a Dionex high phase liquid chromatography (HPLC) system equipped with
a PDA-100 photodiode array detector and DHI pigment standards [52].

The second in situ chlorophyll dataset of surface (≤3.0 m) chlorophyll concentrations (n = 618)
was provided by the Institute of Ocean Sciences, Fisheries and Oceans Canada, as part of their
Data repository for water property profiles (http://www.pac.dfo-mpo.gc.ca/science/oceans/data-
donnees/index-eng.html), and processed according to [38].

2.2.3. Match-Up Statistics

The statistical analysis considered the comparison between the in situ AERONET vs. MODIS
products, the in situ HyperSAS vs. MODIS products, and the in situ chla vs. MODIS derived chla. For
all AERONET and MODIS product match-ups, the differences between AERONET (SITU) and Satellite
(SAT) of variable X (Å and τa) are expressed by the median of absolute relative per cent difference
(|ψ|), median relative per cent difference (ψ), which represents a measure of bias, and median absolute
difference (|δ|), which represents a measure of uncertainty [46]:

|ψ| = 100×median

(∣∣XSAT
i − XSITU

i

∣∣
XSITU

i

)
i=1,N

(12)

ψ = 100×median

(
XSAT

i − XSITU
i

XSITU
i

)
i=1,N

(13)

|δ| = median
(

XSAT
i − XSITU

i

)
i=1,N

(14)

|ψ| and ψ indicate per cent uncertainty and bias, respectively, while |δ| is the uncertainty in units
of the variable X.

http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/index-eng.html
http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/index-eng.html
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Linear regression analysis and associated slopes, and the Pearson correlation coefficient
were carried out to evaluate the performance of satellite to in situ HyperSAS and chla values.
Median values were used for central tendencies for the relatively large AERONET dataset [46].
However, the mean operator is used here to identify uncertainty and bias calculations in the much
smaller HyperSAS-MODIS dataset. Evaluative statistics used include the mean absolute percentage
difference (MAD), the mean relative percentage difference (MRD), and the root mean squared error
(RMSE) between satellite-derived (XSAT) and in situ (SITU) Rrs(λ) and in situ chla [53].

MAD = 100× 1
N

N

∑
i=1

∣∣∣∣XSAT − XSITU
XSITU

∣∣∣∣ (15)

MRD = 100× 1
N

N

∑
i=1

(
XSAT − XSITU

XSITU

)
(16)

RMSE = 100×

√√√√ 1
N

N

∑
i=1

(
XSAT − XSITU

XSITU
)

2
(17)

Surface chlorophyll concentrations tend to be log-normally distributed [54], therefore, both
MODIS derived and in situ chla were log transformed, and the root mean-square log-error

(
RMSElog

)
was calculated as [55]:

RMSElog =

√√√√ 1
N

N

∑
i=1

(log10(chlaSAT)− log10(chlaSITU))
2 (18)

For this study, statistical significance is defined at a 95% confidence level.

3. Results

3.1. Atmospheric Correction

3.1.1. AERONET Match-Ups

On average, 623 images (i.e., the number of Ångstrom and τa of AERONET-MODIS match-ups)
were analyzed for each atmospheric correction method. The numbers of match-ups vary between
individual atmospheric correction methods due to differing numbers of valid images for each
method and the quality of accompanying AERONET data. The AERONET data for the period
suggests that the dominant aerosol size distributions near Saturna Island correspond to coarse modes
(radii ≤ 0.5 µm), with a mode centred in 1.5. Approximately 90% of AERONET Ångstrom values
acquired in the area were less than 2.0, with the majority between the 1.2 to 1.6 range (Figure 2), thus
representing typical coastal aerosols [8]. Approximately 10% of all Åretrievals, however, were fine
mode (Å > 2.0, radii ≤ 0.5 µm), indicating the presence of strongly absorbing aerosols associated with
urban pollution/biomass combustion [30,47].

Similarly, the MODIS-derived Åalso shows that, regardless of the atmospheric correction method,
the large majority of the match-up data corresponds to Ålower than 2.0. Specifically, the NIR method
produced the most consistent Ångstrom frequencies when compared with the AERONET frequencies,
a mode around 1.2, and resolved exponents greater than 2.0 (Figures 2 and 3). This method also exhibits
one of the lowest uncertainties (|ψ| = 24.48%) and biases (ψ = −3.27%) (Figure 3). The SWIR method
slightly over-represents Åin the 1.6–2.0 range by ~20%, while underestimating all other ranges. This
method shows similar uncertainty (|ψ| = 24.33%) to NIR, but exhibits high dispersion, as expressed by
a larger positive bias (11.65%). The MUMM + SWIR method exhibits similar results to the NIR method
at Åvalues less than 0.8, but it over-represents Åbetween 0.8–1.0 by 12%, and under-characterizes
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Åvalues greater than 1.6. The MUMM + SWIR method showed a larger negative bias (−13.79%), while
uncertainties are similar to the other methods.

Overall, the analysis of the τa data shows that the three methods exhibit over-estimation for
all wavelengths (Figure 4), but slightly improved statistical results for the shorter wavelengths
(443 and 675 nm) than the longer wavelengths (870 nm). Among the three evaluated methods,
the MUMM + SWIR exhibits the lowest uncertainty, about 23% less uncertainty when compared to
NIR for the same bands, and therefore the lowest overall biases (Table 2). Associated with the lowest
uncertainties and biases, this method also shows the highest number of match-ups, and relatively
high correlation coefficient values (r = 0.70 for the 443 nm band) and lower RMSE (7.04%), similar to
the NIR method (Figure 4). The SWIR method shows the poorest performance, with the highest |ψ|
(150.0–200.0%), the lowest correlation coefficients (0.44), and larger positive biases and RMSE (Figure 4
and Table 2).Remote Sens. 2017, 9, x FOR PEER REVIEW  9 of 24 
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Figure 4. Match-up of MODIS to AERONET aerosol optical thickness at three wavelengths for three
atmospheric correction methods. The red line is the regression line of the equation, and the dashed line
indicates the 1-to-1 relationship. The number of match-ups (±15 min) are 569, 617 and 684 for the NIR,
SWIR, and MUMM + SWIR methods, respectively.

Table 2. Validation statistics for the three atmospheric correction methods for MODIS-derived τa

expressed as |ψ| and ψ (in %) and |δ| and δ (in τa units).

Parameter NIR SWIR MUMM + SWIR

τa (443 nm)

|ψ| (%) 93.57 168.18 71.34
ψ (%) +93.57 +168.18 +70.45
|δ| 0.08 0.13 0.06

τa (675 nm)

|ψ| (%) 123.40 200.00 110.88
ψ (%) +123.40 +200.00 +52.58
|δ| 0.05 0.08 0.05

τa (865 nm)

|ψ| (%) 91.76 150.00 88.90
ψ (%) +91.76 +150.00 +88.90
|δ| 0.03 0.05 0.03

Å(440, 870
nm)

|ψ| (%) 24.48 24.33 27.51
ψ (%) −3.27 +11.65 −13.79
|δ| 0.30 0.33 0.34
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3.1.2. In Situ above Water Match-Ups

From the 194 acquired in situ HyperSAS measurements, only 13–34 were match-ups for the
MODIS derived Rrs(λ) analysis, within the defined ±3 h temporal window (Table 1). The number of
match-ups differs for the individual atmospheric correction methods due to differing valid pixels for the
same image. Figure 5 and Table 3 show the results for all the match-ups for each atmospheric method.Remote Sens. 2017, 9, x FOR PEER REVIEW  11 of 24 
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Figure 5. Comparison of match-ups of MODIS remote sensing reflectance to convolved in situ
HyperSAS data. Respective bands are denoted by symbols. Solid lines represent the 1:1 relationship.

Table 3. Results of MODIS and HyperSAS Rrs(λ) comparison. Percentage of negative retrievals are
given. Statistics are based on all remaining positive values.

Method (λ) % Negative Count (N) MAD% MRD% RMSE rlinear Slope

NIR

Rrs(412) 62 14 404 321 0.002 0.30 0.18
Rrs(443) 15 29 99 −4 0.002 0.30 0.16
Rrs(488) 0 34 58 −31 0.002 0.82 0.69
Rrs(531) 0 34 54 −9 0.002 0.84 1.07
Rrs(547) 0 34 38 −21 0.002 0.89 1.00
Rrs(667) 12 30 54 −35 0.002 0.84 0.31

SWIR

Rrs(412) 64 9 587 550 0.003 0.24 0.27
Rrs(443) 56 11 151 107 0.003 0.35 0.34
Rrs(488) 56 11 74 16 0.003 0.36 0.43
Rrs(531) 40 15 54 −20 0.004 0.63 0.51
Rrs(547) 28 17 53 −32 0.004 0.57 0.46
Rrs(667) 40 13 70 −32 0.002 0.37 0.29

MUMM
+ SWIR

Rrs(412) 52 13 42 −13 0.002 0.69 0.85
Rrs(443) 37 16 48 −6 0.002 0.66 0.66
Rrs(488) 19 22 56 −22 0.002 0.67 0.61
Rrs(531) 11 23 44 −10 0.002 0.74 0.61
Rrs(547) 4 23 37 −14 0.019 0.78 0.62
Rrs(667) 22 21 43 −38 0.019 0.82 0.61

The SWIR method produced the lowest average match-up incidences (n = 13, 47%) across all
wavelengths, and the highest percentage of negative values (47%), followed by the MUMM + SWIR
(n = 20, 24%), and the NIR (n = 29, 15%). The greatest frequency of negative Rrs(λ) occurred in the 412
and 443 nm bands for all methods. However, nearly half of all SWIR-derived Rrs(488–547 nm) were
negative, and therefore invalid. All negative Rrs(λ) values (mostly blue wavelengths) were removed
to be consistent with image processing procedures, and all remaining positive values were investigated
for further analysis.

The mean absolute percentage difference (MAD) of the dataset ranged 38–404% (NIR), 53–587%
(SWIR), and 37–56% (MUMM + SWIR). The poorest observed performance is for the SWIR method,
which exhibits the highest uncertainties for all bands, and the most negative bias and high dispersion
around a theoretical 1:1 relationship (Figure 5) as a result of the poorest correlation across all bands
(r ranging 0.24–0.57), with slopes ranging 0.27–0.51 (Table 3). The NIR method performed slightly better
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than the SWIR method, thus showing a decrease in the absolute and relative percentage differences and
improved average mean r (0.71 ± 0.33). Superior results are observed for the MUMM + SWIR method,
which shows the lowest overall uncertainties (45%) and biases (−17%), the highest r (0.73 ± 0.14)
values, close distribution to the 1:1 line (Figure 5), and also very important, slope values are similar for
most of the bands (0.66 ± 0.04), especially the OC3M bands (Table 3). This indicates that the shape
of the spectral curve is better preserved, which contributes to improved chla retrievals when using
the OC3M.

Figure 6 illustrates the comparison between MODIS Rrs(λ) and in situ Rrs(λ) match-ups
concurrent for the three evaluated methods. This qualitative analysis shows that the shape of the
Rrs(λ) spectra produced with the SWIR and NIR corrections diverge the most from the HyperSAS
in situ spectra when compared to Rrs(λ) spectra derived from the MUMM + SWIR method.
Specifically, a greater proportion of results for the NIR and SWIR methods shows negative reflectance
in the 443 nm and 488 nm bands, thus resulting in negative biases higher than 40% (Figure 7), while the
MUMM + SWIR produces negative biases generally lower than 20% at the blue and green wavelengths.
The 412 nm band exhibited the highest bias, where MUMM + SWIR under-estimates Rrs by 38%,
and both NIR and SWIR methods were upwards of 70%. Given that the OC3M model relies on the
ratio of 443 nm or 488 nm to the 547 nm band to derive an accurate chlorophyll concentration [43],
the MUMM + SWIR method resulted in an overall more accurate Rrs(λ) retrieval in these bands,
thus the resulting ratio between the blue green bands is more accurate. The highest average absolute
difference between the MODIS derived blue-green ratio and the HyperSAS blue-green ratio is 10%,
23% and 24% for the MUMM + SWIR, NIR, and SWIR methods, respectively.
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Figure 7. Comparison of matching MODIS-derived to in situ (HyperSAS) remote sensing reflectance
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3.2. OC3M Chlorophyll Retrievals

MODIS-OC3M chla retrievals from the three atmospheric correction methods versus in situ
chlorophyll-a concentrations are compared for different match-up temporal windows (±1 h to ±8 h).
Match-up time differences correspond to the time difference between in situ data acquisition and
satellite overpass. The in situ chla for the match-ups ranged from 0.4 to 30.0 mg m−3, representing
typical yearly conditions in the Salish Sea [38].

Chla estimates based on the images corrected with either the NIR or the SWIR methods
(NIR-OC3M and SWIR-OC3M, respectively) exhibit consistently poor chla retrievals with large
over-estimation showing values higher than 40 mg m−3 (Figure 8), which is not typical of these
waters, even during bloom conditions [38]. The retrievals from the NIR-OC3M method shows the
highest overestimation of chla, with both uncertainty and bias greater than 400%, and correlation
values not significant at the 95% confidence level, regardless of the match-up temporal window.
The SWIR-OC3M retrievals show similarly poor results, high bias and uncertainty, not significant
correlation coefficients, and a general overestimation of chla concentrations (Table 3).

In contrast, the MUMM + SWIR-OC3M method, regardless of the match-up temporal window,
exhibits the lowest uncertainty, bias, and RMSE, as well as the slope closest to 1.0, and the highest
correlation coefficients. Further, this method allowed for the largest number of chla retrievals, with
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a range of 82 samples for ±8 h to 16 samples for the ±1 h temporal window. Perhaps most importantly,
it is the only method with improved statistical results with finer temporal differences (Figure 8, Table 3).
For instance, within a ±1 h match-up time, chla retrievals exhibit the best results defined by the linear
regression line with a slope of 0.89, the lowest offset (0.65), and rlinear of 0.83, thus defining a low bias
(21%) and RMSE (logRMSE = 0.33 mg m-3) (Table 4).
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Table 4. Summary statistics for MODIS vs. in situ remote chlorophyll concentrations. Match-up
samples were derived from approximately 40 images.

Method Parameters Count (N) MAD% MRD% logRMSE rlinear Slope rlog

NIR

chla 8 h 54 481 453 0.66 0.22 2.07 0.59
chla 6 h 38 510 483 0.67 0.25 2.75 0.59
chla 4 h 32 394 368 0.63 0.41 * 2.87 0.61
chla 2 h 23 489 472 0.69 0.44 * 3.24 0.58
chla 1 h 12 460 438 0.69 −0.10 −0.31 0.34

SWIR

chla 8 h 35 508 452 0.60 −0.09 −0.49 0.23
chla 6 h 26 667 611 0.70 −0.15 −1.04 0.16
chla 4 h 23 741 688 0.70 −0.16 −1.18 0.09
chla 2 h 16 529 482 0.65 −0.10 −0.84 0.10
chla 1 h 9 82 31 0.43 0.28 0.13 0.37

MUMM+SWR

chla 8 h 82 64 18 0.34 0.81 * 0.79 0.74
chla 6 h 52 62 14 0.35 0.76 * 0.69 0.70
chla 4 h 46 62 15 0.34 0.77 * 0.71 0.72
chla 2 h 34 67 27 0.33 0.80 * 0.75 0.73
chla 1 h 16 62 21 0.33 0.83 * 0.89 0.74

Note: * p < 0.05.

Examples of final chla maps produced from the respective atmospheric correction techniques
are shown in Figure 9. Three typical dates are shown and correspond to winter, spring, and summer
conditions. The February image generally shows lower chla (<1.0 mg m−3), and large areas of null data
for all three methods. This typical low chlorophyll concentrations [38] and lack of data is consistent
with the whole dataset for this time of year, where growth is often light limited, in part due to the
presence of clouds [21]. An example of spring bloom conditions is shown in the MUMM + SWIR-OC3M
product for 2 April 2008, where chla concentrations are around 4.0–8.0 mg m−3 in the northern region,
3.0 mg m−3 in the Strait of Juan de Fuca, and higher than 10.0 mg m−3 and lower than 40 mg m−3

through a majority of the central Salish Sea. This region is also often characterized by a second bloom
in the fall [38]. The SWIR-OC3M product shows a noisy distribution of chla, with the majority of
values within the 5.0 ± 3.0 mg m−3 range. The NIR-OC3M product shows the most extreme values
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of chla within the Salish Sea, with values higher than 40.0 mg m−3, not commonly observed in this
region [20,38].
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4. Discussion

This research comprised the most comprehensive analysis of MODIS-Aqua imagery subject to
evaluation of atmospheric correction methods and derived chla products using in situ data from the
Salish Sea. We provided an evaluation of three atmospheric correction methods (NIR, SWIR, and
MUMM + SWIR) in relation to in situ AERONET and above-water reflectance data, followed by an
assessment of MODIS chla retrievals in relation to in situ chla measurements. Our findings show
that, for the region of study, the combined statistical results of the tested atmospheric correction
methods and chla retrievals support MUMM + SWIR as the most appropriate method to determine
accurate MODIS Rrs(λ) for retrieval of chla using the OC3M algorithm. The following sections provide
a discussion of our main results.

4.1. Atmospheric Correction

To understand the ability of the three atmospheric correction methods to accurately retrieve
Rrs(λ) required for chla determination, products generated from each method were compared to
a stationary AERONET site and in situ above-water Rrs samples collected throughout the Salish Sea.
Overall, the comparison with the AERONET in situ data showed that derived aerosol products were
the least accurate for the SWIR method, and relatively similar for NIR and MUMM + SWIR methods.
Å(440, 870 nm) biases varied from −13.8% to +11.6%, and uncertainty was approximately 25%, with
slightly lower performance for the MUMM + SWIR method; τa (443), however, showed higher ranges
of both uncertainty and biases, 71.3–93.4% and 70.4–168.2%, respectively, with higher values for 675 nm
and 875 nm, but still overall better performance was obtained for the SWIR + MUMM method, with
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correlation coefficient value of 0.7, an associated slope close to 1 and RMSE equal to about 7% for the
blue band (Figure 4 and Table 2).

Specifically, the SWIR method produced the largest uncertainties in retrievals for both Åand τa.
A few factors contribute to the observed uncertainties. High turbidity levels in the Salish Sea may
cause non-negligible Rrs(1240 nm), thus resulting in poor aerosol product retrievals, as it has been
reported for other turbid waters [56–58]. Turbidity in the Salish Sea reaches values around 30.0 mg
L−1 in waters under high influence of the Fraser River plume [16,39]. Uncertainty in retrievals with
the SWIR method is also associated with the signal-to-noise ratio (SNR) of the employed band that
produces broad frequency distributions relative to NIR bands [59]. The current MODIS SWIR band
(1240 nm) was originally designed for land and atmosphere applications, which generally represents
bright signals [60]. While there exists a MODIS 1640 nm band with improved SNR compared to the
1240 nm band (495 vs. 157 on-orbit measured, respectively [61]), it is currently non-functional due
to a number of broken detectors [62]. Although the current 1240 and 2130 nm SWIR bands have
produced effective results in some regions with turbid waters [57,63], other studies, similar to our
results, show that the lower SNR often produces poor outcomes [62,64,65]. Specific to our results, this
lower SNR resulted in the largest uncertainties and overall variability of MODIS τa when compared
with AERONET, and ultimately inaccurate chlorophyll products (Table 4). These findings corroborate
observations by [65,66] where products derived using current SWIR bands are less accurate than
standard NIR bands. One way to minimize inaccuracies of retrievals is to increase the SNR of the
SWIR bands to 180 for 1640 nm, and 100 for 2135 nm [62,65,67]. Improved SWIR band SNR is defined
for the Ocean Land Color Instrument (OLCI) sensor onboard the Sentinel-3 platform [62], although it
remains to be seen whether the OLCI characteristics will be sufficient for effective SWIR correction of
these waters.

The NIR and MUMM + SWIR were derived from two very different approaches (Section 2.2.1),
but generally produced close results with regard to the uncertainties and biases when compared
with AERONET τa (443 nm, 865 nm), and slightly lower performance for the MUMM + SWIR for
estimates of Ångstrom. The observed small differences in uncertainties and biases for the two methods
are likely a function of the constraints of the MUMM + SWIR method on how to define the aerosol
model for the atmospheric correction. Instead of a pixel-based determination as used in the NIR
method, the MUMM + SWIR method defines the aerosol model based on a sample (ε(λi,λj)) from
a northern region of the Salish Sea, where waters are less turbid, and assumes spatial homogeneity
for the entire region. A similar approach using spatial averaging of aerosol properties has also been
successfully applied in the atmospheric correction used, for example, by [40]. However, aerosol loads
present in the more populated central/southern regions of the Salish Sea may not be present in the
relatively more isolated northern region [26,27] used to define ε(λi,λj). As such, the assumption of
aerosol homogeneity may not always be valid for areas under the influence of urban environments,
which is expressed in our results by the reduced ability of the MUMM + SWIR method to resolve
larger Ångstrom values (Figure 2), corresponding to combustible particles and sulphates [47]. These
are absorbing aerosols that can lead to increased negative bias in the derived short wavelength
Rrs(λ) [68]. Fine-mode carbonaceous aerosols alter atmospheric correction results through either
incorrect selection of atmospheric models or, in the case of strongly absorbing aerosols, significant
over-estimation of aerosol radiance contributions, over-correction, and negative reflectance in the blue
bands (412 and 443 nm) [34]. The negative bias (ψ = −13.79%) observed for Ångstrom estimates using
MUMM + SWIR is likely a result of this. Specifically, this bias is influenced by the fact that τa (440 nm)
is proportionally larger than τa (870 nm). High τa (440 nm) can occur when aerosol single scattering
albedo decreases due to extinction from combustion by-products [69].

The range of the spatial aerosol optical properties in the Salish Sea [26] leads to some of the
differences between our results and improved results, for example, in [46] for the European marginal
seas (Adriatic, Baltic, North, and Black seas) and in [35] for coastal waters of the northern Baltic Sea,
using different atmospheric correction methods. We speculate that the lower uncertainties on the
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retrieved aerosol products reported by these authors in comparison with uncertainties in this study is
likely attributed to the Salish Sea being a water body/air mass surrounded by anthropogenic aerosol
inputs [26] in contrast to the areas of study of [46], which are characterized by more open and exposed
coastal sites. Interestingly, Mélin and coworkers [46] results exclusively for the Adriatic Sea, which
similar to the Salish Sea, is an estuarine site bordered by anthropogenic aerosol sources, shows similar
outcomes to our findings for the Ångstrom MUMM + SWIR: |ψ| = 27% vs. 17% and |δ|= 0.34 vs.
0.27, respectively, for the Salish Sea and the Adriatic Sea, and both were negatively biased at 13%.

A further important point on the evaluation of the aerosol products is that, ultimately, regardless
of the atmospheric correction method, match-ups may be affected by the spatial mismatch in the
sampling location of both τa and Ångstrom used for the MODIS imagery and the land-based location
of the AERONET station, although the sampling locations are in close proximity. Previous analysis,
however, indicates that slight variations of location and size of the nearby satellite pixels sampling
location may not significantly alter final comparisons [70]. Therefore, it is unlikely that the location of
the 5 × 5 pixel-box used in the study significantly affected overall uncertainty and bias results.

The secondary level of analysis corresponding to the comparison of Rrs(λ) from the different
atmospheric methods and the in situ HyperSAS Rrs(λ) indicates that, overall, the MUMM + SWIR
method retrieves more accurate reflectance values for all wavelengths. Note that, although the
number of in situ samples is not large, they do represent the distribution of reflectance in the studied
area, from the more turbid waters closer to the Fraser plume to less turbid waters in the northern
region [39]. For the true match-up data including the three methods, the MUMM + SWIR achieved
negative biases lower than 20% for the OC3M bands (443, 488 and 547 nm) (Figure 7). This level
of uncertainty is generally achieved for the best models (e.g., [5,35]), with poorer performance, but
still acceptable, reported by other authors (e.g., [55,71]). The largest uncertainties were observed for
the non-OC3M bands, 678 nm band (~50%) and 412 nm (~38%), similar to [35]. Given the similar
and lower uncertainties of the OC3M bands, the MUMM + SWIR method also produced the lowest
absolute difference (10%) when comparing the MODIS blue green reflectance ratios to HyperSAS; that
is, the spectral shape of Rrs for 443, 488 and 547 nm was accurately preserved. This is an important
consideration, as an error in the blue green ratio is propagated to the OC3M chla retrieval. Besides the
achieved closure to the OC3M bands and band ratios, the robustness of MUMM + SWIR results is also
based on the spatial representativeness of the in situ HyperSAS collected samples—samples are from
various water conditions throughout the Salish Sea (Figure 1).

Contrary to the MUMM + SWIR results, the NIR method shows a larger negative and variable
bias on Rrs(λ) across all bands when compared to HyperSAS (Figure 7), thus suggesting atmospheric
over-correction (Table 2). The range in MAD and MRD indicates that the atmospheric model selection
and correction is not applied proportionally, likely a result of turbidity causing invalid model
selection, and further CDOM absorption in the blue wavelengths affecting individual pixel reflectance.
Underestimation of the blue bands (443 nm, 488 nm) reflectance relative to green (547 nm) reflectance
likely (Figure 7) resulted in the overestimation of chla over a broad range of water conditions (Figure 8,
Table 3), as reported in other studies [35,72]. The NIR approach is an established and reliable method for
optically simple, more open waters, where variability of marine optical properties such as absorption
and scattering is solely a function of phytoplankton composition [31,73]. Optics in coastal waters
are more complex and, the Black Pixel assumption is not consistently effective. In these waters, total
organic and inorganic suspended material often contributes to backscattering in the NIR [10,31,58,73]
causing overestimation of NIR aerosol reflectance. Band mischaracterization confounds the selection of
an appropriate atmospheric model, causing error in path radiance back calculations and poor estimates
of all spectral bands. The result is low or negative water leaving reflectance in the blue wavelengths
leading to the failure of chla retrievals.

Although, to our knowledge, we have the largest number of match-ups for ocean colour satellite
evaluation for this region, this study is still based on a less than ideal number of match-ups for in
situ HyperSAS data. Further, the AERONET site is land-based. Improvements on the validation of
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atmospheric correction methods would be facilitated by an increased number of in situ reflectance
data, such as other coastal sites that are equipped with the AERONET-OC (Ocean Colour) [5,72].
Although, as pointed out by [5] and similar to the in situ HyperSAS data used in this research,
AERONET-OC stations measure in a specific location (point data), and caution should be taken when
interpreting the results of comparisons with reflectance from a region, generally defined as an average
of a 3× 3 or 5× 5 pixel-box in the satellite image. Other sampling methods, such as moving ship-based
initiatives, are also an alternative [74], however, the variability of the reflectance measurements within
the pixel-box has to be defined. This will be the case for the recently installed autonomous SAS Solar
Tracker above-water radiometers aboard the BC Ferries in the Salish Sea [75].

4.2. Chlorophyll Retrievals

The results of coupling the OC3M model with the different atmospheric correction methods clearly
shows that the MUMM + SWIR-OC3M resulted in the best statistical performance for retrievals of chla,
regardless of the match-up temporal window between in situ and MODIS-derived chla. Statistically
significant correlations were consistently high with rlinear = 0.81 for 8 h time difference (n = 82
match-ups), increasing to rlinear = 0.83 for 1 h match-ups (n = 16), and accompanied slopes ranged from
0.77 and 0.86, respectively. The bias and uncertainty are 21% and 62%, respectively, for 1 h temporal
window. These results are in the same range of acceptance as results published for other coastal regions
of the world (e.g., [4,8,55,65,71,76,77]). The NIR-OC3M and SWIR-OC3M yielded higher uncertainties
and biases when compared to the in situ chla. Both the NIR and SWIR corrected reflectances tend to
highly over-estimate in situ chla observations, and both returned the lowest number of valid retrievals,
regardless of the match-up temporal window. Chla retrievals from the standard NIR method exhibiting
extreme values are associated with negligible or negative Rrs(443 nm), a result of over-estimation of
the aerosol optical transmittance.

Empirical blue-green (440–550 nm) band-ratio algorithms, such as the OC3M, are the most
commonly implemented due to their relative simplicity, and phytoplankton absorption is most
influential in this spectral region [4,78]. This simplicity is useful for the diverse waters in the Salish Sea
and, as originally tested for these waters by [39], provides chla estimates under the greatest range of
surface-water optical properties. However, uncertainties of chla retrievals for concentrations below
0.2 mg m−3 are known to be high [39,79]. While these low magnitude values were close to the observed
for our samples (ranged from 0.4 to 30.0 mg m−3), the large majority of chla samples (~82%) were
above 1.0 mg m−3. We also must consider that the increased concentrations of CDOM and total
suspended matter in the studied waters impact the accuracy of the current blue-green ratio algorithm
to retrieve chla, as demonstrated for other optically complex waters [80]. The variable concentrations
of CDOM and total suspended matter play a role in the magnitude and shape of the reflectance signal
and therefore the efficacy of the OC3M algorithm. For instance, we have measured aCDOM(443)
ranging 0.007–3.0 m−1 and total suspended matter ranging 1.0–27.0 mg L−1 in these waters [16,39,81].
These conditions are typical of coastal waters around the world, such as the Beaufort Sea, Chesapeake
Bay, and the Baltic Sea, where standard OBPG chla algorithms fail [71,82,83]. To address some of the
issues related to CDOM adsorption, methods using the chlorophyll fluorescence emission centred
at 685nm for non-atmospheric corrected MERIS [84] and MODIS [22,85] imagery have been used in
British Columbia coastal waters. Further analysis is required with a larger in situ dataset to explore
this method, given that the fluorescence signal can vary not only with chla concentration, but also due
to photo-inhibition, phytoplankton species, and cell physiology [85]. In addition, effective fluorescence
light height retrieval can be difficult in turbid coastal waters with TSM exceeding 5 mg m−3 [86,87]
where NIR elastic scattering confounds the signal [88]. These are typical concentrations in the Salish Sea
during spring/summer [16,39]. Ideally, regional algorithms (e.g., [4,71,89], band-difference algorithms
(e.g., [76]), and semi-analytical models such as the GSM1 [4,39,77,90] should be explored to test their
retrieval accuracies in these waters.
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Regardless of the adopted model approach, either based on global or regional empirical or
semi-analytical models, the in situ chla satellite match-up samples are generally low, as is also the
case for this research. Exceptions of model comparison with large data sets are generally based on the
global databases, such as NOMAD [12]; however, caution must be taken on the evaluation of models
when the same dataset is used to parameterize the actual models [4]. In addition, as a commonality for
most of the satellite-in situ chla match-up analyses, in situ chla data are point-wise data and satellite
retrievals are based on pixel-box data, which generally represent a few hundred metres. Given that
the at-sensor radiance is a function of all the water optically active constituents within the pixel, as
well as adjacency effects from surrounding pixel-atmosphere interactions, it is reasonable to assume
that a portion of the error in match-ups are due to coarse spatial resolution. This may have large
implications for validation of satellite retrievals, especially in dynamic coastal waters [91] such as the
case of the Salish Sea [16,81]. Further, satellite-derived chla is estimated based on reflectance from the
first optical depth, [92], which in the Salish Sea, ranges from one to three metres [16]. This is generally
shallower than the depth of chlorophyll maximum, for both stratified and non-stratified oceanographic
conditions in this region [20,38]. This is a limitation of current remote sensing methods [93]; however, in
the specific case of the Salish Sea, it does mean that the OC3M retrievals represent waters that are
always above the depth of chlorophyll maximum.

5. Conclusions

The NIR, SWIR, and modified MUMM + SWIR products coupled with OC3M-derived chla
concentrations were evaluated using in situ AERONET aerosol optical measurements (N ~650),
above-water Rrs(λ) (N ~34), and in situ chla (N ~83) data. Our results support the MUMM + SWIR
as the most appropriate method to determine accurate MODIS Rrs(λ) for retrieval of chla using the
OC3M algorithm for deriving time series products for the Salish Sea.

The MUMM + SWIR method works nearly as well as the NIR black pixel assumption to define
τa(λ) and Åwhen compared to the in situ AERONET data. This partly supports the assumption
of aerosol spatial homogeneity for the MUMM method. However, this method does not properly
resolve fine mode fraction Å, which means that further work is needed to address the influence of
strongly absorbing urban aerosols that may occur in the central region due to large urban settlements.
Nonetheless, when compared to in situ Rrs(λ) collected from broader water and atmospheric
conditions throughout the Salish Sea, the MUMM + SWIR performed the best, especially for the
OC3M bands. In addition, the MUMM + SWIR method resulted in more accurate chla retrievals with
the lowest uncertainty and bias, and best linear regression statistics (rlinear = 0.83, slope = 0.89 for ±1 h
temporal window). The OC3M coupled with the NIR and SWIR methods did not perform well for the
studied waters, as chla values were largely overestimated beyond values typical of the Salish Sea.

While these findings clearly show that the MUMM + SWIR performs better in waters where the
black pixel assumption fails, we nevertheless recognize that further efforts are needed to address
the limited number of viable Rrs(λ) match-ups to compare atmospheric correction methods over
a broad range of waters with varying optical constituents. Since July 2016, our research group has
been addressing this need with the recent installation of two autonomous above-water Hyperspectral
sensors (SAS Solar tracker) that are providing continues Rrs(λ) along two different ferry routes
covering different optical waters of the Salish Sea [75]. These new systems will allow for further
evaluation of the MUMM + SWIR and other atmospheric models so improved satellite products can
be generated.
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