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Abstract: Earth Observation has become a progressively important source of information for land
use and land cover services over the past decades. At the same time, an increasing number of
reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and
radiometric resolutions. The available bulk of data, fostered by open access policies adopted by
several agencies, is setting a new landscape in remote sensing in which timeliness and efficiency are
important aspects of data processing. This study presents a fully automated workflow able to process
a large collection of very high spatial resolution satellite images to produce actionable information
in the application framework of smallholder farming. The workflow applies sequential image
processing, extracts meaningful statistical information from agricultural parcels, and stores them
in a crop spectrotemporal signature library. An important objective is to follow crop development
through the season by analyzing multi-temporal and multi-sensor images. The workflow is based on
free and open-source software, namely R, Python, Linux shell scripts, the Geospatial Data Abstraction
Library, custom FORTRAN, C++, and the GNU Make utilities. We tested and applied this workflow on
a multi-sensor image archive of over 270 VHSR WorldView-2, -3, QuickBird, GeoEye, and RapidEye
images acquired over five different study areas where smallholder agriculture prevails.

Keywords: automated processing; workflow; real time; very high spatial resolution; surface
reflectance; satellite image; smallholder farming; agriculture

1. Introduction

The world’s population reached 7.3 billion people in mid-2015 [1] and is expected to increase to
9.6 billion by 2050 [2]. Consequently, global demand for food by that year is predicted to double at
least that of 2005, not only because of population growth, but also because of a shift to nutrient-richer
diets in especially developing nations [3]. The latter scenario calls for technical solutions that help
to improve crop yield, provide accurate information to aid in-field management decisions, increase
the efficiency of applications of farm inputs, and boost profit margins in the agricultural sector [4].
In some high-income countries, the technology to aid this decision-making may have been established;
however, in low-income countries, which are the most populous parts of our planet and which depend
strongly on agriculture, information on crops and farm management practices is still primitive.
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Remote sensing has been recognized as an important source of information over the last decades in
a wide spectrum of Earth Observation applications. The requirements for agriculture-oriented remote
sensing systems have long been outlined [5] as the frequency of coverage, high spatial resolution (5 m
to 20 m), timeliness, and integration in models. Of these, timeliness is considered the number one
requirement as meeting it allows addressing identified problems in real time. Over the past decade,
these requirements have been increasingly met by a fleet of reconnaissance satellites with advanced
capabilities that allow cost-effective agricultural applications [6].

Moreover, various space agencies and satellite product providers have adopted a free and
unrestricted data access policy; for instance, the European Space Agency (ESA) for the Copernicus
programme (including the Sentinel-1 and Sentinel-2 satellites) exercises a free, full, and open data policy.
Since 2008, the U.S. Geological Survey (USGS) has been providing open access to over five million
Landsat images from 1972 onwards. The Japan Aerospace Exploration Agency (JAXA) and the National
Aeronautics and Space Administration (NASA) recently made their 30 m Digital Elevation Models
(DEM) freely available. The VITO Vision website offers access to PROBA-V and SPOT-Vegetation,
and the National Oceanic and Atmospheric Administration (NOAA) is committed to full and open
data access. Several partnerships between governments and institutes such as the Brazilian National
Institute for Space Research (INPE) Image Catalog and the University Navstar Consortium (UNAVCO)
have created catalogues with available free images, and international bodies have been dedicated
to the exchange and open-access of ocean- and climate-related data such as the International bodies
Global Earth Observation System of Systems (GEOSS), the Committee on Earth Observing Satellites
(CEOS), and the World Data System (WDS) of the International Council of Science (ICSU). This policy
shift, along with simultaneous developments in image processing software, has fostered easier access
to satellite data and lower costs of image deployment. Despite the fact that the image-processing
steps are well studied, few of them are fully automated. This can be attributed to their complexity
and the required know-how from the user. As we are entering the big data era, the need to establish
operational image workflows that produce actionable information in a trusted, robust, and stand-alone
fashion is arising.

One application in which Earth Observation can be an important information source is smallholder
farming. The fine spatial resolution required to sense smallholder farm fields, the radiometric resolution
to discriminate between plant types in this heterogeneous environment, and the temporal resolution
required to monitor events and developments (farm practices and crop growth, for instance) during
the crop season has become available lately from satellite sensors.

Earth Observation has fundamentally contributed to large-scale agricultural information systems
in high-income countries for some time, especially for tasks in crop scouting for diagnosing soil fertility,
the occurrence of insects, diseases, and weed and water problems; monitoring vegetation growth;
and estimating potential yield, e.g., [7]. While crop scouting is time- and labor-intensive and thus
expensive, Earth Observation presents a viable alternative, even though few studies have reported
economic benefit estimates and evidence of on-farm profitability remains fuzzy [8]. The agricultural
information landscape in low-income countries is contrastingly different. For one, few farmers have
access to important farm inputs, whether products or management recommendations. Consequently,
crop production often just covers the basic nutritional needs of the family. Secondly, mixed-cropping
and inter-cropping are common practices in smallholder fields, and these practices increase land use
intensity. This sketches a landscape in which the established management techniques and data sources
of large-scale farming systems are essentially inapplicable. Low-income farming is dominated by
small farms that are family-run. Farm size in these areas decreased in the period from 1960 to 2000 [9],
and quite possibly the same happened to the average farm field size. This calls for the use of fine
spatial resolution images to accrue a sufficient number of pixels per field (Figure 1). While, on the
one hand, this will eliminate pixels covering multiple fields and reduce errors in field delineation,
increased ground sampling frequency is also known to lead to an increased within-class variability
in crop classification. Therefore, spatial resolution requirements differ considerably over different
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landscapes, even in the framework of a given application [10]. As a consequence, determining the
optimal ground sampling distance for an application is a task of identifying the coarsest acceptable
pixel size, given the specific landscape.

0 25 50 100 N
A

Figure 1. Example of smallholder fields in Barisal, Bangladesh, as depicted by different remote sensors:
(a) Unmanned Aerial Vehicle (UAV) (Tetracam five-band mini-MCA (multi-camera array) false-colour
composite), (b) WorldView-2/3 multispectral false-colour composite, (c¢) World View-2/3 panchromatic,
and (d) RapidEye false-colour composite. The overlay parallelograms indicate nine adjacent farm
fields. The apparent misalignment between the satellite images at (b—d) and the polygons are a result
of the relatively low horizontal positional accuracy with which the satellite images were delivered.

To monitor crop development throughout the season, a time series of image acquisitions is
required. Single satellite platforms cannot trivially satisfy such needs, especially where cloud
presence is a limiting factor. For instance, [11] describes the observation requirements for a global
agricultural monitoring activity and claims that no current satellite platform with fine-to-moderate
spatial resolution can accommodate it. However, a synergistic use of data from multiple agencies
and missions may meet the requirements; this leads to the idea of a virtual satellite constellation,
which forces significant development in image analytics, especially in the harmonized use of Earth
Observation information and the on-time availability of ready-to-use products.

The two requirements of high spatial and high temporal resolution lead to secondary
dependencies for our specific application; first, images in a time series must be georegistered with
very high accuracy, and, secondly, surface reflectance products acquired at different times and possile,
possibly by different platforms, must be carefully spectrally calibrated.

A number of automated image processing methods have been developed in the past. For instance,
STORM [12] is a successful example initially developed for 6.5 m RapidEye processing, though
challenges surfaced when the workflow was used to tackle 2 m WorldView-2 (WV-2) images. These
challenges were encountered especially during geometric correction and were attributed to the finer
spatial resolution. While considered successful, the workflow depended on proprietary software (i.e.,
IDL and ATCOR), the licenses of which are not always available in image processing laboratories,
especially when used in low-income countries, where smallholder farming prevails. A similar
automatic processing and analysis system for multi-sensor satellite data, named GeoMultiSens,
is currently under development [13]. The system emphasizes the analysis of heterogeneous and
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multi-sensor images on a global scale. A system developed by [14] requires little human interaction
to derive vegetative phenological metrics from traffic webcams. Another work, presented in [15],
focuses on training and validating satellite data; it, however, requires the user to select reference data
to establish an operational system for crop type maps. Last but not least, Clewley et al. [16] built
a modular system accessed through Python to conduct Geographical Object-Based Image Analysis
(GEOBIA) as an open-source package with functionality similar to existing GEOBIA packages. Other
remote sensing domains have also encompassed efforts for automation; for instance, Grippa et al. [17]
developed a semi-automated and open-source processing chain for urban object classification.

Next to specialized automated workflows, more general-purpose platforms that offer access and
processing capabilities have been released lately. Google Earth Engine is a platform that offers parallel
computing, allowing a tremendous speed-up of processing workflows [18]. The DigitalGlobe (DG)
company (now part of MDA Corporation) has the GBDX platform for computing with their images,
which allows the user to acquire post-processed results instead of purchasing the data, a fact which
addresses the concern of cost-effectiveness in obtaining derived image products [19]. ImageQuerying is
yet another system for automatic, near-real-time image information extraction from Big Earth data [20].
This system helps the user, through an easy-to-use graphical user interface, to perform semantic
content-based image retrieval and to build decision rules with spatial and temporal operators. More
generic cloud computing platforms are also available such as the Amazon EC2 [21] and the Microsoft
Azure [22].

Despite the fact that many processing systems are available, as presented above, many of them
will either not be able to ingest Very High Spatial Resolution (VHSR) data, not be based on free and
open-source software, or not meet the requirements of agriculture remote sensing. The Spurring
a Transformation for Agriculture through Remote Sensing (STARS) project aimed to investigate the
potential of remote sensing in assisting smallholder farming in sub-Saharan Africa and Southeast
Asia [23]. To this end, we developed an automated processing chain that ingests VHSR satellite images
and derives spectral and textural information for each smallholder field known to the system. This
paper aims to showcase the established workflow and demonstrate its potential. We discuss algorithmic
development and present examples of products derived by concentrating on three functions of the
workflow, namely to:

1.  Produce higher processing level products, which can support various scientific purposes. The
surface reflectance products aim specifically at vegetation studies.

2. Prepare the data for object-specific statistical information extraction to derive on-demand results
and feed a spectral library.

3.  Showcase the feasibility of an automated workflow, as a case study of monitoring smallholder
agriculture farms from space.

2. Materials and Methods

2.1. Data

Smallholder agriculture is a remote sensing application that requires very fine spatial
resolution data. Popular satellite image types such as Landsat or MODIS are inadequate to cover
smallholder farming events with their coarse nominal pixel resolution. To study this dependency,
Whitcraft et al. [24] used 3-m resolution images to calibrate a neural network for the sub-pixel
classification of 30-m resolution images for small-scale farming in West Shewa, Ethiopia; the results
were unsatisfactory. With typical smallholder parcel sizes smaller than 2 ha [25,26], images with much
finer spatial resolution than 30 m are required to map within-field vegetation. This would possibly
allow the user to discriminate between mono-cropping and mixed cropping, as well as to detect the
weed status.

Moreover, agriculture is mostly a seasonal phenomenon and thus requires observations spread
over time. The revisit time of single reconnaissance platforms such as Landsat (every 16 days) hold
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little guarantee for the number of images during the crop season, the more so because most smallholder
farming is rainfed and thus takes place in the rainy season, leading to higher chances of cloud presence.
Multiple image sources increase the chances to acquire more observations. Hypertemporal imaging,
a term coined to indicate a pool of multi-temporal data collected frequently enough to capture the
phenomenon dynamics [27], is possible in most cases of optical remote sensing only by making use of
a virtual constellation.

Given the above conditions, we conducted a tasked acquisition of high spatial resolution satellite
images (Table 1) over two consecutive years (2014 to 2015) and within an active time window, expressed
as the start and end year according to the agricultural conditions of each area.

Table 1. Technical specifications of Very High Spatial Resolution (VHSR) satellite images ingested by
current automated workflow

Quickbird GeoEye WV-2 WV-3 RapidEye
Provider DigitalGlobe DigitalGlobe DigitalGlobe DigitalGlobe = RapidEye/BlackBridge
. . . . 11 bit (14 bit for .
Dynamic range 11 bit 11 bit 11 bit SWIR) 12 bit
Panchromatic 0.65m 0.46 m 0.46 m 031m -
resolution (nominal)
Multispectral bands 4 4 8 8 (+8 SWIR) 5
Multispectral 124 m
resolution (nominal) 2.62m 1.84m 1.84m (3.70 m) 6.50m
Blue, Green, Red, . . . . .
Near-IR 1
Cyan (coastal), . R
Yellow, Near-IR 2
= ~. STARS

Legend

[ Bangladesh

[ Mali

I Nigeria o

[ Tanzania

[ uganda 1000 0 1000 2000 km ‘
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Figure 2. Areas of study in Southeast Asia and sub-Saharan Africa for which VHSR satellite images
were acquired and on which the Spurring a Transformation for Agriculture through Remote Sensing
(STARS) workflow has been tested. In Mali and Nigeria, over 150 fields of various crops were monitored
to examine the ways in which the data can be used to the benefit of the local farming communities.
In Tanzania and Uganda, four separate large blocks of croplands were monitored to provide data to the
National Food Security office to more accurately forecast crop yields. In Bangladesh, the floodplains of
the southern delta were studied to establish irrigation systems that enable farmers to grow a second
crop during the dry season.
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Use case sites in four countries were targeted in sub-Saharan Africa and one in Southeast
Asia (Figure 2). The environmental, agricultural, and landscape conditions varied between them.
Two data delivery pipelines were established: one for RapidEye/BlackBridge (now Planet), providing
acquisitions from the RapidEye constellation, and another for DG, delivering tasked acquisitions of
their optical satellites, namely WV-2, WV-3, GeoEye-1, and QuickBird (Table 1). The latter satellite was
in operation until January 2015. The full data bundles were delivered for each sensor, and, for the use
case in Bangladesh, the WV-3 SWIR bands were also provided. The project thus resulted in an initial
image collection size of 4.5 TB.

2.2. The STARS Image Processing Workflow
Our image processing workflow is based on four principles. It
is founded on free and open-source software,

requires minimal user interaction,
supports VHSR satellite image processing, and

Ll e

is tailored to smallholder farming applications.

To adhere to these, the processing is scripted largely with R statistical programming language [28],
custom Fortran and C++ utilities, Python, Linux shell scripts, GNU’s Not Unix (GNU) Make, and
third party libraries such as GDAL (Geospatial Data Abstraction Library). The system is set up on a
server equipped with 8 x 8 GB RAM memory, dual Intel Xeon E5-2640 v3 processors (2.6 GHz), and
two 400 GB SSD, and it runs on a Debian Linux operating system. The source code is freely available
at the STARS GitHub site (https:/ /github.com/GIP-ITC-TwenteUniversity /stars-image-processing-
workflow). The images are archived and processed from a Network Attached Storage (NAS) server
with a total storage capacity of 50 TB, which is also the platform of dissemination to end-users. Table 2
lists representative samples of satellite images and their spatial and pixel dimension.

The overarching idea is to create a fully automated system that processes the dataset and derives
the required output. A single stream and single core process is followed for the first steps of image
processing, where the earlier discussed pre-processing and dependencies are handled. Once the
workflow of an image reaches a higher level product, the output is extracted depending on the scope
of the task. The overall scheme is provided in Figure 3. The process starts with atmospheric correction
using the 6S radiative transfer model. The produced .hdf file is converted to a GeoTIFF format, and
the metadata from the original file are appended. The fourth step is a stitching operation of the tiles
provided in a single delivery; for a DG delivery of 10 x 10 km? area, this is often a number of four tiles.
Subsequently, orthorectification using the NASA Shuttle Radar Topography Mission (SRTM) Version
3.0 Global 1 arcsecond DEM is implemented in GDAL based on the .rpc coefficient file (named .rpb
in DG deliveries). Next, image registration based on a master image for each site is implemented to
ensure a high coregistration accuracy. The last two steps of our image processing are the derivation
of cloud- and tree masks. This is the highest level of post-processed image, based on which further
scientific analysis can be carried out on calibrated data. Moving a step forward, timestamped statistical
moments of the spectra and textural features are extracted for each target object such as a farm field,
which are then collected in a crop spectral library.

Since studies of smallholder farming are expected to also be taken up in low-income countries,
we wanted to make it possible for local research and operational organizations to process satellite
data with free access and minimal costs. Commercial software has certain disadvantages such
as licensing restrictions for end-users, an inability to freely access the source code, long-term
maintenance, and security and transparency [29]. All these issues are more easily dealt with in
free and open-source software.
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Table 2. The satellite products processed and the associated image size and time required to run the individual steps of the workflow.
Image Satellite Number SGII:ul?: Number of Delivery Processing ~ Atmospheric Subsetand  Tie Point Image Tree Spectral gtet:utrial ;l"tei;utrial
Sample Sensor of Bands >Amping Pixels Size (MB) Time (min) Correction Mosaic Detection Matching Mask Statistics atistics amstics
Distance (m) 64 gl 256 gl
1 WV-2/3 8 2 16,777,216 400 60 42% 2% 51% 2% 2% 0% - -
1b WV-2/3 pan 1 (pan) 0.5 2,016,020,167 750 140 - 1% - 0% 6% - 27% 65%
2 RE 5 6.5 116,967,735 960 30 0% 8% 62% 5% 21% 0% - -
3 QB 4 24 41,933,143 106 40 54% 2% 37% 2% 2% 0% - -
3b QB pan 1 (pan) 0.6 210,857,584 405 60 - 0% - 1% 14% - 22% 59%
4 GeoEye 4 2 50,405,041 200 52 36% 2% 58% 1% 2% 0% - -
4b GeoEye pan 1 (pan) 0.5 406,566,720 780 68 - 1% - 0% 5% - 23% 71%




Remote Sens. 2017, 9, 1048 8 of 20

The workflow was initially developed for the DG data and was later adapted for RapidEye images
without serious impediments. The decision to first address DG data was inspired by the finer spatial
resolution of these images and in anticipation of more fundamental challenges. For instance, [30]
developed an automatic geometric processing workflow for VHSR images based on roads with the
same data sources and started with the development of software that could handle RapidEye data first,
which subsequently raised problems in terms of adapting this to finer resolution data. The output type
of the processing steps, in cases in which these are images, is GeoTIFF in order to accommodate the
ease of ingestion and the processing of the intermediate products from end-users.

STARS AUTOMATED SATELLITE IMAGE WORKFLOW

Bash shell script

Satellite image metadata
extraction

]

Radiometric and
atmospheric correction

V]

Export to tif and append
metadata from source

v

Tile stitching

v

Orthorectification based
on RPC model & SRTM
Global 30m DEM

Image co-registration

v

Cloud and tree masking

v

Geo-statistical analysis

v

v

i R & GDAL

i GDAL

> GDAL

4 R/space-scale

v

v I

DG Level 2 basic product

Top of Canopy
Reflectance

Appended information
from source file

Mosaicked product

Precision map image -
relief displacement

Multiple sensor time-
series imagery

Masked products

CSSL

Spectral information

Textural information

Image metadata
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Figure 3. The processing chain of the STARS automated satellite image workflow.

2.3. Module Description

In this section, we describe in detail the workflow steps. For a successful run of the workflow, the
following datasets must already be available to the system:

1.  High spatial resolution satellite images of the study area. In cases in which we have an image
time series, one of the images is declared as the master image, onto which all other images are
geometrically registered.

2. A DEM that covers the satellite image footprint and that is used in the orthorectification phase,
if that phase is necessary.
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If these datasets exist, the sequential processing steps described below, controlled through a bash
script, can be run successively. An alternative approach that makes use of the same scripts is provided
with make, and we discuss this in Section 3.4.

2.3.1. Atmospheric Correction

Satellite sensors record the extra-terrestrial radiation flowing into the sensor, a measurement
that is not directly associated with a physical quantity of the study material as it depends on the
atmospheric conditions at the time of image acquisition and the sensor-target illumination geometry.
While, for certain applications (e.g., land cover classification), this is less important, when comparing
pixel spectra between images acquired on different dates/sensors or with ground measurements, it is
crucial to work with consistent, calibrated products such as surface reflectance [31].

Several algorithms have been developed in the past to compensate for atmospheric effects such
as the 65 model-based algorithm developed by NASA [32,33], the Sen2Cor algorithm [34] developed
by the German Aerospace Center (DLR), and the MACCS (Multisensor Atmospheric Correction and
Cloud Screening) algorithm developed by the French Space Agency (CNES) [35]. In our workflow
implementation, we embedded the 65 model and revised and adapted it to accommodate the needs
of the available image collection. The aerosol inversion relies on the assumed relationship between
the surface reflectance in the blue, red, and near-infrared bands, using an algorithm similar to the one
used for the MODIS aerosol product. It is described in more detail in [33]. The code is run natively by
a FORTRAN program, and, for workflow embedding purposes, a Python wrapper was built around it.
This module automatically downloads the auxiliary datasets required for its execution (water vapor,
ozone, coarse resolution DEM obtained from the MODIS processing archive). It integrates the datasets
with the selected types of satellite image to produce a common set of outputs. Our atmospheric
correction module produces two outputs: the top-of-atmosphere and the surface reflectance. The latter
is used in further processing. Occasionally, artifacts over water pixels are present in landscapes with
irrigated agricultural areas, as the aerosol retrieval method is only valid over land pixels.

2.3.2. Tile Stitching

DG imagery is delivered in bundles, each containing adjacent tiles. To form a single image
covering the area of interest, the tiles are stitched together at this second step. Both R (‘mosaic’
function of ‘raster’ package) and GDAL (gdalwarp function) have algorithmic implementations that
are required to perform this step. The results obtained from these algorithms are identical, and this also
holds for the proprietary software results (i.e., ERDAS Imagine), with which they have been compared.
In the current implementation, GDAL is used. RapidEye scenes are not undergoing this step as the
images, either in the 2A or 3 processing level, are delivered as a single image covering the whole scene.

2.3.3. Orthorectification

Orthorectification compensates for sensor orientation and terrain displacement through
a geometric transformation onto a projected coordinate system. The required input is the satellite
image, its corresponding RPC files, and a DEM that covers the satellite scene.

Satellite image products are typically delivered in the Standard2A or ORStandard2A processing
level, which means that the pixel coordinates are not translated into geographical positions. Some
deliveries took place in 3A format, so these were already orthorectified. Off-nadir angles range
considerably, and are as high as 30 degrees in record images in side-looking configurations in areas
of high cloud density; it is an important cause of inconsistent georeferencing between images. One
is generally advised to work with off-nadir angles below 20 degrees [36], otherwise the images will
present problems in plant canopy studies. Our orthorectification is applied to all images that are not
yet orthorectified.

Several solutions exist for performing this task, and, in a study [37] that compared
orthorectification methods for optical satellite data, it was found that ENVI, Erdas Imagine, PCI
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Geomatics, and Xdibias provided very similar absolute geometric accuracies; in our workflow
implementation, GDAL is used. The DEM is used to reduce localization errors induced by jagged
surface topography. A visual investigation of the Advanced Land Observing Satellite (ALOS) DEM
provided by JAXA and the SRTM DEM by NASA, both freely available and with resolution of
1 arc-second (30 m), revealed that these two datasets are similar in the STARS use case areas. Eventually,
we selected the SRTM because the ALOS DEM is, in essence, a Digital Surface Model (meaning that it
does not account for understory vegetation height), and it is filled-in from other DEMs in areas with
cloud coverage. The needed SRTM tiles covering our use case areas were downloaded in GeoTIFF
format from the EarthExplorer website, stitched together, subsetted to the areas of interest, and
projected onto a map coordinate system (WGS 84/respective UTM zone).

We evaluated the geometric accuracy of a delivered WV-3 ORStandard2A image acquired on
18 May 2015 at 10:46 over Sukumba, Mali, the respective orthorectified product, and the co-registered
product on a master image, as described in Section 2.3.4. The comparison was made against 41 Ground
Control Points (GCPs) recorded in the field with a differential GPS device (Table 3). We used the
30 cm panchromatic image for better clarity to distinguish the GCPs cross marks. The results present
considerably lower RMSEx and RMSEy for the co-registered image (1.547 m and 0.361 m respectively),
in comparison to the raw image (6.616 m and 1.886 m respectively). However, when the latter was
orthorectified, it produced a similar RMSEy (1.521 m) but a higher RMSEx (11.527 m). Looking into the
mean and standard deviation of the absolute residual values, it is clear that the orthorectified product
has a higher mean but a considerably lower standard deviation of the absolute residual value, which
translates into a larger average misregistration but, at the same time, a consistent shift throughout
the image, contrary to the raw product, which has higher standard deviations and residuals across
the images that are variable. Obviously, the co-registered (i.e., to a master) image produces an overall
RMSE that is lower than the spatial resolution of the specific multispectral image, which is 1.2 m.

Table 3. A statistical comparison of the three image products against 41 Ground Control Points (GCPs).

Statistical Attribute Image Provider Orthorectified  Co-Registered

Meany of absolute residual values (m) 5.288 11.375 1.319
Standard deviationy of absolute residual values (m) 4.026 1.888 0.82
Meany of absolute residual values (m) 1.875 1.511 0.324
Standard deviationy of absolute residual values (m) 0.205 0.169 0.162
Miny residual (m) —0.136 —1.084 0.046
Maxy residual (m) 17.1 —13.527 2.872

Miny residual (m) 1.416 1.086 —0.004
Maxy residual (m) 2.318 1.785 0.635
RMSEx (m) 6.616 11.527 1.547
RMSEy (m) 1.886 1.521 0.361

2.3.4. Image Co-Registration

Although orthorectification compensates for geometric distortions due to relief and imaging
geometry, if done without GCPs, as described above, the process provides an absolute accuracy that
may not suffice for certain applications. Mapping crops in smallholder fields with VHSR images is
such an application, as the risk of spatial misalignment between images is high. Significant accuracy of
georeferencing can be achieved by bias correction of the RPC parameters prior to orthorectification
to eliminate systematic effects [38]. However, this requires the selection of GCPs per image, which
is unsuitable for automated applications. Several image matching algorithms have been established
to automatically detect candidate GCP points, used mainly in pattern recognition, such as in the
Scale-Invariant Feature Transform (SIFT) algorithm introduced in [39,40] and the Speeded Up Robust
Features (SURF) of [41].

An application of these methods to VHSR images provided shifts greater than the pixel size
of the image and were disregarded. Instead, an algorithm that implements feature extraction with
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automatic scale detection [42] based on the identification of objects was developed in-house. The
overall idea is based on GCP extraction from an image time series, which is a well-known problem due
to the temporal variability of the position of the candidate objects [43]. Roads (excluding bridges and
elevated roads) may provide reliable GCPs, and these have been used as GCPs in several studies [12,44].
However, low-income countries typically feature a sparse paved road network, and concrete roads are
regularly absent from the image scene. In our approach, tree crowns are characterized by a bell-shaped
intensity surface [45] and corrected for parallax. Their centroids are extracted as tie points, and the
strongest candidates are used as GCPs. For every study area, one image is declared as the master
image on the basis of the longest visible shadow of the trees, as calculated from the positions of the
sun and the satellite from the image metadata [46].

The level of georeferencing accuracy does not only associate with the image’s spatial resolution
but also with the intended application. Generally, however, a high accuracy is important in the analysis
of large data volumes because of easier integration with Geographical Information System applications
and post-processing [29]. In their algorithmic development of the automated extraction of GCPs from
the road network [12], the authors report a higher accuracy of coregistration of RapidEye images
in comparison to DG images. They attribute this to the improvements of their initial algorithm for
RapidEye, which extracts the road centerline from an image with a pixel resolution of one to three
pixels of the width of the road. As the spatial resolution increases, the number of pixels required to
cover the road width also increases, and, therefore, the centerline is no longer pronounced; instead
finer road features become discernible. This methodology suggests that GCPs derived from the road
network are dependent on the correspondence of the spatial resolution of the road width and the pixel
resolution. In our approach, however, the higher the spatial resolution, the higher the accuracy.

2.3.5. Cloud Masking

Clouds and haze are impediments when working with optical satellite data, especially in
cloud-prone areas such as the tropics (for instance, a quantitative analysis of cloud cover on Landsat
data over Brazilian Amazonia from 1984 to 1997 is given in [47]). In land cover applications, cloudy and
heavily hazy areas are normally excluded from further processing as they considerably contaminate
the spectral signature of areas of interest.

Traditionally, cloud masking makes use of a thermal band. However, VHSR sensors do not come
with such, and, when available in medium resolution it is of a coarser resolution than the other channels
(e.g., the spatial resolution of Landsat 7 ETM+ is 60 m while that of Landsat 8 TIRS is 100 m [48]). Some
alternatives proposed to address this limitation have been the use of Markov random fields [49], linear
spectral unmixing [50], pixel-based seed identification and object-based region growing [51], and a
multi-temporal approach at constant viewing angles [35]. Some cloud-specific masking algorithms are
the AFAR algorithm (ACOLITE/FMASK Aquatic Refined) developed by the Royal Belgian Institute of
Natural Sciences (RBINS) , the Automatic Cloud Cover Assessment modified (ACCAm) algorithm
(ACCA modified) by VITO, and Idepix developed by Brockmann Consult GmbH.

We tested several algorithms for cloud detection in the different landscape environments and
concluded that they largely depend on the radiometry of image and background (i.e., the land cover
radiance). It is therefore difficult to identify a single best method for automation without fine-tuning
that will provide a universally acceptable cloud mask for any arbitrary study area. None of the
discussed methods yielded accurate results in all cases. Our implementation assumes that pixels
corresponding to clouds have the highest reflectance in short wavelength bands within the scene; this
hypothesis is on par with other thresholding techniques for cloud masking. It is a universal approach
that is suitable for the purpose of study and the areas of interest as smallholder farming prevails in
relatively low latitudes; however, in cases of snowy, icy, or other high reflective areas in the landscape,
the cloudy pixels will not be the brightest pixels, which renders this technique unsuitable. Under
this assumption, the problem of detecting cloudy pixels is reduced to locating the brightest pixels of
a shortwave band and deriving the percentage of cloud cover within the scene. The threshold of the
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percentage of cloud pixels is set by the metadata of each image, which lists the percentage of pixels
corresponding to cloud for each delivery. In regard to the selection of the appropriate shortwave
band, a comparison between the blue and cyan channels for detecting the brightest pixel values led
to no substantial difference, and the blue channel was eventually chosen. The cloud mask, therefore,
contains the pixels with the highest reflectance value in the blue band determined by the histogram
and that fall within the percentage of cloud coverage reported in the metadata of the image delivery.

2.3.6. Tree Masking

At the spatial resolution at which we are investigating images, trees appear as individual objects
and can thus be identified and spatially isolated. This allows us to eliminate their spectral contribution
from that of the farm fields and to determine pure soil or crop spectra. The tree mask is taken from
the image coregistration step, as described in Section 2.3.4. We apply a lowered NDVI threshold to
eliminate false negatives. A tree mask based on the blobs detected is built on a master image and then
adapted for other images, using the image’s nadir angle to account for sensor-target geometry.

Our method provides a detailed tree crown in the case of DG data. However, for RapidEye data,
due to coarser resolution, the degree of tree crown detection is lower. This sets a case for using a single
high resolution image in the season combined with a time series of lower resolution images. Our
method works well for isolated tree crowns but not sufficiently well for tree rows or (small) forest
patches. This presented problems in the Bangladesh study area, where isolated trees are scarce and
trees commonly align the field edges.

3. Results and Discussion

Our workflow provides, in automatic fashion, radiometrically and atmospherically corrected,
stitched, orthorectified, and coregistered images with associated cloud and tree masks (Figure 4). This
is the beginning of further parallel processing routines that yield numerous qualitative and quantitative
results and offers use as value-added product in applications such as precision agriculture (e.g., [4]).
Here, we present three post-processing branches for utilizing the application-ready dataset of the basic
workflow. First, we describe an application of the image workflow that extracts spectral and textural
statistics from individual fields and aggregations of fields. The second application demonstrates the
information available from the workflow and data feeding a crop spectrotemporal library. Last, the
near-real time phenological development of a crop is presented through the use of a time-series.

Figure 4. Raw data (left) and a stitched, radiometrically, and atmospherically corrected, orthorectified,
co-registered, and tree/cloud masked image (right).
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3.1. Field and Crop Statistics

One important use of the image workflow is the extraction of spectral and textural statistics for
the characterization of crops and fields. This operation requires satellite images that are radiometrically
and atmospherically corrected and that are highly aligned over time and over the fields. Otherwise, the
extracted statistics from such small fields will be incoherent. For spectral statistics, we use multispectral
images, and, for textural statistics, we use panchromatic images.

To obtain pure results per field, a (negative) buffer of 2 m is applied to disregard potentially
fuzzy pixels at the field boundary; this eliminates vegetation along the edges of the field to a large
extent. Cloud and tree masks are applied at this stage. The first four statistical moments (i.e., pixel
count, mean, variance, and skewness) of the surface reflectance contained within the field polygon are
extracted, as well as the correlation and covariance matrices between the multispectral bands. Table 4
lists the spectral attributes extracted per field and per satellite image, and their values are delivered
as a single .csv file for each image. Concurrently, the mean values and standard deviations of nine
popular spectral vegetation indices are computed (NDVI, green NDVI, EVI, TCARI, NIR red, SARVI,
SAVI, MSAVI, WV2) (Table 5).

Table 4. Spectral statistical moments extracted from the images.

Statistical Moment Explanation

0 Number of pixels within the polygon
Number of pixels contributing to the statistics

0 (masked pixels excluded)

1 Mean

2 Variance

3 Skewness
mixed Band-to-band correlation (i,j)
mixed Band-to-band covariance (i,j)

Table 5. Empirical indices proposed frequently in remote sensing of agriculture.

Index Reference Formula
NDVI (Normalized Difference 152] Rnir—Rg
Vegetation Index) Ryir+RR
Green NDVI (Green Normalized
Difference ;/ec%etz):ltion Green [53] Ilg’,j fﬁ;ﬁ?
ndex
EVI (Enhanced Vegetation Index) [54] R f65 = 1§RN - RfSRf R
TCARI (Transformed Chlorophyll _ _ o RREDGE
Absorption Ratio Index) [55] 3 [(RREDGE Rr) = 02(Rrence — Rc) ( Rr )]
Simple ratio (NIR/RED) [56] L
. . (1+L)(Rnir—Rga)
SARVI.(Soﬂ and Atn}ospherlcally 157] “RuictRes L)
Resistant Vegetation Index) where Rrp = Rg — gamma(Rp — RR)
SAVI (Soil Adjusted Vegetation 58] (1+L)(Rnir—RR)
Index) (Rnir+RR+L)
MSAVI2 (Improved Soil Adjusted [59] 2Rl \/(ZRNm +1)°—8(Rnik—Rx)
Vegetation Index) 7
NDVI (Normalized Difference 152] Ryiro—Rg
Vegetation Index) based on NIR2 Ryira+Rr

Textural attributes are derived from the panchromatic images using the Gray-Level Co-Occurrence
Matrix (GLCM) [60], which is a statistical approach to texture characterization suitable for regions
with irregular shapes [61]. This applies well to smallholder fields. GLCM was calculated for four
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angles to cater for different directions along and perpendicular to the sowing rows. The following
thirteen texture descriptors are derived: angular second moment, contrast, correlation, variance, local
homogeneity, sum average, sum variance, sum entropy, entropy, difference variance, difference entropy,
information measures of correlation, and maximal correlation coefficient. All of these were determined
with 64 and 256 grey levels. The texture statistics are delivered in a separate .csv file for each image
and for both of the two grey level classes.

3.2. Crop Spectrotemporal Signature Library (CSSL)

The wealth of information derived from a large satellite image collection can be efficiently utilized
only if the data are stored in a platform with a clear and organized structure, where users can query
and access the data needed. This objective is served by the Crop Spectrotemporal Signature Library
(CSSL), which is a database containing the spectral and textural information described in the previous
section, accompanied by metadata and in-situ observations whenever available. In the framework
of the project, 4.5 TB of VHSR satellite data have been acquired and archived; while this is, by and
large, proprietary data, the information extracted out of it such as the field spectra is not. Hence the
CSSL is acting as an open-access information platform, where a user can query, explore, and acquire
a time-series of crop-specific VHSR spectra.

With the CSSL, we aim to realize a publicly available information resource that supports others in
image-based research on smallholder agriculture. Eventually, all data and all code around it will be
available to research teams with such stated interests, and our team will support its use and further
expansion. Our ambition is to make it a valuable public global good that serves to address, study, and
understand the intrinsic heterogeneity of smallholder farming.

3.3. Monitoring Crop Phenology

Another application is vegetation dynamics, which allows us to monitor the seasonal progression
of vegetation. Coarse resolution satellite images have been used extensively to study land surface
phenology at continental to global scales (e.g., [62]). However, smaller ecosystems are particularly
important as they are associated with their environment and hence can be more easily interpreted and
associated with the local ecosystem.

In Figures 5-8 we demonstrate the provision of rapid and precise (in terms of radiometry and
spatial distribution) information on land surface phenology for smallholder farm fields. More precisely,
Figure 5 shows the evolution of individual fields within the crop season as captured by DG satellites,
while Figure 6 presents the progression of vegetation indices for two fields in Mali and Nigeria for
the years 2014 and 2015, respectively. Figure 7 depicts a 3D spectro-temporal spectral signature
representation indicating the eight-band signatures for the acquisitions for two classes of interest,
before and after the sowing date for a single farm. Based on these field-specific metrics, regional
statistics can be derived. For instance, in Figure 8, we show the average and standard deviation
of NDVI from all available images processed from the workflow for all peanut fields in Sukumba,
Mali, for 2014 and for all maize fields in Kofa, Nigeria, for 2015. In this figure, users can observe the
phenology of a specific crop for a given area cumulatively and derive information on crop statistics for
a larger area instead of an individual farm. A total of 17 and 12 observations were collected for the
Mali and Nigeria fields, respectively. This indicates that, in spite of using all the available DG satellites,
the number of cloud-free images acquired from this constellation in the typical climatic conditions of
the tropical savanna is frequently constrained by cloud coverage. The results indicate a fair agreement
with the spectral evolution of the crop cycle and could possibly be improved further by a cross-sensor
calibration inclusion in the workflow, which is planned for the future. While the image footprints of
DG and RapidEye data are not large enough to cover a whole country, data from Sentinel-2 could
potentially be ingested in this workflow to address the need for countrywide information. However,
the limitations imposed by the coarser spatial resolution have to be examined and addressed; for
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instance; does the tree detection work at a ground sampling distance of 10 m, and can smallholder
farms be confidently quantified by a representation of a smaller number of pixels?

Figure 5. The temporal evolution of individual farms as depicted from true-colour composite VHSR
satellite data within the growing season in Sukumba, Mali.
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Figure 6. Temporal progression of vegetation indices (average (blue line) and standard deviation
(shaded)) for a single crop field based on all the VHSR satellite images (from WV-2, WV-3, QuickBird,
and GeoEye) for a whole year processed in the workflow. MSAVI for a cotton field in Sukumba, Mali
for the year 2014, with a red vertical line indicating the sowing date (left), and NDVI for a soybean
field in Kofa, Nigeria, for the year 2015 (right).
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Figure 7. Temporal evolution of the eight-band spectral signature of a single crop. The spectral
signatures for the acquisitions before and after sowing are depicted in different colors. The dotted
plane parallel to yz represents the concurrent ploughing and sowing date for this field (185 Julian day
of the year 2014).
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Figure 8. Temporal progression of NDVI (average (blue line) and standard deviation (shaded)) for all
the fields for a specific crop (cumulative statistics) based on all the VHSR satellite images processed in
the workflow. Statistics for all peanut fields in Sukumba, Mali, for the year 2014 (left) and for all maize
fields in Kofa, Nigeria, for the year 2015 (right).

3.4. Alternative Workflow Implementation through GNU Makefile

The original implementation of the STARS image workflow is a Linux shell script. At an early
stage in the design and realization of our workflow, we understood that our approach had to be
modular and that the resulting image products might come in versions with the need for reprocessing
when new routines became available or when ancillary input data were updated. As the computational
cost for complete reprocessing cycles is prohibitive, we needed an approach that would allow the
rerun of only the necessary processing steps. Specifically, we wanted to routinely allow the:

e addition of image sources to the collection and the automatic processing of only these by
the workflow,

¢ the replacement of a workflow step and have this lead to reprocessing of image half-products
leading to up-to-date end-products, and

e the parallelization of the execution of the workflow through intelligent rules.

We achieved the above using a GNU Makefile, which is a facility to define file-oriented
input/output processes and associated file dependencies through rule-based specifications [63].
Originally devised to help in software development projects, it serves well to define more general
computer processes like our image workflow. An example Make rule depicting the implementation of
a processing step is shown in Equations (1) to (3).

# Determine the files that will be atmospherically corrected. The output of the “find” call is placed
in the list.

atcor_list_src := $(shell find ~/stars/acquired/DG/ -name *.TIF' | sort) 1)

# Generate the corresponding full paths of the output files. Copy the 'atcor_list_src', but substitute
'acquired /DG’ by 'derived/1_atcor_6s'.

atcor_list_dst := $(join $(subst acquired /DG,derived/1_atcor_6s,$(abspath $(addsuffix

../ $(atcor_list_src))))),$(addprefix /,$(notdir $(atcor_list_src)))) @

# Atmospheric correction: add one Makefile rule per src/dst file pair. “make” will determine if
the 'dst' file needs to be (re-)created, and the recipe is a call to pythonWrV8.py

$(call addrule,$(atcor_list_src),$(atcor_list_dst),cd $(base)/atcor_6s/PythonWrapper &&
python $(base)/atcor_6s/PythonWrapper/pythonWrV8.py -band4n8alldir=$$(dir $$<) (©)]
—outputdir=$$(dir $$@))

Specific challenges had to be resolved for our implementation with Make. Image providers use
non-trivial and non-standardized filename conventions. Make was originally meant to operate in a flat
folder structure, with the file name prefix, stem, and extension as primary keys to the file’s semantics.
Source and target files can be referred to by a filename pattern, but this mechanism allows only one



Remote Sens. 2017, 9, 1048 17 of 20

wildcard. Tile stitching, as a many-to-one image process, is specifically cumbersome because many
tiles should produce a single image mosaic, but the individual tile filenames do not make explicit
the spatial relations between tiles that one needs to understand for stitching. In other words, Make
is not spatially aware. Our solution to these challenges is to devise the file dependency rules on the
fly: one Make statement constructs the actually required Make-rules, as opposed to a single rule with
wildcards. These rules are subsequently executed. We add spatial intelligence to this process by calling
R scripts, capable of reading and processing image metadata, directly from the image or by reading
the scene metadata from the CSSL database, which provides the needed file-dependency information
to the “Make” utility.

4. Conclusions

An automated satellite image processing workflow for smallholder agriculture based on free
software has been developed and is presented here. The key characteristics are the automated capability,
the delivery of near-real-time application-ready products, the free and open-source nature of the
algorithmic approach, and the development tailored to smallholder agriculture. This workflow can
be set up on a Linux machine and requires no cost for direct or indirect software licensing. The
individual steps have been presented, and the adjustments made to accommodate smallholder-specific
analysis have been discussed. It supports VHSR satellite images and is currently being tested to
see if it can accommodate the use of Sentinel-2 images. Calibrated data and efficient and timely
processing of the vault of satellite images that are gradually becoming available is important for
shifting from a data-centric to a product-centric solution based on remotely sensed images. This work
has demonstrated how an automated workflow, once set up, can deliver, in near-real-time, information
to end-users and decision makers, who need no remote sensing knowledge to apprehend the results.
However, despite the wealth of information produced, the value of the product can be appreciated
only if the information aids a decision resulting in higher profitability [4].

In order to adequately monitor the temporal evolution of smallholder farms with remote sensing,
a high spatial and temporal resolution dataset is needed. This requires new advancement in satellite
remote sensing; an attempt to integrate free data satisfying the requirements for smallholder agriculture
(e.g., Sentinel-2, Venps and SPOT-5) can enrich the available information vault. An investigation of the
usability of Unmanned Aerial Vehicles (UAV), a development signaling a new era in remote sensing
regarding spatial accuracy, temporal frequency, and radiometric quality, and similar automated
workflows encompassing virtual constellations could be a sound basis, not only for delivering
near-real-time information, but also for delivering results for further scientific analysis.

The Faculty of Geo-Information Science and Earth Observation (ITC) team aims to publish
the presented workflow as an open-source, global public good, together with its partner crop
spectro-temporal signature library (CSSL). We invite research and development teams with an interest
in the image-based monitoring of smallholder farming to collaborate with us and to make use of this
workflow for their work. Teams that have an interest in such collaboration should write to Rolf A. de
By at r.a.deby@utwente.nl.
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