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Abstract: Change detection (CD) for multitemporal hyperspectral images (HSI) can be approached
as classification consisting of two steps, change feature extraction and change identification. This
paper is focused on binary classification of the changed and the unchanged samples, which is the
essential case of change detection. Meanwhile, it is challenging to extract clean change features
from heavily corrupted spectral change vectors (SCV) of multitemporal HSI. The corruptions can be
characterized as gross sample-specific errors, i.e., outliers, and small entry-wise noise following
Gaussian distribution. To address the issue, this paper proposes a novel Spectrally-Spatially
(SS) Regularized Low-Rank and Sparse Decomposition (LRSD) model, denoted by LRSD_SS.
It decomposes the SCV into three components, a locally smoothed low-rank matrix for the clean
change features, a sparse matrix for the outliers and an error matrix for the small Gaussian noise. The
proposed method is effective in change feature extraction and robust to noise corruptions as it exploits
the underlying data structures of the SCV, especially local spectral-spatial smoothness. It is also
efficient since there is a closed-form solution for the feature component in the optimization problem
of LRSD_SS. The experimental results in the paper show that the proposed method outperforms
several classic methods which only deal with the spectral domain of image samples, as well as some
state-of-the-art methods which use both spectral and spatial information.

Keywords: change detection; classification; feature extraction; low-rank and sparse decomposition;
spectral-spatial regularization; outlier; robustness

1. Introduction

Detection of land changes in multitemporal remote sensing images is useful to various
areas, such as disaster monitoring, resource management and urban development [1–4]. Change
detection (CD) is mostly studied in two ways [5–15]. One is to design methods specifically for
CD, e.g., the well-established framework for automatic and unsupervised detection [5–7] using the
polar-coordinates of spectral change vectors (SCV) of multitemporal images. Another exemplary
method of this type proposes a novel concept, change endmember, for unsupervised identification
of hierarchical changes [8]. The other way is to adapt existing image pattern recognition techniques
to change detection. A typical method in this category relies on fusion and classification to increase
change detection accuracy [9]. A family of subspace-based CD (SCD) methods regards CD as target
detection [10]. When approached as a classification task, CD can be accomplished in two steps, change
feature extraction and change identification [9,11]. The first step is to obtain features of changes, usually
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from the SCV of multitemporal images. The second step is to identify changed samples by these
enhanced features, perhaps also specifying different kinds of changes, including the unchanged class,
i.e., background [16–19]. In this way, many conventional feature extraction (e.g., Principal Component
Analysis (PCA) [11,19]) and classification methods (e.g., K-Means clustering [5,20]) have been directly
applied to CD. Since this approach can be very inclusive and flexible, the classification framework is
adopted for CD in this paper.

Recently, multitemporal hyperspectral images (HSI) have begun to attract attentions by exhibiting
great potentials for CD [8,10,16,21,22]. Produced as the subtraction result of bitemporal HSI, the SCV
are basically a set of HSI, featuring in high spectral resolution. Thus, it is natural to detect changes by
making use of the rich spectral details of the SCV as did by most existing methods [8,10,22]. However,
these methods neglect spatial information, which is proven very useful in analysis of HSI [23–28].
Then, it is natural to expect that advanced spectral-spatial classification algorithms could have some
effects on the increase of change detection accuracy. Unfortunately, there are potential hazards in
directly applying these methods to HSI change detection, since they are not able to deal with the
problems that particularly exist in the SCV.

One of the most serious problems is that the SCV are usually corrupted. Apart from the actual
noise in HSI [29–35], there are many other causes for corruptions, such as misregistration, spectral
variability over the spatial domain and spectral deviation over the sampling time. Take misregistration
as an example [36–40]. There might be a great spectral dissimilarity between two misaligned pixels
of two different images, where it should not be if the images were properly registered. The spectral
difference could be treated as change feature by a pixel-based method, thus creating false alarms
and hurting detection accuracy. An adaptive SCD (ASCD) method [10] managed to deal with the
misregistrations but neglected corruptions of other sources. What is worse, the amount of corruptions
in one original set of temporal HSI is likely to be doubled in SCV, since the SCV is the difference
between the bitemporal HSI.

To solve the problem, this paper proposes a Spectrally-Spatially Regularized Low-Rank and Sparse
Decomposition (LRSD_SS) method for change feature extraction. It addresses the most essential case in
HSI change detection, which is binary classification of the changed and the unchanged samples [5–7,10].
The proposed model is built upon the reasonable assumption that the desired change features and the
unwanted corruptions are separable due to their intrinsically different data structures in SCV [41–48].
The motivation is analyzed in three aspects as follows.

First, being high-dimensional data, the SCV exhibit intrinsic low-rank features [41–48]. This
assumption is based on two facts: the number of endmembers (i.e., spectral signatures of substances)
in the temporal HSI is far less than the number of bands [49,50]; and the number of real changes is
far less than the number of bands [8,10]. Therefore, it is safe to infer that the features of real changes,
including the background, lie in some low-dimensional subspace. The background data are naturally
low-rank because the unchanged samples have approximately zero SCV.

Second, the corruptions of various sources in the SCV can be characterized as gross sample
specific noise or small entry-wise noise added to the clean low-rank data [42–44]. The former is known
as outliers, e.g., impulse noise and gross Gaussian noise. Since they only corrupt specific pixels, the
outliers exhibit sparsity in high-dimensional data such as SCV. The latter is regarded as thermal noise,
being widely spread in HSI while following the Gaussian distribution with a relatively low intensity,
compared to that of the outliers. The underlying structures of the high-dimensional noisy data, i.e.,
SCV in this case, can be exploited by the well-established LRSD model [43] to simultaneously separate
the low-rank features, the sparse outliers and the small Gaussian noise. LRSD is much more robust than
its original model, PCA, as the former considers the outliers [42–44]. Given the two assumptions above,
LRSD is chosen as the basic model for designing the proposed change feature extraction method.

Third, samples of real changes in the SCV exhibit local smoothness, as ground objects within
a small spatial region are likely to belong to the same class and share similar spectral signatures.
Meanwhile, noise is very unlikely to be locally smooth due to its sparsity or spatial randomness. The
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spectral-spatial information can be crucial in differentiation of low-rank change features from low-rank
noise, e.g., dead lines that are simultaneously low-rank and sparse [44,45]. Therefore, the novel
SS regularization is designed. It characterizes the local patterns by averaging pixel-wise similarity
measurements within each square neighborhood centered at one sample of SCV. In this way, the
proposed method, LRSD_SS, maintains the change features by enhancing the local spectral-spatial
smoothness in the low-rank data and further suppressing the noise that could not be completely
contained or removed in the noise components yielded by the original LRSD.

Apart from effectiveness, efficiency is also considered by the proposed method in the following
aspects. Firstly, the SS regularization is designed to process all the spectral bands of the SCV
simultaneously, which is less time-consuming than processing each band image separately, as done by
a recently published total-variation (TV) [51,52] regularized low-rank model [44] denoted by LRSD_TV
in this paper. Secondly, the SS regularization is formulated based on the Frobenius norm, which results
in a closed-form solution for the feature data when LRSD_SS is solved using the Augmented Lagrange
Multiplier (ALM) [44,53].

After the low-rank change features are extracted, they are fed to some classifier to be identified.
As the temporal changes are mostly unpredictable, prior knowledge is usually scarce and unsupervised
classification is adopted [54,55]. In fact, many unsupervised classifiers can be used, as long as they
are able to perform binary classification. This paper chooses the classic K-Means [20] since it is quite
efficient while being plain enough to fully expose the effects of the previous change feature extraction
methods on detection accuracy. Our experiments show that LRSD_SS has outperformed several classic
algorithms (e.g., Spectral Angle Mapping (SAM) [10], PCA [11], and LRSD [43]), which only consider
spectral information, as well as some of the state-of-the-art ones, which consider both spectral and
spatial information (e.g., ASCD [10] and LRSD_TV [44]).

The main contributions of this paper are summarized as follows:

1. It deals with a critical but not well solved problem with CD in HSI, which is to recover
clean change data from noisy SCV of bitemporal HSI. Moreover, it addresses the issue from
a relatively new angle for CD, which is to extract change features by exploiting inherent data
structures exhibited in the SCV. To do so, this paper proposes a novel method, LRSD_SS, based
on LRSD. Although the original LRSD has been applied in some areas of non-temporal HSI
processing [38,49], it has not been used in temporal HSI change detection, to the best of our
knowledge. This paper tries to fill the void by construction of LRSD_SS and demonstration of its
capacity in solving the aforementioned problem of CD in multitemporal HSI.

2. For better characterization of the underlying data structures, this paper designs a novel SS
regularization superimposed on LRSD. The regularization enhances the local spectral-spatial
smoothness, which normally exhibits in real change data, but is seldom observed from noise.
Thus, the proposed LRSD_SS can further suppress the noise, especially those being as low-rank as
the change features, which, however, has not been considered by the original LRSD. Experimental
results show that LRSD_SS is robust to noise of various forms and intensities while being able to
extract change features and increase change detection accuracy.

3. This paper offers an implementation-friendly method for change detection in temporal HSI. The
SS regularization processes all the bands of the SCV simultaneously and yields a closed form
solution for the smoothed low-rank data matrix, thus ensuring efficiency.

The rest of the paper is organized as follows. Section 2 provides background knowledge on
low-rank decomposition. Section 3 presents the proposed method, LRSD_SS, in full details. Section 4
analyzes experimental results. Finally, Section 5 concludes the paper.
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2. Background Knowledge

2.1. The LRSD Model

LRSD [43] is sometimes referred to as Low-Rank Matrix Recovery (LRMR) [42]. The model is
derived from robust PCA (RPCA), which originates from PCA [19,41–47]. It is designed to separate
both gross sample-specific outliers and small entry-wise Gaussian noise from clean low-rank data,
thus being more robust than PCA in low-rank approximation and denoising [19,42,43,47]. Suppose
Y ∈ RM×B (B ≤ M) is an observed high-dimensional matrix corrupted by noise, where M and B are
the number of samples and the dimension of each sample, respectively. The LRSD model of Y is
formulated as

Y = L + S + N (1)

where L ∈ RM×B is the low-rank data, S ∈ RM×B holds the outliers which exhibit sparsity, and
N ∈ RM×B represents the small entry-wise noise which are i.i.d. Gaussian.

In the case of change detection, Y is SCV of bitemporal HSI T1, T2 ∈ RM×B while M and B are
the number of pixels and the number of bands, respectively. L maintains the change features. The
reasons for choosing LRSD instead of other low-rank decomposition models for change detection are
manifold. First, LRSD accurately models the intrinsic data structures of the SCV. Second, LRSD deals
with both small noise and gross outliers, which widely exist in the SCV. Plus, it can be solved efficiently
by bilateral random projections (BRP) [43,45,56,57].

2.2. Optimization for LRSD

The basic optimization problem [19,42–47] of the LRSD model is described as follows

minL,S rank(L) + λ||S||0 s.t. Y = L + S + N, (2)

where λ is a constant for the trade-off between rank(L) and ||S||0. Equation (2) can be rewritten as

minL,S ||Y− L− S||2F s.t. rank(L) ≤ r, card(S) ≤ k, (3)

where r and k stand for the upper bound of the rank of L and the cardinality of S, respectively [37].
Their values are set a priori.

Since Equation (2) is highly nonconvex with no efficient solution, a tractable optimization problem
is obtained by relaxing Equation (2), i.e., replacing the rank(•) and the `0-norm in Function (2) with
`∗-norm (nuclear norm) and `1-norm, respectively [43,58,59],

minL,S ||L||∗ + λ||S||1 s.t. ||Y− L− S||2F ≤ ε, (4)

where ε is a constant related to the standard deviation of the random noise N.

2.3. Spatial Regularization

Let ||•||Spa be an arbitrary spatial regularization. By the maximum a posteriori (MAP) estimation
theory [35,44], ||•||Spa can be superimposed on Equation (4), resulting in a spatially regularized
optimization function as follows

minL,S ||L||∗ + λ||S||1 + τ||X||Spa s.t. ||Y− L− S||2F ≤ ε, L = X, (5)

where X ∈ RM×B is a set of spatially smoothed low-rank data and τ is a constant for trade-off and X is
introduced to solve L conveniently by iterations.
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3. Methodology

When approached as a classification problem, change detection can be accomplished in two steps:
change feature extraction and identification. This paper addresses the most essential case: obtaining
the change features from bitemporal HSI and clustering them into two classes, the changed and the
unchanged. The framework for change detection in HSI is illustrated by Figure 1. In this paper,
a spectrally-spatially regularized LRSD model, LRSD_SS, is proposed for change feature extraction,
which is explicitly explained in the next subsection.Remote Sens. 2017, 9, 1044  5 of 21 
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Figure 1. A framework for change detection in HSI, where T1 ∈ RM×B and T2 ∈ RM×B are bitemporal
hyperspectral images acquired at time 1 and time 2, respectively; Y ∈ RM×B is SCV of T1 and T2; and
A ∈ RM×1 is amplitude vector of change features.

3.1. The Proposed Model: LRSD_SS

The main idea of the proposed method, LRSD_SS, is to extract change features by exploiting
intrinsic data structures in SCV of bitemporal HSI. The features of real changes and background
are assumed to be lying in a low-dimensional subspace, thus being low-rank, compared to the
original high-dimensional SCV. Meanwhile, image corruptions in SCV may lead to false changes
and must be removed from the low-rank change features of interest. They can be characterized as
gross sample-specific corruptions, i.e., outliers, or small entry-wise noise added to the clean, low-rank
data. The former exhibits sparsity while the latter behaves as thermal noise and follows Gaussian
distribution. Therefore, we use the LRSD model in Equation (1), which is able to simultaneously
extract low-rank features (L) and remove sparse outliers (S) and Gaussian noise (N).

However, the spectral data structures of the change features and those of the corruptions may
not always be totally different. Some noise can be simultaneously low-rank and sparse, for instance,
dead lines located at the same row or column in all the band images. In that case, conventional LRSD
algorithms may fail to recover the clean data [44,45]. Since the spectral information alone is not enough
for clean data recovery, spatial information is engaged. It is assumed that the real change features
exhibit local spectral-spatial smoothness while the noise does not. This data structure can help in
eliminating the aforementioned noise. We design a spectral-spatial (SS) regularization for LRSD to
exploit the local patterns and enhance the change features, thus proposing the LRSD_SS model. The SS
regularization is defined as follows,

||X||SS =
I

∑
i=1

J

∑
j=1

W2−1

∑
w=1

ωw
ij ||xij − xw

ij ||
2
F
=

I

∑
i=1

J

∑
j=1

W2−1

∑
w=1

ωw
ij dw

ij , (6)

where dw
ij = ||xij − xw

ij ||
2
F
, i.e., the squared Euclidean distance between pixel xij and pixel xw

ij
(i = 1, 2, · · · I, j = 1, 2, · · · J). xij is located at the ith row and the jth column of the feature data
ΘX ∈ RI×J×B, whereas Θ is an operator that reshapes a I J × 1 vector into a I × J matrix. xw

ij is a
sample within the W ×W neighborhood centered at xij while xw

ij 6= xij. Let W be an odd number
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and (in, jn) be the spatial location of xw
ij in ΘX, whereas in ∈ {1, 2, · · · , I}, jn ∈ {1, 2, · · · , J} and

(in, jn) 6= (i, j). Hence,

w =

{
(jn − j)W + in − i +

(
W2 + 1

)
/2, if (jn < j)||(jn = j & in < i)

(jn − j)W + in − i +
(
W2 − 1

)
/2, otherwise

∈
{

1, 2, · · · , W2 − 1
}

. (7)

For fixed i, j and w, ωw
ij is a constant weighing the dissimilarity dw

ij between xw
ij and xij, which

can be adjusted a priori so as to avoid over-smoothness. Figure 2 illustrates the generation of the
neighborhood and the weights for computation of Equation (6) when W = 3. As shown in the figure,
xij can be denoted by x0

ij and no weight is needed for d0
ij as d0

ij = ||xij − x0
ij||

2

F
= 0.

With the proposed SS regularization in (6) being substituted for ||•||Spa in Equation (5), the
optimization problem of LRSD_SS is obtained as follows,

minL,S ||L||∗ + λ||S||1 + τ||X||SS
s.t. ||Y− L− S||2F ≤ ε, L = X

(8)

Since ||•||SS is particularly designed based on the Frobenius norm, the smoothed images X in
Equation (8) can be solved in a closed form within the ALM framework, as explained in the next
subsection. It will be demonstrated in Section 4 that with the help of ||•||SS, the proposed LRSD_SS
can improve change detection results.
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Figure 2. An illustration of the proposed Spectral-Spatial (SS) regularization, with: (a) W × W
neighborhood centered by pixel xij (x0

ij); and (b) weights superimposed on dw
ij , whereas

i = 1, 2, · · · , I, j = 1, 2, · · · , J, w = 0, 1, · · · , W2 − 1 and W = 3.

3.2. Optimization for LRSD_SS

The optimization problem formulated by Equation (8) is solved by the ALM method in this paper.
ALM is adopted mainly because of its excellent convergence property and simple implementation [53],
which are not typical with other methods used for solving low-rank decomposition models, such
as the Alternating Direction Method of Multipliers (ADMM) [60,61]. To be specific, the inexact
ALM algorithm is implemented since the validity and optimality of the algorithm is theoretically
guaranteed [53]. It has also been proved practical as He et al. [44] successfully solved their
TV-regularized low-rank decomposition model for HSI denoising by the algorithm. Within the
ALM framework, Equation (8) can be rewritten as follows,

min l(L, S, X, Λ1, Λ2) = arg min
L, S, X, Λ1, Λ2

||L||∗ + λ||S||1 + τ||X||SS

+〈Λ1, Y− L− S〉+ 〈Λ2, X− L〉
+ µ

2

(
||Y− L− S||2F + ||X− L||2F

) , (9)

where Λ1 and Λ2 are Lagrange multipliers. µ is a penalty parameter.
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Since there are more than one unknown variables in (8), they are solved alternatively and
iteratively by optimizing Equation (8) over one variable while fixing the others. Let t be the iteration
counter. Derived from Equation (8), the optimization function to update L is as follows [44],

L(t+1) = arg min
L

||L||∗ +
〈

Λ
(t)
1 , Y− L− S(t)

〉
+
〈

Λ
(t)
2 , X(t) − L

〉
+ µ

2

(
||Y− L− S(t)||2F + ||X(t) − L||2F

)
. (10)

In this paper, Bilateral Random Projections (BRP) is adopted to estimate L, which has been
fully developed and successfully applied in an algorithm named Go Decomposition (GoDec)
algorithm to solve the LRSD model [42–44,56,57]. Let H = 1

2

(
Y + X(t) − S(t) + 1

µ

(
Λ

(t)
1 + Λ

(t)
2

))
and H̃ =

(
HHT)qH. As suggested by the power scheme [43], BRP is applied to H̃ instead of H, since

the singular values of H̃ decay faster than those of H. The BRP results of H̃ are Z1 and Z2, where
Z1 = H̃A1 and Z2 = H̃TA2. A1 ∈ RB×r and A2 ∈ RM×r are two random matrices, and r is the upper
bound of the rank of L. Given that, L(t+1) in Equation (10) is estimated as follows [43],

L(t+1) = Q1

[
R1

(
AT

2 Z1

)−1
RT

2

] 1
2q+1

QT
2 , (11)

where Q1 ∈ RM×M and R1 ∈ RM×r are the QR decomposition matrices of Z1 while Q2 ∈ RB×B and
R2 ∈ RB×r are the QR decomposition matrices of Z2. Conventionally, L in Equation (10) is solved by
Singular Value Decomposition (SVD) [43,44,62]. The BRP technique used here is basically an efficient
approximation algorithm for SVD. For solving the same L ∈ RM×B, SVD requires min

(
M2B, MB2)

flops while BRP requires r2(M + 3B + 4r) + (4q + 4)MBr [43]. When r << B << M, BRP is more
time-saving than SVD. Moreover, the relative error of the BRP approximation can be very close to that
of SVD if q is sufficiently large, say, q ≥ 3 [57]. To be noted, r and q are set a priori.

Derived from Equation (8), X is updated as follows,

X(t+1) = arg min
X

J(X) = arg min
X

1
2
||X−Q||22 +

τ

µ
||X||SS, (12)

where Q = L(t+1) − Λ(t)
2 /µ. Let Q = [q1, q2, · · · , qm, · · · , qM]T , Q̃m = [q̃m

w ]
W2

w=1 =[
x1

m, x2
m, · · · , xW2−1

m , qm

]
, v = {ω̃w}W2

w=1 =
[
τω1/µ, τω2/µ, · · · , τωW2−1/µ, 1/2

]T and

X = [x1, x2, · · · , xm, · · · , xM]T , whereas xw
m is a sample within the neighborhood of xm defined in

Equation (6) and m = (j− 1)× I + i. Thus,

J(X) = 1
2 ||X−Q||22 + τ

µ

I
∑

i=1

J
∑

j=1

W2−1
∑

w=1
ωw||xij − xw

ij ||
2
F

=
M
∑

m=1

1
2 (xm − qm)

T(xm − qm) +
M
∑

m=1

W2−1
∑

w=1

τ
µ ωw(xm − xw

m)
T(xm − xw

m)

=
M
∑

m=1

W2

∑
w=1

ω̃w(xm − q̃m
w)

T(xm − q̃m
w)

. (13)

Let ∂J(X)
∂X = 0, then

x(t+1)
m =

Q̃m(t)v
vT1

, m = 1, 2, · · · , M, (14)

where Q̃m(t) =
[
x1(t)

m , x2(t)
m , · · · , xW2−1(t)

m , qm

]
and 1 ∈ RW2×1 is a vector with all the elements equal

to 1. It should be noted that X(t+1) is solved by Equation (14) in a closed form. The computation
complexity of updating X(t+1) is about O

(
BMW2).
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According to Equation (8), the optimization function of S is written as follows,

S(t+1) = arg min
S

λ||S||1 +
µ

2
||S−

(
Y− L(t+1) +

Λ(t)
1
µ

)
||22. (15)

Given the soft-thresholding (shrinkage) technique [44,63],

S(t+1) = < λ
µ

(
Y− L(t+1) +

Λ(t)
1
µ

)
, (16)

where the shrinkage operator is defined as <∆(x) =


x− ∆, if x > ∆
x + ∆, if x < −∆
0, otherwise

, for x ∈ R and ∆ > 0.

After L(t+1) and S(t+1) are obtained, the Gaussian noise N(t+1) in Equation (1) is updated by

N(t+1) = Y− L(t+1) − S(t+1), (17)

The procedures of LRSD_SS are summarized in Algorithm 1, whereas L or X is the output
change feature matrix. The technique of updating the parameter µ in every iteration can reinforce the
convergence of the ALM-based algorithms [44,53]. Apart from the iteration number t, two types of
estimation errors are used as stopping criteria for LRSD_SS, which are defined as follows,

Error1 =
||Y− L(t+1) − S(t+1)||F

||Y||F
, (18)

Error2 = ||L(t+1) − X(t+1)||∞. (19)

The upper bounds of Error1 and Error2 are ε1 and ε2, respectively, whereas ε1 > 0 and ε2 > 0.

Algorithm 1: LRSD_SS

Input: Y, r, q, τ, µ0, µmax, ρ, λ, ε1, ε2, tmax

Output: L (X), S and N

Initialization: L(0) = Y, X(0) = S(0) = N(0) = Λ(0)
1 = Λ(0)

2 = 0, µ = µ0 and t = 0;
Do

Update L(t+1) by (11), X(t+1) by (14), and S(t+1) by (16).
Update N(t+1) by (17), Error1 by (18), and Error2 by (19).

Let Λ(t+1)
1 = Λ(t)

1 + µN(t+1) and Λ(t+1)
1 = Λ(t)

2 + µ
(

X(t+1) − L(t+1)
)

.

Set µ ← min(ρµ, µmax) and t← t + 1 .
while Error1 > ε1, Error2 > ε2 and t ≤ tmax.

3.3. Implementation

As shown in Figure 1, the proposed LRSD_SS is used as a change feature extraction method for the
first step of CD. Let Y be the SCV of bitemporal HSI, T1 ∈ RM×B and T2 ∈ RM×B, where Y = T1 − T2,
M is the number of pixels and B is the number of bands. This type of SCV is widely used [5–7]. Y is
input to LRSD_SS in Algorithm 1, which separates the locally smoothed low-rank data (L), outliers
(S) and small entry-wise Gaussian noise (N). The proposed method is expected to enhance the real
change features by maintaining L, while suppressing the unwanted false changes by removing S and
N. Therefore, LRSD_SS makes it easier to determine whether a sample is changed or unchanged in the
next step.

The binary classification task is completed by K-Means [5,20]. Let A ∈ RM×1 hold the amplitude
of each sample in L, whereas A(m) = ||L(m, :)||F and m = 1, 2, · · · , M. A, instead of L, is fed to the
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classifier, because the spectral amplitude alone is sufficient for the binary classification required by
CD [5–7]. As an efficient unsupervised method, K-Means is chosen for change identification since the
temporal changes can be quite unexpected and prior knowledge is usually scarce [54,55]. The main
procedures of LRSD_SS + K-Means for CD can be found in Figure 1.

4. Results

4.1. Datasets

4.1.1. Simulated Bitemporal Hyperspectral Data

Ten sets of simulated bitemporal HSI are used for performance evaluation of the proposed
LRSD_SS. Each dataset is created from the same non-temporal HSI of 610 × 340 pixels, captured
over the University of Pavia, Italy in 2001 by the ROSIS instrument (http://www.ehu.es/ccwintco/
uploads/e/ee/PaviaU.mat). After removing the bands seriously affected by noise or water absorption,
103 spectral channels are left. Thus, I = 610, J = 340, M = I × J = 207, 400 and B = 103. The
Pavia dataset makes the CD task very challenging as it covers several (at least nine) different kinds of
ground objects and exhibits spectral variability. The simulation of T1 and T2 is carried out in two steps:
clean bitemporal HSI (T10, T20 ∈ RM×B) simulation and corruption simulation [42,44], as explained in
the following.

The first step is illustrated in Figure 3. First, three identical copies of the original Pavia HSI are
created, denoted as T10, Ttemp and T20. Then, three parts of Ttemp are selected as “source” areas and
five parts of T20 are selected as “target” areas. The pixels in one “target” area are replaced with those
in one “source” area, as indicated by the arrows in Figure 3. If the sizes of two areas are not the same,
the pixels in the “source” are randomly replicated or removed to fill in the “target” area exactly right.
Thereby, T20 is synthesized with five kinds of temporal changes with respect to T10. It is made sure that
most changed samples in SCV of T10 and T20 have far-above-zero spectral amplitudes, so that they are
distinguishable from the unchanged ones. The SCV is denoted by Y0 and computed as Y0 = T10 −T20,
which is used as clean data for reference in some of our experiments. The false color composition of
T10 and T20 are presented in Figure 4a,b, respectively. The ground truth map indicating the changed
areas and the unchanged background is given by Figure 4c.
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In the second step, artificial noise is superimposed on T10 and T20 to simulate corruptions of
various causes, as explained in Section 1. There are mainly two kinds of noise generated: small
entry-wise Gaussian noise and gross sample-specific errors (outliers). Three types of outliers are
simulated: Gaussian noise with high intensity, impulse noise and dead lines. By different combination
of the artificial noise, ten types of corrupted bitemporal HSI, T1 and T2, are created. All the simulated
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datasets are normalized. Each type of the artificial noise and the bitemporal HSI are described in
details as follows.Remote Sens. 2017, 9, 1044  10 of 21 
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Figure 4. Simulated data, including false color composition by bands 10, 20 and 40 of: (a) T10; (b) T20;
and (c) ground truth map with changed areas in white and unchanged areas (background) in black;
false color composition by bands 10, 20 and 40 of a pair of: (d) T1; and (e) T2 of Data 10; and amplitude
image (a) of SCV of a set of bitemporal HSI of: (f) Data 1; (g) Data 2; (h) Data 3; (i) Data 4; (j) Data 5;
(k) Data 6; (l) Data 7; (m) Data 8; (n) Data 9; and (o) Data 10.

1. Noise:

• Noise 1: random Gaussian noise with a low intensity (σ2
L), superimposed on all the bands of

all the pixels;
• Noise 2: random Gaussian noise with a high intensity (σ2

H = 0.5), superimposed on
20 randomly selected bands of some randomly selected pixels, which occupy η% of all
the pixels;

• Noise 3: impulse noise with an intensity of the unitary distribution, superimposed on
20 randomly selected bands of some randomly selected pixels, which occupy 0.5% of all the
pixels; and
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• Noise 4: four dead lines with zero intensity, two of them superimposed on 20 randomly
selected bands of all the pixels in two randomly selected rows and the other two
superimposed on 20 randomly selected bands of all the pixels in two randomly
selected columns.

2. Bitemporal HSI:

• Data 1: Noise 1 (σ2
L = 0.001) + Noise 2 (η = 5) for both T1 and T2;

• Data 2: Noise 1 (σ2
L = 0.005) + Noise 2 (η = 5) for both T1 and T2;

• Data 3: Noise 1 (σ2
L = 0.010) + Noise 2 (η = 5) for both T1 and T2;

• Data 4: Noise 1 (σ2
L = 0.050) + Noise 2 (η = 5) for both T1 and T2;

• Data 5: Noise 1 (σ2
L = 0.010) + Noise 3 for both T1 and T2;

• Data 6: Noise 1 (σ2
L = 0.010) + Noise 4 for both T1 and T2;

• Data 7: Noise 1 (σ2
L = 0.010) + Noise 2 (η = 0.25) + Noise 3 for both T1 and T2;

• Data 8: Noise 1 (σ2
L = 0.010) + Noise 2 (η = 0.25) + Noise 4 for both T1 and T2;

• Data 9: Noise 1 (σ2
L = 0.010) + Noise 3 + Noise 4 for both T1 and T2; and

• Data 10: Noise 1 (σ2
L = 0.010) + Noise 2 (η = 0.25) + Noise 3 + Noise 4 for both T1 and T2.

It should be noted that Noise 1 simulates small entry-wise Gaussian noise, while Noises 2–4 are
used as outliers. Since all the noise are randomized, there are 10 different pairs of T1 and T2 generated
for each data type. Every change detection result presented in this paper is the average outcome of
10 independent runs of a change detection method, whereas each run involves one pair of T1 and T2 of
a data type. A pair of T1 and T2 of Data 10 are illustrated by Figure 4d,e. An example of the amplitude
image A of the SCV (Y = T1 − T2) of each simulated data type is also presented in Figure 4f–o.

4.1.2. Real-World Dataset

Aside from the simulated data, one set of real-world bitemporal HSI is used for testing the
proposed method. The dataset is acquired by Hyperion, consisting of two sets of images of Yancheng,
Jiangsu province, China, each with 450 × 140 samples and 155 bands [10]. The bitemporal HSI are
illustrated by Figure 5a,b. The ground truth map is shown in Figure 5c.
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4.2. Setup

The proposed LRSD_SS described in Algorithm 1 is compared with two conventional method,
SAM [10] and PCA [11], one classic low-rank decomposition method, LRSD [43], one state-of-the-art
method based on subspace projection, ASCD [10], and one state-of-the-art method based on low-rank
decomposition, LRSD_TV [44]. ASCD is an upgraded version of SAM as the former considers local
spatial information but the latter does not. These methods exploit the projection distance between T1

and T2. The LRSD-based methods use Y as SCV. The TV regularization in LRSD_TV is solved by the
toolbox provided by its original publisher (http://iew3.technion.ac.il/~becka/papers/tv_fista.zip),
which was successfully adopted by reference [44] for HSI denoising. For fairness, all the LRSD-based
methods engage BRP to estimate L. The original LRSD is realized by the GoDec algorithm [43].

For each type of the simulated data, as there are five kinds of changes and one kind of unchanged
background, the upper bound of rank r is fixed at 6 for LRSD_SS, LRSD_TV, LRSD and PCA. For
the real-world data, as there are approximately six kinds of changes (including the background),
r is also is fixed at 6. The parameter µ0 of LRSD_SS is adjusted within (0.4, 1) and tailored to
each type of the bitemporal HSI. Other parameters of LRSD_SS are fixed for all the datasets as
follows, τ = 0.01, q = 3, µmax = 106, ρ = 1.05, λ = 1/

√
M, ε1 = ε2 = 10−6 and tmax = 30. The

weights ωw (w = 1, 2, · · · , W2 − 1) defined in Equation (6) for the SS regularization are set by
ω1 = ω3 = ω6 = ω8 = 1 and ω2 = ω4 = ω5 = ω7 = 2, whereas the neighborhood size W is 3. The
major parameters required by LRSD_TV, LRSD or PCA are delicately tailored to each type of data.

All the feature extraction methods are followed by K-Means (MATLAB 2013b toolbox) [20] to
distinguish the changed samples from the unchanged in an unsupervised fashion. The parameters
of K-Means are default. As to provide baseline results, A of Y is directly fed to K-Means. Since
HSI change detection is regarded as classification, the final results are evaluated by overall accuracy
(OA), average accuracy (AA) and Kappa coefficient (κ), which are standard criteria for classification
evaluation. All the algorithms are implemented in MATLAB R2013b running on a workstation with an
Intel(R) Xeon(R) CPU X5667 @ 3.00 GHz (dual core) and 48.0 GB of RAM.

4.3. Evaluation of LRSD_SS

4.3.1. Efficacy

Table 1 shows the change detection results of each feature extraction method for each simulated
data type, whereas K-Means is adopted for binary classification. It can be seen that the proposed
LRSD_SS outperforms all the other methods for all the datasets. Figure 6a–h gives an exemplary result
of each method for Data 3, while Figure 7a–h does for Data 10. These figures show that LRSD_SS can
produce a nice and smooth label map, with most errors removed and spatial structures maintained
while outliers and small Gaussian noise are present. In addition, it can be inferred that the proposed
method is robust to corruptions.

The effectiveness of LRSD_SS is also validated by the real-world dataset, however, this time,
LRSD_SS only slightly outperforms the others, as shown in Table 2. Since the dataset contains large
areas of nice and clean background, it is not challenging enough for most existing change detection
methods. In the future, we shall find some more complex HSI to test our method.

Compared to the methods based on low-rank approximation in Table 1, SAM and ASCD lack
robustness to noise. It can be easily seen in Figure 7 that SAM/ASCD fails to detect the changes,
whereas the bitemporal HSI are heavily corrupted by all types of the simulated noise. These
projection-distance methods directly use the spectral distance between a target sample in T1 and
a “background subspace” spanned by samples in T2, as the change feature. The measurement is not
very robust to noise, even though local spatial information is considered by ASCD.

http://iew3.technion.ac.il/~becka/papers/tv_fista.zip
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Table 1. Evaluation of change detection results for each type of the simulated bitemporal HSI.

Methods Criteria Data
1

Data
2

Data
3

Data
4

Data
5

Data
6

Data
7

Data
8

Data
9

Data
10

Original
SCV +

K-Means

OA (%) 86.76 86.22 85.80 63.53 87.54 92.16 90.24 91.86 90.34 90.35
AA (%) 75.44 72.11 69.72 61.65 53.17 70.06 64.60 70.29 64.20 65.29

κ 0.46 0.42 0.38 0.13 0.10 0.53 0.40 0.53 0.40 0.42

SAM +
K-Means

OA (%) 81.36 76.01 67.19 44.90 68.84 68.21 68.94 68.15 68.51 68.63
AA (%) 63.86 59.64 55.46 48.20 55.27 55.27 55.36 55.40 55.55 55.40

κ 0.25 0.15 0.07 −0.01 0.07 0.07 0.07 0.07 0.07 0.07

ASCD +
K-Means

OA (%) 83.97 79.56 69.56 42.93 69.70 68.95 69.69 69.00 69.53 69.58
AA (%) 60.53 57.56 53.28 44.02 52.93 52.60 52.86 52.64 53.03 53.00

κ 0.23 0.14 0.05 −0.05 0.04 0.04 0.04 0.04 0.04 0.04

PCA +
K-Means

OA (%) 90.88 90.90 90.69 89.37 93.81 94.75 93.87 94.82 93.81 93.93
AA (%) 85.95 83.73 82.22 78.37 77.61 81.75 78.32 81.99 78.69 78.65

κ 0.64 0.62 0.61 0.55 0.67 0.73 0.67 0.73 0.68 0.68

LRSD +
K-Means

OA (%) 91.11 91.17 91.20 89.87 93.81 94.89 93.89 94.97 93.81 93.94
AA (%) 85.87 83.71 82.13 78.42 77.59 81.48 78.13 81.57 78.18 78.26

κ 0.64 0.63 0.62 0.56 0.67 0.73 0.67 0.74 0.67 0.68

LRSD_TV
+

K-Means

OA (%) 96.74 94.09 96.04 94.51 96.78 94.42 94.97 94.93 95.57 94.89
AA (%) 88.41 80.68 87.43 80.79 89.10 81.25 83.06 82.85 84.74 82.77

κ 0.84 0.70 0.81 0.72 0.84 0.72 0.75 0.74 0.78 0.74

LRSD_SS
+

K-Means

OA (%) 97.28 97.12 97.08 96.78 97.01 97.15 97.01 97.14 97.02 97.03
AA (%) 90.42 90.32 90.12 89.92 90.83 90.06 90.87 90.14 90.74 90.71

κ 0.87 0.86 0.86 0.85 0.86 0.86 0.86 0.86 0.86 0.86

1 
 

  
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

 
Figure 6. Label maps, including: (a) ground truth map; and change detection results yielded by:
(b) K-Means (OA = 84.93%); (c) SAM + K-Means (OA = 67.20%); (d) ASCD + K-Means (OA = 69.61%);
(e) PCA + K-Means (OA = 90.65%); (f) LRSD + K-Means (OA = 91.23%); (g) LRSD_TV + K-Means
(OA = 94.07%); and (h) LRSD_SS + K-Means (OA = 97.10%), tested on one randomly selected set of
bitemporal HSI of Data 3. The changed are labeled by “1” and colored in white, while the unchanged
are labeled by “0” and colored in black. OA is short for overall accuracy.
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To further evaluate the performances of change feature extraction, 4 columns of samples in L  
produced by LRSD_SS, LRSD_TV and LRSD tested on Data 10 are analyzed. The samples at these 
columns of Y  are corrupted by all types of the simulated noise. As presented in Figure 8a–h, these 
samples in L  yielded by LRSD_SS are the most similar to those at the same columns in the clean 
data 0Y , in terms of spectral signature or spectral amplitude. It indicates that LRSD_SS is better than 
the other LRSD-based methods in recovering clean data and suppressing noise. The box plots in 
Figure 9a,b illustrate that LRSD_SS makes the centers of the change and the non-change clusters the 
farthest apart than the other LRSD-based methods. The non-change cluster becomes nicely compact 
after LRSD_SS. Therefore, it will be easy to classify the changed samples and the unchanged ones 
based on the change features produced by LRSD_SS. 

As can be inferred, the proposed method is effective in removal of the unwanted corruptions 
and extraction of the desired low-rank and locally smooth features, especially the clean background. 
In the binary classification, the changed areas are naturally detected as long as the background is 
identified. Thus, LRSD_SS can be well applied in HSI change detection. 

Figure 7. Label maps, including: (a) ground truth map; and change detection results yielded by:
(b) K-Means (OA = 90.44%); (c) SAM + K-Means (OA = 68.15%); (d) ASCD + K-Means (OA = 69.31%);
(e) PCA + K-Means (OA = 93.77%); (f) LRSD + K-Means (OA = 93.84%); (g) LRSD_TV + K-Means
(OA = 93.93%); and (h) LRSD_SS + K-Means (OA = 97.00%), tested on one randomly selected set of
bitemporal HSI of Data 10. The changed are labeled by “1” and colored in white, while the unchanged
are labeled by “0” and colored in black. OA is short for overall accuracy.

Table 2. Evaluation of change detection results for the real-world bitemporal HSI.

Criteria Original SCV
+ K-Means

SAM +
K-Means

ASCD +
K-Means

PCA +
K-Means

LRSD +
K-Means

LRSD_TV +
K-Means

LRSD_SS +
K-Means

OA (%) 98.04 97.79 93.13 98.03 98.03 98.17 98.56
AA (%) 98.24 97.06 87.92 98.23 98.23 98.29 98.39

κ 0.95 0.95 0.82 0.95 0.95 0.96 0.96

To further evaluate the performances of change feature extraction, 4 columns of samples in L
produced by LRSD_SS, LRSD_TV and LRSD tested on Data 10 are analyzed. The samples at these
columns of Y are corrupted by all types of the simulated noise. As presented in Figure 8a–h, these
samples in L yielded by LRSD_SS are the most similar to those at the same columns in the clean data Y0,
in terms of spectral signature or spectral amplitude. It indicates that LRSD_SS is better than the other
LRSD-based methods in recovering clean data and suppressing noise. The box plots in Figure 9a,b
illustrate that LRSD_SS makes the centers of the change and the non-change clusters the farthest apart
than the other LRSD-based methods. The non-change cluster becomes nicely compact after LRSD_SS.
Therefore, it will be easy to classify the changed samples and the unchanged ones based on the change
features produced by LRSD_SS.
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Figure 8. In an exemplary case of Data 10: (a) spectral signatures and (b) amplitudes of the samples at 
column 84; (c) spectral signatures and (d) amplitudes of the samples at column 170; (e) spectral 
signatures and (f) amplitudes of the samples at column 286; and (g) spectral signatures and (h) 
amplitudes of the samples at column 299 in Y , 0Y  and L  produced by LRSD_TV/LRSD_SS/LRSD. 

All the samples at these locations in Y  are corrupted by all the types of simulated noise. 

Figure 8. In an exemplary case of Data 10: (a) spectral signatures and (b) amplitudes of the
samples at column 84; (c) spectral signatures and (d) amplitudes of the samples at column 170;
(e) spectral signatures and (f) amplitudes of the samples at column 286; and (g) spectral signatures and
(h) amplitudes of the samples at column 299 in Y, Y0 and L produced by LRSD_TV/LRSD_SS/LRSD.
All the samples at these locations in Y are corrupted by all the types of simulated noise.
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errors against the iteration number become flat after about 20 iterations in whichever the cases. It 
also indicates that the OA of LRSD_SS stops increasing approximately around the iteration whereas 
the errors stop decreasing. With the average time cast per run presented in Table 3, it can be inferred 
that LRSD_SS does not require much time to yield the optimal result for change detection. Therefore, 
the proposed method can be considered quite practical. 

Figure 9. In an exemplary case of Data 10, box plots of: (a) spectral amplitudes of all the samples in
Y, Y0 and L produced by LRSD_SS/ LRSD_TV/ LRSD; and (b) spectral values of these samples in
band 92. On each box, the central mark represents the median, the edges are the 25th and the 75th
percentiles, and the whiskers extend to the most extreme data points not considered as “outliers”
defined by function “boxplot” in MATLAB 2013b (these “outliers” are not the same as those defined by
LRSD, except for the name). The maximum whisker length is 1.5.

As can be inferred, the proposed method is effective in removal of the unwanted corruptions and
extraction of the desired low-rank and locally smooth features, especially the clean background. In the
binary classification, the changed areas are naturally detected as long as the background is identified.
Thus, LRSD_SS can be well applied in HSI change detection.

4.3.2. Efficiency

Table 3 shows the time consumption in solving each component of different LRSD-based models
per iteration. Each given value is the average time cost by a low-rank decomposition method tested
on Data 3, Data 5, Data 6 and Data 10. Within the same ALM framework, LRSD_TV is nearly
47 times slower than the proposed LRSD_SS in optimization of the locally smoothed low-rank data X.
While the SS regularization in LRSD_SS processes all the bands of SCV simultaneously, characterizes
spectral-spatial features and produces a closed-form solution for X, the TV regularization in LRSD_TV
has to be applied to each band of SCV since the TV method is originally designed for two-dimensional
images [35,51,52]. Among the three algorithms in Table 3, the default LRSD is the fastest since it does
not involve any additional regularizations [43].

Table 3. Time cost (in seconds) of three LRSD-based change feature extraction methods.

Methods
Components

L S X

LRSD_SS 0.45 1.35 8.74
LRSD_TV 0.44 1.37 419.22

LRSD 0.34 1.28 -

4.3.3. Stopping Criteria for Optimization

The optimization errors of LRSD_SS, Error1 and Error2, defined in Equations (18) and (19),
respectively, are tracked with respect to iterations when LRSD_SS is tested on Data 3, Data 5, Data 6
and Data 10. Figure 10a–l present one set of the exemplary results for each case. Data 3, Data 5 and
Data 6 are analyzed because the bitemporal HSI in each of these cases include a unique type of the
outliers described in Section 4.1. Data 10 is selected since the bitemporal HSI in this case are corrupted
by all types of the simulated noise. Figure 10 shows that the curves of the optimization errors against
the iteration number become flat after about 20 iterations in whichever the cases. It also indicates
that the OA of LRSD_SS stops increasing approximately around the iteration whereas the errors stop
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decreasing. With the average time cast per run presented in Table 3, it can be inferred that LRSD_SS
does not require much time to yield the optimal result for change detection. Therefore, the proposed
method can be considered quite practical.Remote Sens. 2017, 9, 1044  17 of 21 
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Figure 10. Performance curves of LRSD_SS: (a) 1Error ; (b) 2Error ; and (c) OA in an exemplary case 
of Data 3; (d) 1Error ; (e) 2Error ; and (f) OA in an exemplary case of Data 5; (g) 1Error ; (h) 2Error ; 
(i) OA in an exemplary case of Data 6; and (j) 1Error ; (k) 2Error ; and (l) OA in an exemplary case of 
Data 10. In each graph, the x-axis represents iteration number and the y-axis indicates evaluation 
criteria. OA is short for overall accuracy. 

4.4. Discussion 

From the analysis above, the strengths of LRSD_SS can be summarized as follows: 

1. LRSD_SS effectively addresses the essential issue of change detection in multitemporal HSI by 
exploiting inherent data structures of SCV. With the proposed SS regularization which 
maintains the local patterns in the SCV, LRSD_SS can further characterize the nature of the 
change features, making it easier to separate the features from various types of noise and 
identify the changes. It is especially effective in recovering the clean background. Therefore, in 

Figure 10. Performance curves of LRSD_SS: (a) Error1; (b) Error2; and (c) OA in an exemplary case of
Data 3; (d) Error1; (e) Error2; and (f) OA in an exemplary case of Data 5; (g) Error1; (h) Error2; (i) OA
in an exemplary case of Data 6; and (j) Error1; (k) Error2; and (l) OA in an exemplary case of Data 10.
In each graph, the x-axis represents iteration number and the y-axis indicates evaluation criteria. OA is
short for overall accuracy.

4.4. Discussion

From the analysis above, the strengths of LRSD_SS can be summarized as follows:
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1. LRSD_SS effectively addresses the essential issue of change detection in multitemporal HSI by
exploiting inherent data structures of SCV. With the proposed SS regularization which maintains
the local patterns in the SCV, LRSD_SS can further characterize the nature of the change features,
making it easier to separate the features from various types of noise and identify the changes.
It is especially effective in recovering the clean background. Therefore, in the binary classification
of the changed and the unchanged samples, LRSD_SS yields better results than many classic or
state-of-the-art methods do.

2. The proposed method is also efficient. The SS regularization extracts spectral-spatial features,
processing all the bands of SCV simultaneously. Thus, it is much faster than the TV regularization
on the LRSD model, which processes each band image separately. Moreover, the design of SS
contributes a closed-form solution for the feature data within the ALM framework, so that the
algorithm of LRSD_SS is implementation-friendly. As can be seen from the experimental results,
only a few iterations are needed.

Since the proposed method has been proved useful to binary change detection, it will be further
explored and adapted to multiple change detection in our future research. In addition, supervised or
semi-supervised classification methods will be employed to increase detection accuracy.

5. Conclusions

For better change detection in HSI, this paper considers change detection as a classification
problem and proposes a novel method, LRSD_SS. It designs a unique spectral-spatial regularization
superimposed on a well-established LRSD model and exploits intrinsic structures of different
data components, especially the local smoothness. Since LRSD_SS deals with spectral and spatial
information simultaneously, it is effective in change feature extraction and able to increase accuracy in
change identification. LRSD_SS is also efficient, as there exists a closed-form solution for the change
features within the ALM framework. Experiments on various types of bitemporal HSI have shown
the advantages of LRSD_SS, compared to many other methods for change feature extraction. For the
synthetic data corrupted by all types of the simulated noise (Data 10), LRSD_SS outperforms the
state-of-the-art methods, LRSD_TV and ASCD, by 2.14 percentage points and 27.45 percentage points
in terms of OA, respectively. It is also demonstrated that the time consumption of LRSD_SS is about
47 times less than that of LRSD_TV in solving the change feature matrix. For follow-up work, we shall
acquire some more real-world datasets to further exam the proposed method and modify the design of
the SS regularization so that it could be adapted to detection of multiple changes in multitemporal HSI.
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