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Abstract: Tropical forests host at least two-thirds of the world’s flora and fauna diversity and store 
25% of the terrestrial above and belowground carbon. However, biodiversity decline due to 
deforestation and forest degradation of tropical forest is increasing at an alarming rate. Biodiversity 
dynamics due to natural and anthropogenic disturbances are mainly monitored using established 
field survey approaches. However, such approaches appear to fall short at addressing complex 
disturbance factors and responses. We argue that the integration of state-of-the-art monitoring 
approaches can improve the detection of subtle biodiversity disturbances and responses in changing 
tropical forests, which are often data-poor. We assess the state-of-the-art technologies used to 
monitor biodiversity dynamics of changing tropical forests, and how their potential integration can 
increase the detail and accuracy of biodiversity monitoring. Moreover, the relevance of these 
biodiversity monitoring techniques in support of the UNCBD Aichi targets was explored using the 
Essential Biodiversity Variables (EBVs) as a framework. Our review indicates that although 
established field surveys were generally the dominant monitoring systems employed, the temporal 
trend of monitoring approaches indicates the increasing application of remote sensing and in -situ 
sensors in detecting disturbances related to agricultural activities, logging, hunting and 
infrastructure. The relevance of new technologies (i.e., remote sensing, in situ sensors, and DNA 
barcoding) in operationalising EBVs (especially towards the ecosystem structure, ecosystem 
function, and species population classes) and the Aichi targets has been assessed. Remote sensing 
application is limited for EBV classes such as genetic composition and species traits but was found 
most suitable for ecosystem structure class. The complementarity of remote sensing and emerging 
technologies were shown in relation to EBV candidates such as species distribution, net primary 
productivity, and habitat structure. We also developed a framework based on the primary 
biodiversity attributes, which indicated the potential of integration between monitoring 
approaches. In situ sensors are suitable to help measure biodiversity composition, while approaches 
based on remote sensing are powerful for addressing structural and functional biodiversity 
attributes. We conclude that, synergy between the recent biodiversity monitoring approaches is 
important and possible. However, testing the suitability of monitoring methods across scales, 
integrating heterogeneous monitoring technologies, setting up metadata standards, and making 
interpolation and/or extrapolation from observation at different scales is still required to design a 
robust biodiversity monitoring system that can contribute to effective conservation measures. 

Keywords: tropical forests; biodiversity monitoring; disturbances; remote sensing; in situ sensors; 
DNA barcoding 
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1. Introduction 

Biodiversity decline due to habitat disturbance of tropical forests is increasing at an alarming 
rate [1] and has led to growing interest in assessing the changing trend of their biological diversity 
by, for example, implementing and monitoring conservation efforts [2]. The reason tropical forests 
are in the spotlight is that they host at least two-thirds of the world’s flora and fauna diversity [3] and 
store 25% of the terrestrial above and belowground carbon [4]. Moreover, their sustainable existence 
is threatened as a result of major anthropogenic and natural disturbances [5]. Yet the complexity of 
the biological diversity present and the variety of disturbance factors at work has made the 
monitoring process difficult. This situation is primarily attributable to the technological and resource 
limitations of tropical developing countries [6,7]. 

Loss of tropical forests due to deforestation, forest degradation and forest fragmentation alters 
the habitat of many flora and fauna species. These threats mainly originate from anthropogenic 
pressure, which ranges from small-scale agricultural activities and selective logging practices that 
introduce subtle disturbances, to large-scale commercial agriculture, plantations, logging and mining 
activities that result in large-scale habitat disturbance and forest fragmentation [8]. When their habitat 
is modified, some species manage to adapt, some become threatened, others migrate and a few go 
extinct [9]. Such resulting change in biological diversity is a complex process that is increasingly 
attracting research attention. This is due to the growing need to assess and report on the performance 
of policy regimes, such as those agreed in the Paris Climate Agreement and on efforts to reduce 
deforestation and forest degradation [2], and on the Aichi targets set by the Convention on Biological 
Diversity [10]. Accordingly, the United Nations (UN) Convention on Biological Diversity (CBD), the 
Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), and the Group on Earth 
Observations and Biodiversity Observation Network (GEO BON) are among the international 
initiatives that are addressing the increasing threat to forest biodiversity. The UNCBD’s Aichi 
Biodiversity Targets (ABT) have 20 measurable components and are aimed at reducing the pressure 
on global biodiversity and halting it by the year 2020 [10]. Countries that ratified the CBD Convention 
(Article 6) [11], have since developed National Biodiversity Strategies and Action Plans (NBSAPs), 
while countries that have embraced the UN Sustainable Development Goals (SDG) (goal 15: Life on 
Land and goal 14: Life below water, notably) [12] have developed national SDGs, with the result that 
when planning and executing national activities the impacts on biodiversity and on environmental 
sustainability are taken into account [13]. In support of the ABT, GEO BON has defined the concept 
of Essential Biodiversity Variables (EBVs) [14] to globally standardise the monitoring of biodiversity 
change over time, across taxa and ecosystem types [14]. EBVs are a transposition of what Essential 
Climate Variables (ECVs) are for climate change. Such ECVs are defined by Global Climatic 
Observation System (GCOS). EBVs aim to address the demand of biodiversity observation 
communities for establishing consistent and harmonised studying, reporting and management of 
biodiversity change at a global level [14]. It contributes towards policy initiatives at national and 
global levels through platforms such as IPBES and UNCBD, as well as towards actual biodiversity 
change monitoring practices. The EBVs have six classes (namely: genetic composition, species 
populations, species traits, community composition, ecosystem function, and ecosystem structure), 
with a total of 22 EBV candidates under them. These classes address relevant dimensions of 
biodiversity change with measurable parameters at different spatial, temporal, and taxonomic scales. 
EBV data products are to be used for deriving suitable indicators, thus EBVs lie between raw data 
and indicators [15]. Currently, several efforts are being made to assess the suitability of existing and 
emerging technologies to produce EBV products, and thus of progress towards the Aichi targets [10]. 

Tropical countries have struggled to establish biodiversity monitoring systems and particularly 
for providing consistent time series for assessing trends and progress towards targets [7]. Hence the 
policy requirements for biodiversity data and monitoring systems are highlighting the need for 
consistent observations over time, both from on-the-ground observations and from satellite time 
series. This is to enable tracking and quantifying of ecosystem dynamics and the direct and indirect 
impacts of human activities (and related policy measures) that result change in biodiversity (i.e., from 
land use, climate change) [14,16]. While this need is becoming more pressing, a key question is how 
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previous research experiences and evolving technologies can help to better characterise tropical forest 
changes and the associated relationships and impacts on biodiversity. 

Countries mainly rely on national forest and biodiversity inventories to acquire information on 
changes and trends. These inventories mostly use established field survey approaches, such as 
counts, transects, trapping and diameter at breast height (DBH) measurements, which yield direct 
and generally accurate observations of species status and trends. Such approaches, however, are 
costly, laborious, invasive and time-consuming [17,18].  

Remote sensing, in situ activity sensors and, more recently, Deoxyribonucleic Acid (DNA) 
barcoding techniques are seen as promising tools for designing a new generation of biodiversity 
monitoring systems [19–21]. They are assumed to be able to address data gaps and to allow scalable 
studies which complement established field survey approaches [22,23]. From the genomics domain, 
DNA barcoding presents a new opportunity for establishing a robust biodiversity monitoring system.  

From the remote sensing domain, free access to satellite images, the availability of very high 
spatial, spectral, and temporal resolution satellite images and of open source analytical software, and 
the development of algorithms for analysing and interpreting complex datasets are providing good 
opportunities for the ecological community to detect and monitor forest and biodiversity changes 
through time [24,25]. Remote sensing based biodiversity monitoring provides an opportunity of 
extended spatial and temporal resolution to the existing biodiversity monitoring systems. This 
approach not only has the potential to map indirect indicators such as human induced habitat 
disturbances [16,26] and forest cover changes [27,28] but it can also be used to measure direct physical 
parameters, such as individual trees [29] and large mammals [30]. Moreover, Light Detection And 
Ranging (LiDAR) and Synthetic Aperture Radar (SAR) data have demonstrated capabilities for 
mapping detailed forest structure and estimating biomass [31]. Thanks to the ongoing advancement 
of remote sensing technology, new satellite images with even higher spatial, spectral and temporal 
resolutions are often available for free [22,32]. In addition, the availability of remote-sensing -derived 
datasets such as the Global Forest Watch [28] are used to derive indirect species occurrence indicators 
such as forest fragmentation [33,34]. 

The recent advances in in situ sensors such as bioacoustics, tags, and camera traps are providing 
non-destructive and semi-automated ground surveying opportunities [27,28]. In situ activity sensors 
are non-invasive surveying techniques that often provide opportunities for measuring biodiversity 
directly, thereby revealing the presence or absence of species, and their behaviour [35]. Recent 
technological advancements in this field have made possible real-time observation and rapid 
collection of biodiversity data [21]. 

DNA barcoding techniques are emerging as monitoring systems that are rapidly evolving to 
further facilitate biodiversity data collection and species identification. This DNA barcoding 
technology ranges from using standardised barcodes to identify individual specimens, to identifying 
multiple specimens from bulk samples (the latter process is called metabarcoding). Such technology 
makes rapid biodiversity assessment possible through bulk sampling, and with automated species 
identification processes [18,36]. Furthermore, Environmental DNA (eDNA) technique is being used 
to extract cellular and extracellular DNA from environmental samples (water, soil, faeces, etc.), 
enabling a rapid assessment of past and present biodiversity [18,37]. 

Many scholars argue that the recent technologies (i.e., remote sensing and in situ sensors) and 
emerging opportunities (i.e., DNA barcoding) have not been well exploited for ecological studies, 
regardless of their immense potential to inform on subtle changes and to indicate future directions of 
study [20,21,32,38]. This is with regards to the limited application of the state-of-the-art technologies 
towards biodiversity studies, as well as the existing gap in exploration of the potential integration of 
such technologies for detailed studies and conservation efforts. 

Taking into account the increasing need for reliable data to inform international policy processes, 
the current status of biodiversity monitoring activities and research, and the potential of new 
technologies, this paper aims to: 

1. Give an overview of the state of the art and synthesise previous research on biodiversity 
monitoring in the context of changing tropical forests; 
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2. Assess the potential of using evolving technologies and tools to further increase the detail and 
accuracy of biodiversity monitoring; 

3. Identify remaining gaps and opportunities on biodiversity monitoring approaches through 
evaluating their contribution to addressing the primary biodiversity attributes according to Noss 
[39]; 

4. Assess how evolving technologies can help operationalise relevant EBVs for tropical forest 
environments. 

We have deliberately focused on tropical forests and the issue of assessing changes and trends 
in biodiversity. Tropical areas are not only undergoing considerable forest changes of global 
relevance but are also particularly data-poor. In this context, we aim to help address these challenges 
by assessing new opportunities and to complement other review studies that have had a much 
broader scope [21,22,24,38].  

2. Analytical Framework and Data Analysis 

In this study, in order to categorise biodiversity groups and monitoring elements, we have 
adapted the CBD [40] definition of forest biological diversity: “Forest biological diversity is a broad 
term that refers to all life forms found within forested areas and the ecological roles they perform. As 
such, forest biological diversity encompasses not just trees, but the multitude of plants, animals and 
micro-organisms that inhabit forest areas and their associated genetic diversity.” 

We performed a systematic search of the scientific literature on the Web of Science platform, 
using the paired search terms: tropical forest biodiversity monitoring—forest change; and tropical 
forest biodiversity monitoring—forest disturbance. Further screening was made by reading the 
abstract of the articles, to identify those that are focusing on disturbed tropical forests and provide 
detailed description of their biodiversity monitoring approaches. Based on these search criteria, we 
identified 153 scientific papers (Supplementary Materials) that are conducted across 38 tropical 
countries. Next, an analytical framework was developed to define systematic criteria for classifying 
and analysing monitoring details across essential biodiversity components. We considered six 
essential biodiversity monitoring components that align with our research objectives: (1) the spatial 
scale of the study (i.e., spatial extent of the study area); (2) the disturbance type reported (i.e., 
anthropogenic or natural sourced event that results alteration of natural tropical forest habitat); (3) 
the targeted groups studied (incl. taxa and their biotope); (4) the monitoring methods employed; (5) 
the relationship with EBV classes; and (6) the primary biodiversity attributes addressed (i.e., 
compositional biodiversity, functional biodiversity and structural biodiversity). 

In regards to spatial scales of the study, we deemed studies of sites of <100 ha and transects 10 
m to 20 m long as being local; those of 100 ha–500 ha and transects 200 m–500 m long as landscape; 
and those of >500 ha with transects >500 m long to be regional-scale studies [41]. Studies were also 
categorised according to their source of disturbance, anthropogenic and natural. The types of 
monitoring approaches employed were studied in relation to targeted biodiversity groups, and 
disturbance types reported. In addition, we used subset of the series of EBVs that are relevant to 
tropical forests to frame our review findings, in relation to the use of new monitoring technologies 
and emerging opportunities (Figure 1). Finally, we synchronise our findings with two reference 
studies: the one by of Noss [39], which identified the three primary attributes of biodiversity (i.e., 
compositional biodiversity, functional biodiversity and structural biodiversity). Noss [39] defined 
compositional diversity as ‘the identity and variety of elements in a collection’, while structural 
diversity encompasses ‘physical organisation and pattern of a system’, finally functional diversity 
involves ‘ecological and evolutionary processes’. Another reference study by Turner (2014), indicated 
on the role of upcoming technologies for biodiversity monitoring. These fundamental studies were 
used to explore and propose avenues of methodological complementarity and opportunities for 
integration. 
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Figure 1. Criteria and categories defined to set up the review database. 

3. Results 

3.1. Spatial Scale 

The weight of the spatial scale of study sites in determining the choice of an appropriate 
biodiversity monitoring approach was revealed by the review. Most of the studies (58%) had been 
done at a local scale, followed by regional studies (32%), and with only a few studies (10%) performed 
at the landscape scale (Figure 2). Established field surveys had higher application on local and 
landscape scales, while remote sensing was used at all scales but found higher applicability in 
regional-scale studies. In situ activity sensors had higher association with studies at a local and 
regional scale, while its use was limited at landscape scale studies. The use of DNA barcoding 
methods was only at a local spatial scale. 

 
Figure 2. Spatial scale of studies and biodiversity monitoring techniques employed. Note: some 
studies address multiple spatial scales. 
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3.2. Disturbance Types  

Anthropogenic factors accounted for 82% of disturbances related to biodiversity change, with 
the remaining 18% being accounted for natural events. Agricultural activities (32%) and logging 
(27%) were among the major anthropogenic drivers, followed by infrastructure (9%); hunting (7%) 
and mining (7%). Natural events included events like wildfire, disease outbreaks and extreme 
weather events. Established field surveys dominated the monitoring of all disturbance types, 
especially in the case of natural events, mining and infrastructure (Figure 3). In situ sensors were 
used in tandem with remote sensing, especially for detecting biodiversity changes in relation to 
infrastructure, agricultural activities, hunting and logging [42–44]. However, these approaches were 
also used independently, remote sensing contributed significantly to detect mining, while in situ 
sensors showed substantial capacity for tracking hunting activities. Finally, DNA barcoding was 
found to contribute to detecting changes related to agricultural activities and logging. 

 
Figure 3. The use of monitoring methods for each disturbance type. 

Disturbance Types per Country 

The disturbance types were further analysed to identify drivers of biodiversity loss at country 
and regional scales. The reviewed studies were carried out in 38 tropical countries, distributed across 
five regions. The contrast of disturbance factors across the regions can be observed where human 
induced land use changes such as agriculture and logging were highly represented in South America, 
South East Asia, and East Africa (Figure 4). Infrastructure-related disturbances had their peak in 
South America and South Asia, but showed small impact in East African countries. Other disturbance 
factors such as hunting and mining had varying occurrence across regions, where the former had 
considerable appearance in Africa and the later in South American countries. Finally, the impact of 
natural events appeared dominant over the other disturbance factors in Oceania countries. 
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Figure 4. Global distribution of forest biodiversity disturbance factors. 
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5). Habitat condition, birds and mammals were studied much more often than herpetofauna and 
microorganisms. 

Overall, established field surveys predominated over the other monitoring methods, except in 
the case of habitat monitoring, where remote sensing was applied the most (Figure 5). Similarly, 
remote sensing was employed appreciably to monitor vegetation, and to some extent for monitoring 
arthropods, birds, and mammals, but it was hardly used to monitor herpetofauna and microorganisms. 
Even though the overall application of in situ sensors to the different taxa was limited, they were 
employed in all groups except microorganisms. Finally, DNA barcoding was found to have been 
applied to only three taxa (i.e., vegetation, arthropods and microorganisms). 

 
Figure 5. Biodiversity groups monitored and monitoring techniques applied. Note: some studies 
addresses multiple biodiversity groups. 
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3.4. Monitoring Approaches over Time 

The temporal trend of integration of new technologies into the biodiversity monitoring of 
disturbed tropical forests has been indicated on the targeted article pool (Figure 6). In all years except 
2015 and 2016, the dominant method was established field surveys. However, the trends show the 
growing incorporation of state-of-the-art technologies in to the monitoring system. Remote sensing 
approaches are the most consistently employed after established field surveys, and their application 
even dominated over the rest in the recent years. In situ sensors and DNA barcoding approaches are 
recent additions to the monitoring system.  

 
Figure 6. Temporal trends towards incorporation of new biodiversity monitoring techniques. 

Monitoring Approaches vs. Biodiversity Estimation Significance Values 

The accuracy results maintained from applying the different biodiversity monitoring approaches 
has been investigated looking into the statistical significance and accuracy values reported in the 
reviewed paper. These were used to compare the methods accuracy in terms of their estimation of 
biodiversity. Majority of the results from established field surveys (59%), and integrated approaches 
(i.e., established field surveys coupled with remote sensing) (71%) provide significant values (i.e., p = 
0.01–p = 0.05, R2 = 0.5–R2 = 0.7, classification accuracy = 50–70%), while 26% of established field 
surveys, and 21% of integrated approaches had highly significant results (i.e., p < 0.01, R2 > 0.7, 
classification accuracy > 70%). Yet, established field surveys also had its high share (16%) of non-
significant results (i.e., p > 0.05, R2 < 0.5, classification accuracy < 50%). Remote sensing approaches 
also had majority (35%) of their results as highly significant and significant (47%), but also with 
considerable (18%) non-significant values. Even though there are few studies that used in situ 
sensors, 25% of the studies had both non-significant and highly significant results, and 50% had 
significant results. Finally, all DNA barcoding studies resulted significant values. 

3.5. Recent Technologies and New Opportunities for EBVs  

Satellite remote sensing techniques were found to be dominantly employed for three of the EBV 
classes, namely species population, ecosystem function and ecosystem structures but its application 
was limited in the classes of species traits and community composition (Figure 7). Hyperspectral and 
LiDAR remote sensing were found to be appropriate for species population and ecosystem function 
classes, while LiDAR also contributed substantially to assessing ecosystem structure and community 
composition. Similarly, in situ sensors were applied to all EBV classes except for genetic composition, 
and notably applied for monitoring of the species population. Finally, DNA barcoding was found 
appropriate for addressing genetic composition, species population, ecosystem function and 
ecosystem structure classes. 
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Figure 7. The use of new technologies and emerging opportunities in reviewed studies in relation to 
EBV classes. SAR: Synthetic aperture radar, LiDAR: Light Detection and Ranging. Note: some studies 
address multiple EBVs. 
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unique opportunity for collecting and analysing mass biodiversity samples and rapid estimation of 
the total biodiversity. However, the use of this technology, especially in developing tropical 
countries, could be restricted due to high installation and processing costs as well as limited human 
resource. The drawbacks of this technology were reported to be high cost, contamination, errors 
during DNA amplification and a lack of high-quality taxonomic reference databases [18,37,56]. 
However, with the ongoing intensive research and technological advancements in the field, it seems 
likely to evolve into a valuable tool for measuring and monitoring of tropical biodiversity[19]. 

The temporal aspect of scale relates to the building and obtaining of longitudinal biodiversity 
monitoring datasets (Figure 6). This allows consistent estimation of changes in biodiversity and their 
drivers. Crucial for this is the availability of local, national, continental and global biodiversity data. 
In reality, such data are scarce due to inconsistency in monitoring approaches, data storage and 
sharing policies and shortcomings in the technical capacity of countries, as well as financial and 
human resource limitations [57]. Established field surveys have great potential to provide historical 
data (Figure 6), while Landsat missions (dating back 40 years), the Copernicus Sentinel constellations 
(recently launched), as well other commercial satellite data providers provide long term, free, and 
open access data. The potential of emerging technologies is also important to populate biodiversity 
observation data. There is, however, a need for researchers, institutions and countries to 
systematically archive and share such datasets. There have been several independent initiatives to 
build long-term time series of biodiversity data. Ji et al. [36] presented available databases for DNA 
sequence data, while GEO BON provides accessible datasets for EBVs through its portal 
(https://boninabox.geobon.org/) . Similarly, in the case of the in situ activity sensors, open databases 
are becoming available through the Tropical Ecology Assessment & Monitoring (TEAM) Network 
Education Portal [58], TRY plant trait database [59] and through the Bioacoustica online repository 
and analysis platform [60]. Overall, the temporal trend also shows the growing inclusion of tropical 
biodiversity studies towards new monitoring techniques. 

The thematic aspect of scale relates to the complexity of disturbance types and targeted 
biodiversity groups for monitoring. Overall, the major sources of tropical forest disturbance with 
associated impact on biodiversity are anthropogenic pressures [61]. The two main sources of 
anthropogenic forest disturbance (i.e., agricultural activities and logging) produce features that can 
be detected by all monitoring methods examined in our review. While large-scale agricultural 
activities and mining show a clear signal of change with canopy cover loss, other disturbance types 
that often take place below canopy (e.g., selective logging, and surface fire) introduce subtle changes. 
The role of remote sensing and in situ sensors in monitoring such drivers of change is especially 
noteworthy. Large-scale changes that result from deforestation and forest fragmentation have been 
well picked up by Landsat and other medium to coarse spatial resolution satellite images [28,62,63]. 
However, when it comes to understory disturbances and those that do not have spatially quantifiable 
features (such as hunting), there is a data gap. Peres et al. [64] similarly described the nature of such 
disturbances in tropical forests and advised on the use of new technologies for identifying the ‘almost 
undetectable’ disturbance types such as hunting, selective logging, sub-canopy roads and invasive 
species. Newbold et al. [16] discussed how such habitat alteration influences local richness and total 
abundance of species, and hence affects ecosystem functions and services. Our review indicated that 
vegetation and arthropods are the groups most studied in disturbed environments, while 
herpetofauna and microorganisms are poorly investigated. Most importantly, vegetation and 
arthropods embrace sensitive species that can quickly respond to habitat alteration and environmental 
changes, thus making them good to be used as surrogates. Our review revealed that arthropods were 
the major surrogates for other biodiversity groups. Yet, criticism occurs regarding the choice and use 
of surrogates and therefore systematic ways of selecting suitable indicators have been proposed to 
promote cost-effective and efficient biodiversity monitoring [65]. In general, the identification of 
country specific biodiversity loss drivers and potential indicators can lead to e the design of targeted 
mitigation and conservation programs (Wintle, Runge, and Bekessy 2010).  

Over all, the role of biodiversity in ecosystem services needs to be properly assessed and 
understood in order to mainstream biodiversity across governments and society. Such a complex 
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topic can only be clearly understood when the necessary data are acquired and analysed using proper 
tools. Unravelling of changes and trends in biodiversity can help us to understand not just about 
species composition and abundance but it can also inform on how forests adapt to pressures, 
indicates on the resilience of the forest ecosystem, and the impact of mitigation and adaptation actions 
on the environment. Many argue that biodiversity conservation is placed in the background of 
climate change mitigation actions and carbon reduction efforts. However, Mant et al. [66] pointed out 
that adaptation and mitigation actions that do not consider the role of, and potential impacts on, 
biodiversity can have adverse consequences. Therefore, such possible impacts on biodiversity must 
be measured and monitored alongside forest status and carbon stock assessments. Contrasting results 
appear when looking in to the relationship between carbon and biodiversity in tropical forest. Talbot 
[67] found complex and limited correlation between the two, while Poorter et al. [68] proved 
diversity’s positive role in enhancing carbon storage of tropical forests. Even though there is a need 
for continuous research in the area, there are already promising steps towards promoting an all-
inclusive measuring and monitoring of degrading tropical forest environments. Here, the role of 
remote sensing is especially recognised where same data that is collected to report on forest and 
carbon stock status can also be used to derive direct and indirect indicators of biodiversity status 
[38,69]. 

4.2. Potential and Progress of Evolving Technologies 

To detect and monitor changes at different spatial, temporal and thematic scale not only a variety 
of monitoring approaches is required but also their integrated deployment. The application of remote 
sensing has been limited to deriving indirect indicators of biodiversity; mostly through using coarse 
to high spatial resolution satellite images for habitat analysis. However, advances in the field are 
bringing opportunities to develop direct indicators, e.g., using very high spatial resolution satellite 
images to identify large trees and animals [70,71], using hyper spectral sensors to ascertain vegetation 
biochemistry [72], and using LiDAR sensors to map the three-dimensional vegetation structure 
[73,74]. Moreover, such scale-related limitations can be overcome by coupling remote sensing with 
in situ sensors and DNA barcoding [19]. The ability of in situ based sensors to provide real-time 
observation and automated data acquisition could overcome the limitations that emerge when 
established field survey methods are used independently [75]. Moreover, the role of DNA barcoding 
is crucial for studying species that are elusive, and to acquire insight into ancient environments [18]. 
The accuracy of biodiversity estimation is expected to benefit from the integration of monitoring 
techniques as can be observed from the results of the review. However, one should be cautious of 
publication bias towards reporting only positive and significant results [76,77].  

4.3. Gaps and Opportunities 

4.3.1. Monitoring of Primary Biodiversity Attributes  

Based on our review, we map the actual and optimal application of biodiversity monitoring 
approaches (Table 1) specified by Turner [38] in relation to primary biodiversity attributes specified 
by Noss [39].  
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Table 1. Complementarity of monitoring methods for assessing biodiversity change in tropical forests 
along primary biodiversity attributes. Brown: suitable, Orange: very suitable, Green: ideal; up arrow: 
well exploited potential, horizontal arrow: potential reasonably exploited, down arrow: used 
insufficiently. Note: Monitoring methods are classified between in situ and remote sensing based on 
their data acquisition technique. 

 
Compositional 
Biodiversity 

Functional 
Biodiversity 

Structural 
Biodiversity 

In situ  Established field survey 
 

In situ activity sensors 
 

DNA Barcoding 

Citizen Science 

Remote sensing Coarse to medium spatial 
resolution 

High to very high spatial 
resolution 

Hyperspectral 

SAR 
 

Airborne LiDAR 

Terrestrial Laser Scanner 

In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
to the potential application that the methods can provide according to key literatures in the field 
[21,22,24,38]. It appears that none of the monitoring methods presented here are in themselves 
sufficient to properly address the three primary biodiversity attributes. However, this overview 
shows that there is complementarity between methods. As can be observed, in situ approaches 
perform well in biodiversity composition, while remote sensing based approaches are powerful for 
addressing structural and functional biodiversity. It can also be observed that despite their 
remarkable potential, these tools are underexploited. For instance, DNA barcoding, TLS and citizen 
science were among the methods least employed (not used in >80% of the reviewed studies). 
However, the role of citizen science on conservation efforts was demonstrated through various 
successful projects such as the breeding bird survey in the United States [78], global bird observation 
network—eBird [79], the Dutch phenological network [80], and ranger’s forest and biodiversity status 
observation in Ethiopia [81]. Neither were in situ sensors, LiDAR, SAR, and hyperspectral sensors 
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that are ranked from very suitable to ideal for monitoring some biodiversity attributes used to their 
full potential in tropical forest biodiversity monitoring studies. Such shortcomings can lead to the 
development of monitoring techniques that produce under-or overestimations of biodiversity 
metrics. Whereas remote sensing data can be used to detect changes, provide a stratified sampling 
scheme for efficient monitoring and to identify certain species characteristics, in situ methods can be 
used for calibration and validation. While it is advantageous to have various methods of detecting 
biodiversity changes, a difficulty arises when trying to combine the different types of data for 
modelling the characteristics of species, their association with their environment and their response 
to changes [82]. For instance, differences among datasets in terms of spatial/temporal/ taxonomic 
resolution, extrapolation, data standardisation, calibration and data format can be an obstacle. Thus, 
practicable spatial and ecological models need to be developed to map species distribution and 
ecosystem services, as well as to make projections. For these purposes, there is a pressing need to 
establish and strengthen networks such as GEO BON, which promote dialogue and collaboration 
between ecologists, biologists, remote sensing experts, modellers and statisticians. Such platforms 
can be used not only to overcome technological limitations and domain segregation, but also to 
address technical issues such as big-data processing capabilities and the skills needed to implement 
methods. Here, we can mention exemplary platforms, such as the Biodiversity Observation Network 
in a Box (BON in a Box), which provide information and access to biodiversity-relevant remote 
sensing datasets, protocols, and tools (https://boninabox.geobon.org/). Similarly, in situ data sources 
and analytical tools are provided by the Global biodiversity Information Facility 
(https://www.gbif.org/).  

4.3.2. Operationalising EBVs with State-of-the-Art Technologies 

EBVs are expected to promote standardised data workflows for harmonised monitoring and 
reporting of biodiversity change at a global scale, as a means to achieving the Aichi biodiversity 
targets [10]. However, biodiversity monitoring methods operate at different spatial, temporal, and 
taxonomic scales [15]. The operationalisation of EBVs requires a statement of measurable EBV 
candidates that can be matched with multiple monitoring tools. Several studies assessed the 
possibilities of putting EBVs to practice and investigated how relevant indicators can be derived from 
them. Kissling [15] investigated the necessary data and tools in order to operationalise species 
distribution and species abundance EBV candidates at a global level. Here, the requirement for 
multiple data sources was acknowledged, and limitations in the process of harmonizing and 
integrating observations from different data sources were indicated. Satellite remote sensing-based 
EBVs (SRS-EBVs) are being researched to provide scalable, rapid, and cost efficient global monitoring 
solutions towards operationalising EBVs [32]. However, SRS-EBVs are proven to contribute towards 
direct derivable of only few EBVs, as most of them require higher resolution (in terms of spatial, 
temporal, and taxonomic details) datasets [19]. 

We developed a synthesis matrix that indicates the relevance of the state-of-the-art technologies 
in operationalising tropical forest-relevant EBV candidates (Tables 2 and 3). These synthesise are 
developed based on GEO BON strategy for EBVs [83] (Table 3) and studies [15,19,32,84,85] that 
assessed avenues for multi sensor approaches in EBV product development (Table 2), especially 
focussing on remote sensing. In Table 2, the suitability of remote sensing in relation to multiple EBVs 
as well as Aichi biodiversity targets is presented. Most importantly, the application of the range of 
remote sensing techniques in relation to specific candidates is presented. Most remote sensing tools 
are applied towards vegetation and habitat-related EBV candidates. Here EBV products such as 
vegetation types and land use/cover maps can be produced using spectral characteristics’ of the 
remote sensing data. These maps are often produced with medium or high spatial resolution images 
such as those from Landsat or Sentinel 2 sensors, respectively. Remote sensing can also be used in 
relation to EBV candidates that require finer details such as taxonomic diversity and population 
structure by age/size class. In the latter case, data sources with higher spectral and spatial resolution 
are required from the remote sensing domain such as hyperspectral and LiDAR remote sensing; 
however, associated costs could hamper their applicability in several countries from the tropics. 
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Alternative approaches to deriving species diversity indices from satellite remote sensing datasets 
exist;, however, acquiring a reliable estimation of beta-diversity and gamma-diversity is challenging 
[86]. Remote sensing application is especially limited for EBV classes such as genetic composition and 
species traits that require monitoring at genetic (e.g., co-ancestry, population genetic differentiation) 
and species level (e.g., body mass, demographic traits). The spatial and spectral resolution of satellite 
remote sensing products limits the ability to identify individual trees or animal species. Very high 
spatial resolution images that can help identify large mammals are costly [15] and often have high 
cloud coverage over tropical forests, which makes them unsuitable for deriving tropical forest EBVs. 
The use of remote sensing is, however, suitable for ecosystem structure EBV class (i.e., habitat 
structure, ecosystem extent and fragmentation EBV candidates), where EBV data products can be 
directly derived from medium to high spatial resolution data sources (e.g., Landsat, Sentinel 2) that 
are often freely available, while habitats’ three-dimensional structure can be accurately mapped using 
LiDAR. The role of SRS for ecosystem function classes is also recognised. Pettorelli et al. [87] and 
Mora et al. [88] listed EBV products that can be derived from current and future SRS datasets.  

Table 2. State-of-the-art monitoring tools for tropical forest-relevant EBV candidates and related Aichi 
targets. SR: spatial resolution.  

EBV Classes EBV Candidates Aichi Target [10] Remote Sensing 
Emerging 

Opportunities 

Species 

Populations 

Species distribution 4–12, 14, 15 
High to very high SR [49], 

Hyperspectral [89] 

In situ activity 

sensors [90] 

DNA barcoding [36] 

Population abundance 4–12, 14, 15 
High to very high SR [49], 

Hyperspectral [89] 

In situ activity 

sensors [90] 

Population structure 

by age/size class 
4–12, 14, 15 LiDAR [91]  

Species Traits 

Phenology 10, 15 

High to very high SR [92], 

coarse to medium SR [93], 

hyperspectral [72] 

 

Migratory behaviour 5, 6, 10, 11, 12  
In situ activity 

sensors [35] 

Community 

Composition 
Taxonomic diversity 8, 10, 12, 14 Hyperspectral [29] 

In situ activity 

sensors  

DNA barcoding [36] 

Ecosystem 

Function 

Net primary 

productivity 
5, 8, 14 

High to very high SR [94], 

coarse to medium SR [95], 

hyperspectral [96] 

In situ activity 

sensors [97] 

Nutrient retention 5, 8, 14 Hyperspectral [96]  

Disturbance regime 5, 7, 9, 10, 11, 14, 15 
High to very high SR [98], 

coarse to medium SR [99] 

In situ activity 

sensors [100] 

Ecosystem 

Structure 

Habitat structure 5, 11, 14, 15 

High to very high SR [101], 

coarse to medium SR [102], 

LiDAR [103], SAR [104] 

In situ activity 

sensors [105] 

Ecosystem extent and 

fragmentation 
5, 7, 10, 14, 15 coarse to medium SR [106]  
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Even though several SRS and Earth observation datasets are being identified as suitable for 
monitoring of EBVs, there is still remaining work to be done towards a better definition of some EBV 
classes such as the ecosystem function class [87]. In addition, testing the suitability of methods across 
scales, integration of heterogeneous monitoring technologies, setting up metadata standards, and 
making interpolation and/or extrapolation from observation at different scales is required [15,19]. 
This is especially true for EBV classes such as genetic composition and species traits where little data 
are directly available. 

Finally, using the GEO BON strategy for development of EBVs [83], the integration of remote 
sensing with emerging tools appear as necessary to operationalise EBVs (Table 3). The complementary 
nature of the monitoring approaches highlights that synergy is required between the approaches to 
up/downscale observations between different spatiotemporal and taxonomic scales. EBV candidates 
such as species distribution, population abundance, net primary productivity, and habitat structure 
will benefit from such synergies. However, issues related with data standards, uncertainties, 
documentation of protocols and guidance, data sharing, as well as consensus on the usability of EBV 
derived products need to be dealt with to enable consistent global reporting of biodiversity changes 
using EBVs. 

Table 3. The relevance of state-of-the-art monitoring approaches in the context of GEO BON strategy 
to operationalise EBVs. Colours represent readiness level for each subcategory. Brown = low level, 
Orange = medium level, Green = high level (adapted from GEO BON strategy for development of 
EBVs). 

EBV Criteria 
Components 

Remote Sensing In Situ DNA Barcoding 

Spatial extent Global [57] 

Global with gaps. Example: 
TEAM network 
(http://www.teamnetwork.org/)
, http://bio.acousti.ca 
Bioacoustics [60] 

Local/regional [107] 

Spatial 
resolution 

Optical satellite: coarse spatial resolution 
250–1200 m (e.g., MODIS), Medium to 
high spatial resolution: 5–30 m (e.g., 
Landsat, sentinel 2, RapidEye), Very high 
spatial resolution (e.g., Ikonos, GeoEye): 
0.5–4 m.  
Airborne Hyperspectral: 1–2 m (according 
to flight height).  
Active remote sensing (radar): 1–100 m 
[108]. Upcoming: GEDI (satellite LiDAR): 
25 m footprint, EnMAP (satellite 
hyperspectral): 250 narrow bands [88] 

Field based. Example: TEAM 
has 23 tropical forest sites (120–
200 km2 resolution) [15] 

Requires physical sampling 
[107] 

Periodicity 

Continuous long term time-series data, 
with high revisit-time period for high-
resolution data (e.g., Landsat: every 16 
days, Sentinel 2: every 10 days, RapidEye: 
Daily ) [108] 

From real-time to different 
times of the day and seasons 
[109] 

No clear understanding 
[107] 

Taxonomic 
coverage 

Multiple taxa can be covered [110] 
Multiple taxa can be covered 
[110] 

Multiple taxa can be 
covered [110] 

uncertainty 
Imperfect detections, data uncertainties, 
model uncertainties [111] 

Measurement error, detection 
algorithms [112], spatial 
mismatches [69] 

Reference datasets [15], 
variation in primer use, 
amplification steps and 
sequencing platforms [113] 

Operational 
definition 

Several demonstrations are made to 
derive EBVs [85,87,114,115] 

The technology has been 
identified as candidate [57] 

The technology has been 
identified as candidate 
[19,116] 

Documentation Documentations is available [85,87,115]  
Lack of documentation and 
established protocols 

Lack of documentation and 
established protocols  

Abstraction 
Few to several steps involved in 
derivation of products [85,87] 

Few steps involved in 
derivation of products [110] 

Several steps in derivation 
of products [116] 
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Measurement 
and sampling 

schema  

Sampling and measuring strategies are 
often well defined [87] 

Limited sampling and 
measuring strategies are 
available [14]. Camera traps: 
www.teamnetwork.org/protoco
ls  

Few sampling and 
measuring strategies are 
available [116] 
(www.biocodecommons.or
g/, www.gensc.org/)  

Automatisation 
Automation of data acquisition and 
processing is possible [115] 

Automation of data acquisition, 
processing, and management 
are possible. Example: 
automated and semi-automated 
sound recognition [117,118], 
automated camera traps and 
image recognition [119]  

Automated DNA extraction 
is possible [120] 

Interoperability 

Global standards and protocols exist for 
harmonised data and metadata formats 
(e.g., http://docs.opengeospatial.org/is/10-
157r4/10-157r4.html) 

Camera traps: individual 
initiatives exist [121], 
Bioacoustics: metadata 
standards are proposed [122]  

Data standards are defined 
[123] 

Data availability 

Data available for multiple EBVs [85,87]. 
(e.g. 
https://scihub.copernicus.eu/dhus/#/home, 
https://gcmd.nasa.gov/, 
https://boninabox.geobon.org/) 

Data mobilisation opportunities 
exist www.TEAMNetwork.org, 
http://bio.acousti.ca/, 
https://boninabox.geobon.org/, 
https://www.movebank.org/ 

Data mobilisation 
opportunities exist 
http://www.barcodinglife.or
g, 
https://www.ncbi.nlm.nih.g
ov/, 
https://boninabox.geobon.or
g/ 

Temporal 
sustainability 

Data have been available from satellite 
agencies for 40 years now (e.g., Landsat) 
and is secured until the end of the 2020’s 
[108,114] 

Data availability and methods 
are evolving [124] 

Data availability and 
methods are evolving [18] 

Baseline 
Historical satellite datasets are available: 
e.g., Landsat program (since 1972) [108] 

Baselines can be made from 
past field inventories [112] 

Ancient DNA (e.g., from 
museum collections) [125], 
https://www.ncbi.nlm.nih.g
ov/  

Relevancy 
Relevance for multiple EBVs has been 
demonstrated [87,108] 

Relevance for multiple EBVs 
has been demonstrated 
[110,112] 

Relevance for multiple 
EBVs has been 
demonstrated [107,110] 

Consensus Large consensus exists [85] Consensus underway [110] Consensus underway [107] 

Scalability 
Robust to scalability (e.g., diversity 
indices) [86] 

Robust to scalability (e.g., 
Wildlife Picture Index) [75] 

Robust to scalability using 
statistical models (e.g., 
species distribution models) 
[19] 

Institutional 
support 

Several institutions are contributing. 
Example: GEO BON 
(http://geobon.org/essential-biodiversity-
variables/monitoring/), GOFC-GOLD: 
(http://www.gofcgold.wur.nl) 

Several institutions are 
contributing. Example: GEO 
BON [14], Map Of Life 
(https://mol.org/), Move bank 
(https://www.movebank.org/) 

GEO BON 
(http://geobon.org/essential-
biodiversity-
variables/monitoring/), 
GOFC-GOLD: 
(http://www.gofcgold.wur.n
l) 

5. Future Directions and Recommendations 

Our review has shown that the potential of some of the most recent technologies for monitoring 
biodiversity dynamics in tropical forests has been initially investigated but still needs to be explored 
further—notably their operational synergy across biophysical scales and extended taxonomic levels. 
This underlines the need to support further research and development activities to demonstrate the 
added value of such technologies; and learn from existing efforts such as the National Ecological 
Observatory Network (http://www.neonscience.org). Networks like GEO BON could, for instance, 
influence the formulation of research calls targeted specifically at closing such research and 
development gaps. To this end, the development of a Technology Readiness Level (TRL) framework 
could be initiated. Such TRLs could also be used to monitor scientific and technical progress and 
provide guidance to countries for the development of their monitoring systems. For instance, the 
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GEO BON could build on the assessment framework for tropical forest monitoring developed by the 
Global Forest Observations Initiative (GFOI). 

The lack of integration of the novel technologies also stresses the necessity to link up the different 
research communities that work on tropical forest environments. Different policy contexts with 
overlapping requirements co-exist, such as climate change mitigation and adaptation from the United 
Nations Framework Convention on Climate Change, but also the UN SDGs. More particularly, 
experts in the fields of genomics, Earth observation and information technology fields need to 
strengthen collaborations to tackle the challenges of the big-data era. In this context, successful efforts 
from the research community to incentivise free and open access to Earth observation data need to 
be maintained. Finally, guidance documents synthesising the operational monitoring methods and 
reviewing the state-of-the-art research should be developed. An appropriate platform for achieving 
this is the BON-in-a-Box concept tool (https://boninabox.geobon.org/) supported by the GEO 
initiative. One recent bon-in-a-box release is the sourcebook for biodiversity monitoring in tropical 
forests with SRS developed by GOFC-GOLD and the GEO BON presents techniques related to EBVs 
relevant to tropical forests [85]. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/10/1059/s1. List of 
systematically reviewed articles and their biodiversity monitoring details across the essential biodiversity 
components considered. 
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