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Abstract: Groundwater level (GWL) and depth to water (DTW) are related metrics aimed at 
characterizing groundwater-table positions in peatlands, and two of the most common variables 
collected by researchers working in these ecosystems. While well-established field techniques exist 
for measuring GWL and DTW, they are generally difficult to scale. In this study, we present a novel 
workflow for mapping groundwater using orthophotography and photogrammetric point clouds 
acquired from unmanned aerial vehicles. Our approach takes advantage of the fact that pockets of 
surface water are normally abundant in peatlands, which we assume to be reflective of GWL in 
these porous, gently sloping environments. By first classifying surface water and then extracting a 
sample of water elevations, we can generate continuous models of GWL through interpolation. 
Estimates of DTW can then be obtained through additional efforts to characterize terrain. We 
demonstrate our methodology across a complex, 61-ha treed bog in northern Alberta, Canada. An 
independent accuracy assessment using 31 temporally coincident water-well measurements 
revealed accuracies (root mean square error) in the 20-cm range, though errors were concentrated 
in small upland pockets in the study area, and areas of dense tree covers. Model estimates in the 
open peatland areas were considerably better. 
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1. Introduction 

Peatlands are terrestrial wetland environments where the net production of organic matter 
exceeds its decomposition rate, leading to the accumulation of partially decomposed vegetation 
known as peat [1]. Peatland ecosystems cover large portions of the northern hemisphere’s 
Boreal/Taiga biome [2], and represent vast hydrological reserves, globally significant stores of soil 
carbon, and hotspots of biodiversity [3]. In peatlands, the position of groundwater table plays a key 
role in ecosystem functioning, controlling the hydrological flow direction/discharge, rates of peat 
accumulation, and the chemical processes governing nutrient cycling and greenhouse gas (GHG) flux 
[4–6]. While groundwater tables are commonly characterized as both ground-water level (GWL)—
defined as the height of groundwater above mean sea level—and depth to water (DTW)—the depth 
to groundwater relative to local terrain level—the two metrics are clearly related. In this paper, we 
will use groundwater as a general term, but return ultimately to the more specific metrics as we 
proceed. Both variables, GWL and DTW, are key factors in understanding hydrological processes 
and estimating GHG (CO2, N2O and CH4) emissions in peatlands, and are among the most commonly 
sought measurements for researchers working in these ecosystems [7].  

While groundwater can be measured reliably in the field using piezometers and shallow 
monitoring wells [8,9], these point-based techniques are difficult to scale due to the cost of 
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instruments and installations [10,11]. In addition, the repeated measurements needed to monitor 
groundwater dynamics are often constrained by access to field personnel. The research reported in 
this paper was motivated by the desire to develop a strategy for measuring groundwater with remote 
sensing, in order to provide a means of generating reliable measurements repeatedly over large areas.  

It is important to note that groundwater mapping is an unusual application for Earth-observing 
sensors, since the target-of-interest is not directly observable from the sky [12,13]. As a result, various 
methods have been developed aimed at proxy measures of groundwater in peatlands, such as plant 
water stress, vegetation composition and density, soil-moisture content, topographic features, and 
other indirect indicators. For example, Harris and Bryant [4] used Sphagnum-moss health as a proxy 
indicator of surface peat hydrology in Wales, with the authors observing a good correlation between 
remotely estimated Sphagnum water stress and field-measured volumetric moisture content. 
Similarly, Meingast et al. [14] used spectral indices as a proxy for near-surface moisture content and 
groundwater-table position in peatlands, based largely on vegetation response.  

While proxy indicators of groundwater can be linked to field measurements to produce large-
scale hydrological information (e.g., [12,15,16]), these approaches are constrained by a variety of 
confounding factors. For example, the response of vegetation to groundwater level will vary as a 
function of plant abundance, type, and size [17], and the presence of overstory canopies, which 
regularly obstruct the visibility of surface vegetation [18,19]. In addition, the use of proxy indicators 
requires analytical techniques (e.g., image classification) that are subject to inaccuracies [12,20] which 
may render these proxies unreliable.  

One potential solution emerges from the observation that peatlands generally contain an 
abundance of small water bodies that are regularly visible on the surface. Since surface water is 
tightly linked to groundwater in peatlands, it should be possible to infer water-table levels through 
the mapping of surface water, under the assumption that peatlands are internally porous with flat or 
gently sloping water tables [21]. All that is required in this scenario is a remote-sensing technology 
that is capable of mapping small water features reliably, and a strategy for extracting their elevations 
accurately. Using this principle, we can obtain a direct measurement of GWL in locations where it is 
visible, and generate continuous-surface estimates over large areas through interpolation. 
Converting GWL to DTW would be further possible through additional mapping of detailed surface 
terrain (e.g., [19]) and simple GIS operations. What has been lacking, until recently, is a platform 
capable of delivering the appropriate remote-sensing data. 

Unmanned aerial vehicles (UAVs) provide imagery at extraordinarily high spatial resolutions 
and user-defined time intervals, and can be used to generate dense three-dimensional point clouds 
using modern structure-from-motion (SfM) workflows (e.g., [22–27]). In this paper, we present a 
novel method for characterizing groundwater and mapping both GWL and DTW using two 
secondary UAV-derived data products: orthophotography and photogrammetric point clouds. We 
demonstrate and test our approach in a treed-bog peatland in northern Alberta, Canada. 

2. Materials and Methods  

2.1. Study Area 

Our 61-ha study area is located in a treed bog about 40 km northeast of Peace River, Alberta, 
(56°21′50′′N, 116°47′80′′W; Figure 1). The site is typical of forested bogs throughout western North 
America, where the climate is generally dry enough to permit the growth of trees in these types of 
wetlands [28]. In our study site, black spruce (Picea mariana) is the dominant tree species, with 
shrubby understory of Labrador tea (Rhododendron groelandicum), lingonberry (Vaccinium vitis-idaea), 
and cranberry (Oxycoccus microcarpus). The ground layer is comprised primarily of various Sphagnum 
species. The water table is generally close to the surface, and visible at various points across the study 
area, including a large pond in the south and numerous smaller features throughout (Figure 1). The 
study area also contains numerous linear disturbances, including a mineral-filled road that roughly 
bisects the site from north to south. Smaller features, including seismic lines (linear corridors used 
for sub-surface mapping and petroleum exploration) and a pipeline, are also visible in Figure 1. 
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Figure 1. Location and overview of the study area in northern Alberta, Canada. 

2.2. Data Sets 

Three types of data were used in this study: (i) remote sensing data, from which 
orthophotography and photogrammetric point clouds were derived; (ii) well sites, from which 
groundwater measurements (GWL and DTW) were made; and, (iii) ground-control points (GCPs) 
that we used to integrate the field- and remote-sensing measurements. All three data sets are 
described below. 
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2.2.1. Remote Sensing Data 

We used an Aeryon HDZoom30 20-megapixel optical camera on board an Aeryon Skyranger 
UAV to collect remote-sensing data for this project. The images were captured in an automatic mode 
(to enable the camera parameter to automatically be adjusted according to the prevailing 
environmental conditions) and with a nadir view angle. The site was flown on 31 August 2016 using 
flight lines designed to deliver 2 cm ground-sample distance with a minimum 80% endlap and 60% 
sidelap. Images were acquired under stable, diffuse-light conditions in order to minimize shadows 
in the scene. Flying height was 110 m altitude (above ground level) and flight speed was 4 m/s. Winds 
were low (<3 m/s), minimizing the potential for vegetation movement that can interfere with the SfM 
workflow and therefore quality of secondary data products. A total of 851 photos were captured and 
their center-point coordinates (from on-board GPS) were recorded.  

2.2.2. Groundwater Measurements  

We installed 31 water wells around the study site (Figure 1): 17 along the access road and another 
14 at random locations elsewhere. Wells were constructed using 1.5 m-long, 2.5 cm-diameter PVC 
pipe with holes drilled along their entire length to allow water infiltration. The wells were pushed 
into pre-drilled holes in the peat created with a hand auger. The longitude (X), latitude (Y), and 
elevation (Z) of the wells were recorded with a Trimble R8 Real time Kinematic (RTK) GPS system 
(~10 mm vertical accuracy and ~20 mm horizontal accuracy). Groundwater levels were measured 
across the network of wells within 24 h of UAV flights on 31 August 2016. Measurements were 
obtained using a measuring tape attached to a blowpipe. The blowpipe was used to identify water 
level within the well, and the measuring tape was used to record the depth. The depth to 
groundwater measured from the reference wells ranged between −17 (negative DTW values 
represent sites inundated with water) to +58 cm.  

2.2.3. Ground Control Points 

Ten ground control points (GCPs) were installed systematically across the study site for 
georeferencing purposes (Figure 1). An additional 20 randomly located GCPs were also installed 
(Figure 1) across the site to assess the accuracy of the secondary remote sensing data products 
(orthophotography and photogrammetric point clouds). The X and Y accuracy (RMSE) of the 
secondary products were reported as sub-centimeter, and the Z accuracy was reported as 21 cm. 

2.3. Workflow 

An overview of our workflow for mapping groundwater from UAV data is provided in Figure 
2, and described more fully in subsequent sections. To summarize, we first identified pockets of open 
water across the study area through classification, using RGB orthophotography and a canopy height 
model (extracted from photogrammetric point cloud) as inputs. We then extracted point elevations 
from within these water bodies to create a sample of visible GWL. These samples were then 
interpolated to generate a full GWL surface. In order to transform GWL to DTW, we subtracted the 
GWL surface from a detailed digital terrain model (again, extracted from the photogrammetric point 
cloud). 
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Figure 2. Workflow for mapping groundwater using unmanned aerial vehicle (UAV) 
orthophotography and photogrammetric point clouds. 

2.3.1. Pre-Processing 

Agisoft Photoscan was used to generate photogrammetric point clouds and digital 
orthophototography (RGB) from the input UAV imagery and GCPs. Photoscan (a commercial 
software package) first aligns the photos by searching for common reference points among 
overlapping photos. The software then uses X, Y, and Z values from each ground control point, along 
with the camera positions (recorded automatically during the data collection), to generate and 
geolocate a dense point cloud. Next, the software builds a mesh that represents the three-dimensional 
(3D) surface of the study area, based on the point cloud. Finally, the mesh and associated RGB values 
from the photos are used to create digital orthophotography. The orthophoto was produced at 3 cm 
spatial resolution and the point density of the dense point cloud was reported as 191.81 pts/m2.  

We acknowledge the work of previous researchers (e.g., [29]) who warned about the potential 
for systematic errors in SfM-based digital elevation models, which can arise from radial lens 
distortion in consumer-grade cameras mounted vertically on UAVs, and become expressed as 
vertical ‘doming’ in elevation-model products. We performed extensive validation of the underlying 
SfM-derived terrain models used in this work using 678 ground points surveyed in the field (see [19] 
for details), and found no evidence of such distortion. As such, our experience with the SfM workflow 
for terrain modeling is in line with recent authors (e.g., [30,31]) who reported satisfactory vertical 
accuracies without the need for supplementary mitigation. 

A digital surface model (DSM) and a digital terrain model (DTM) were produced from the 
photogrammetric point cloud. The complete workflow of obtaining DSM and DTM from point cloud 
was recently published [19]. In summary, the point cloud (all points) were used to produce a DSM in 
ArcMap using LAS to Raster tool at 3 cm spatial resolution (to match the resolution of the 
orthophototography). Given the density of the points (191.81 pts/m2) a nearest-neighbor interpolation 
method was used to create the DSM. Then, ground points were extracted from all of the points using 
a combination of LAStools and Cloud Compare software. We first used LAStools to perform the 
initial preprocessing, including preliminary noise filtering and tiling. We then performed additional 
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noise filtering using the statistical-outlier removal tool in Cloud Compare. Finally, we classified the 
ground points and manually removed the remaining noise (extreme high or low points) using 
LAStools. The point density of the classified ground points was 84.68 pts/m2. These ground points 
were then processed in ArcMap to produce the terrain model (DTM). A linear-triangulation method 
of interpolation was used in this case, and the output resolution was again set to 3 cm. Finally, a 
canopy height model (CHM) was obtained by subtracting the DTM from the DSM. The 
orthophotography, DTM, and CHM were the main secondary data products used in further 
processing. 

2.3.2. Extracting Open Water 

We classified open water using ENVI (a commercial software package), with the orthophotography 
and CHM providing inputs. We used an object-based (segmentation) scheme [32] and a simple 
decision tree (Figure 3) to arrive at a final water classification. First, we separated ground from non-
ground objects on the basis of mean canopy height, with a threshold of 0.1 m. Ground objects were 
further divided into vegetated and non-vegetated objects using a green/red ratio, with a threshold of 
1.1. Finally, non-vegetated objects were divided into bare soil and open water using an example-
based (supervised) classification. This was performed by manually selecting 60 training objects 
(examples) from each class (open water and bare soil) that were used by the software (ENVI) to 
identify similar features within the image and assign classes to them. We chose a conservative 
approach to open-water classification in order to obtain maximum user’s accuracy of the water class. 
The accuracy was assessed using 140 randomly selected sample points (70 water, and 70 others). 
While the overall classification accuracy was just moderate (79% with a kappa of 0.63), the open water 
class had only 4% errors of commission, meaning that we had high confidence in objects that were 
classified as water. 

 
Figure 3. Object-based, decision-tree classification scheme to extract open water. 
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2.3.3. Sampling Open Water  

The open-water objects obtained through classification were assumed to reflect the level of 
groundwater across the study area at the time of image acquisition, but converting these features into 
continuous surfaces required interpolation. Previous experience [33] has shown that it is improper to 
use only the center-point of objects for interpolation, since large, long, and irregularly shaped water 
bodies might be underrepresented. Thus, we developed a spatially explicit sampling strategy, where 
one sample point per 50 m2 was selected to represent the elevation of the water table in that cell. This 
was done by tessellating the study area into 50 m2 cells, and selecting one water-sample point—the 
point with the median water-elevation value—from each cell. In this manner, a total number of 214 
final groundwater samples were generated. Figure 4 shows examples of open water from a few 
locations in the study site. 

 
Figure 4. Examples of samples (red points) in open water (blue) from across the study area. In order 
to reduce the bias of using object center points for interpolation, we selected on sample point per 50-
m2 section to represent water level. 

2.3.4. Creating Ground-Water-Level and Depth-to-Water Surfaces  

The elevations of the final samples were interpolated using ordinary kriging to generate a GWL 
surface. We used ordinary kriging (type: ordinary; variogram: semivariogram; neighbors to include: 
2–12; lag size: 57.48; nugget: 0.034; partial sill: 0.39; range: 460; and anisotropy: none) since it is 
generally regarded as the most common and reliable interpolation technique in the hydrology and 
environmental-studies literature [34–38]. The GWL surface was then subtracted from DTM to obtain 
a DTW surface.  

2.4. Validation 

We evaluated the quality of the GWL and DTW surfaces in two ways. First, we extracted DTW 
from the surface at the 31 field-sample (water well) locations and compared them with the field data 
using root-mean-square-error (RMSE) and other basic statistics. Second, we generated an error-
distribution map by interpolating the absolute error at each reference point.  

3. Results 

The resulting GWL surface, representing the predicted elevation of the groundwater table in 
meters above mean sea level (m a.s.l.) is shown in Figure 5. Our estimates show groundwater to vary 
from 620 to 624 m a.s.l. across the study area, with the water table sloping generally from east to west. 
Figure 6 shows the predicted DTW surface, generated by subtracting the GWL surface from the 
detailed DTM of the study area. The microtopographic features (hummocks and hollows) that 
characterize natural peatlands are clearly visible, creating small variations in DTW. The impacts of 
the access road—high immediate DTW levels with inundated areas on the up-slope side—are readily 
apparent, as are the effects of small linear features (seismic lines and pipeline), which create low DTW 
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values and ponding through the flattening of microtopography. The densely treed upland areas 
reveal generally high DTW values, in addition to interpolation noise caused by errors in the DTM. 
Photogrammetric point clouds are hindered by dense vegetation [19], reducing the effectiveness of 
our approach in these areas. 

 
Figure 5. Predicted ground-water level across the study area. 

 
Figure 6. Predicted depth to groundwater table in the study area, where shades of green represent 
positive depth and shades of purple indicates negative depth (i.e., inundation). 
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The results of the quantitative validation, derived from 31 independent, temporally coincident 
water-well observations, are summarized in Table 1. The accuracy of the GWL surface ranged from 
0.6 to 50.5 cm, with an RMSE of 22.0 cm. The negative mean error (−0.9 cm) reveals a slight 
overestimation of the groundwater surface overall. Converting GWL to DTW does little to change 
the overall RMSE (20.3 cm), though the maximum observed absolute error increased to 65.3 cm, and 
mean error increased to −7.0 cm. A scatterplot (Figure 7) between field-measured (water well) DTW 
and model-produced DTW reveals moderate positive correlation (Pearson’s r = 0.40). From the plot, 
it can also be concluded that we estimate WT at or slightly below the surface systematically at sites 
that are inundated (i.e., negative DTW). This makes sense, as the technique cannot reliably reach the 
terrain in flooded areas and may mistake the water surface as the ground in the DTM. However, this 
does not have any impact on the predicted GWL surface.  

 
Figure 7. A scatterplot displaying the field measured depth to water (DTW) in x axis and our model 
generated DTW in y axis. 

Table 1. Quantitative accuracy statistics for the predicted ground-water level and depth-to-water 
surfaces, based on 31 temporally coincident well measurements. 

 Minimum 
Absolute Error (cm) 

Maximum 
Absolute Error (cm) 

Root Mean Square 
Error (cm) 

Mean Error 
(cm)  

Ground Water Level 0.6 50.5 22.0 −0.9 
Depth to Water 0.0 65.3 20.3 −7.0 

Spatial Distribution of Model Errors  

A spatial representation of model errors (Figure 8) reveals that most of the study area 
experiences relatively low absolute errors in the 0 to 20 cm range, with the larger errors (50–70 cm) 
limited to a few isolated hotspots. These hotspots (characterized by points 1 and 3 in Figure 8) 
coincide with upland patches within the study area (e.g., point 1), or densely treed wetland patches 
(e.g., point 3). In both cases, the issue revolves around errors in the DTM where the ground is 
occluded from vision. In the peatland areas, where terrain is generally visible to the sky (e.g., point 
2), model errors are generally low. 
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Figure 8. Visualization of the spatial distribution of (DTW) model errors, created by interpolating the 
absolute errors from 31 temporally coincident well measurements. Insets (bottom) show detailed 
visualizations of three well sites with relatively low (point 2) and high (points 1 and 3) observed 
errors. 

4. Discussion 

The predicted GWL surface matched temporally coincident field measurements closely in areas 
outside of dense vegetation. Our method performed worse in pockets of uplands within the study 
area, where extensive tree cover interfered with our ability to view and model terrain with passive 
photogrammetric techniques. These more complex pockets may also deviate from the assumptions 
of porous terrain and gently sloping water tables upon which this technique depends. Regardless, 
our interest is primarily within the less-vegetated peatlands, so we do not view this as a major 
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shortcoming. The pattern of model accuracy varying inversely with vegetation density and surface 
complexity reflects the findings of Lovitt et al. [19] who modeled terrain in the same study area. 
Integrating high-density LiDAR data to the workflow might help to more accurately define terrain 
in challenging locations. 

As DTW is an important driver of peatland ecosystem function, the ability to map it at ecosystem 
to watershed scales will be useful for monitoring peatland response to environmental change. An 
alteration of DTW of only 10–20 cm can have an important impact on peatland plant community type 
(e.g., [39]), carbon accumulation rate (e.g., [40]), and greenhouse gas exchange (e.g., [41]). Deep DTW 
also increases the susceptibility of peatlands to wildfire [42]. The impact of resource development 
across the boreal has also been shown to alter DTW in the range of 5 cm to > 1 m, with clear impacts 
on ecosystem vegetation community and carbon exchange [43–45]. Across the majority of the open 
peatland areas of the study site, absolute error in DTW models was less than 20 cm. This indicates 
that this technique is able to map DTW with an accuracy that is relevant to ecological function and 
impact of disturbance in peatlands, making it useful to monitor the impact of climate and land-use 
change over time. 

Our approach depends on the availability of visible surface water, and can be expected to fail in 
areas where surface water is less common, or during times (after extended periods of drought, for 
example) when water tables are very low. Alternatively, at times when excess water is ponded on the 
surface—after a heavy rainfall, for example—in a manner that does not reflect general groundwater 
levels might also confound our workflow.  

The extraction of reliable groundwater estimates requires that the estimated surface-water 
elevations are accurate. This could be difficult in situations where very clear water leads the 
generation of points from the bottom of shallow ponds rather than the surface. Alternatively, 
featureless water bodies may fail to generate photogrammetric points at all, limiting the usefulness 
of this approach. In our study area, turbid water and the presence of floating aquatic vegetation was 
helpful. In our experience, these conditions are typical of many peatlands, suggesting that our 
workflow might be broadly applicable. 

Our technique demonstrates several advantages over traditional (ground based) methods of 
groundwater mapping, including:  

(i) Our method does not require any field measurements to be able to generate groundwater 
surfaces,  

(ii) If available, a large number of reference points can be used in the interpolation process that can 
lead to more accurate estimates, and  

(iii) When compared to ground-based measurements, our workflow can be scaled across much 
larger study areas.  

The RMSE of traditional approaches, as reported in the literature, range between 0.75 and 2.25 
meters [46,47], which is considerably greater than the errors that we have reported. However, it is 
clear that our method cannot completely replace ground-based techniques. For example, our 
workflow produces groundwater estimates at the time of image acquisition; new estimates would 
require new flights. Water-well monitoring, on the other hand, is much better suited for performing 
continuous or high-temporal-resolution measurements. Therefore, we characterize our workflow as 
a useful complement to traditional field-based monitoring techniques, and one that is particularly 
suited to upscaling. 

5. Conclusions 

Groundwater dynamics, commonly measured as GWL or DTW, are key factors in 
understanding hydrological processes and estimating GHG emissions in peatlands, and are 
commonly sought by researchers working in these ecosystems. The objective of this work was to 
develop and test a method for mapping groundwater using Earth-observation data acquired from a 
UAV. Our approach estimated both GWL and DTW to within ~20 cm (RMSE) across a complex, 61-
ha treed bog in northern Alberta, Canada. The largest errors were observed in pockets of densely 
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treed upland areas and other areas where dense vegetation occluded terrain; areas of open peatland 
displayed considerably smaller errors. This novel approach offers great potential for measuring 
groundwater levels repeatedly over large areas, and can be expected to facilitate the development of 
spatially explicit models of GHG emissions, flow direction, and water accumulation in peatlands, 
and contribute insights into the impacts of disturbances on peatland hydrology and related 
ecosystem functions. 
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