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Abstract: Classification of hyperspectral image (HSI) is an important research topic in the remote
sensing community. Significant efforts (e.g., deep learning) have been concentrated on this task.
However, it is still an open issue to classify the high-dimensional HSI with a limited number of
training samples. In this paper, we propose a semi-supervised HSI classification method inspired
by the generative adversarial networks (GANs). Unlike the supervised methods, the proposed HSI
classification method is semi-supervised, which can make full use of the limited labeled samples
as well as the sufficient unlabeled samples. Core ideas of the proposed method are twofold. First,
the three-dimensional bilateral filter (3DBF) is adopted to extract the spectral-spatial features by
naturally treating the HSI as a volumetric dataset. The spatial information is integrated into the
extracted features by 3DBF, which is propitious to the subsequent classification step. Second, GANs
are trained on the spectral-spatial features for semi-supervised learning. A GAN contains two neural
networks (i.e., generator and discriminator) trained in opposition to one another. The semi-supervised
learning is achieved by adding samples from the generator to the features and increasing the
dimension of the classifier output. Experimental results obtained on three benchmark HSI datasets
have confirmed the effectiveness of the proposed method, especially with a limited number of
labeled samples.

Keywords: hyperspectral image (HSI); semi-supervised classification; generative adversarial
networks (GANs); three-dimensional bilateral filter (3DBF)

1. Introduction

A hyperspectral image [1–4] contains hundreds of continuous narrow spectral bands, spanning the
visible to infrared spectrum. Hyperspectral sensors have attracted much interest in remote sensing for
providing abundant and valuable information over the last few decades. With the useful information,
HSI has played a vital role in many applications, among which classification [5–7] is one of the crucial
processing steps that has received enormous attention. The foremost task in hyperspectral classification
is to train an effective classifier with the given training set from each class. Therefore, sufficient training
samples are crucial to train a reliable classifier. However, in reality, it is time-consuming and expensive
to obtain a large number of samples with class labels. This difficulty will result in the curse of
dimensionality (i.e., Hughes phenomenon) and will induce the risk of overfitting.

Much work has been carried out to design suitable classifiers to deal with the above-mentioned
problems in the last decades. In general, those methods can be categorized into three types,
i.e., unsupervised, supervised and semi-supervised methods. Unsupervised methods focus on training
models from large unlabeled samples. Since no labeled samples are required, the unsupervised
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methods can be easily applied in the hyperspectral processing area. Many unsupervised methods,
such as fuzzy clustering [8], fuzzy C-Means method [9], artificial immune algorithm [10], graph-based
method [11], have demonstrated impressive results in hyperspectral classification. However,
one cannot ensure the relationship between clusters and classes with too little priori knowledge.

Supervised classifiers, which are widely used in hyperspectral classification, can yield improved
performance by utilizing the priori information of the class labels. Typical supervised classifiers
include the support vector machine (SVM) [12,13], artificial neural networks (ANN) [14] and sparse
representation-based classification (SRC) [15,16], etc. SVM is a kind of kernel-based method that
aims at exploring the optimal separating hyperplane between different classes, ANN is motivated
by the biological learning process of human brain, while SRC stems from the rapid development
of compressed sensing in recent years. Versatile as the supervised classifiers are, their performance
heavily depends on the number of labeled samples. In contrast to the urgent needs of labeled samples,
they ignore the large number of unlabeled samples to assist classification.

Semi-supervised learning is designed to alleviate the “small-sample problem” by utilizing
both the limited labeled samples and the wealth of unlabeled samples that can be easily obtained
without significant cost. The semi-supervised methods can be roughly divided into four types:
(1) generative models [17,18], which estimate the conditional density to obtain the labels of unlabeled
samples. (2) Low density separation, which aims to place boundaries in regions where few samples
(labeled or unlabeled) existed. One of the state-of-the-art algorithms is the transductive support
vector machine (TSVM) [19–21]. (3) Graph-based methods [22–26] that utilize labeled and unlabeled
samples to construct graphs and minimize the energy function, and thus, assigning labels to unlabeled
samples. (4) Wrapper-based methods, which apply a supervised learning method iteratively and
a certain amount of unlabeled samples are labeled in each iteration. The self-training [27,28] and
co-training [29,30] algorithms are commonly-used wrapper-based methods.

Notably that the samples within a small neighborhood are likely to belong to the same
class and thus, the spatial correlation between neighboring samples can be incorporated into the
classification to further improve the performance of the classifiers. For instance, the spatial contextual
information [31–39] can be extracted by various spatial filters. Segmentation methods (e.g., watershed
segmentation [40] and superpixel segmentation [41,42]) can also be adopted to exploit the spatial
homogeneity of the HSI. One can also use the spatial similarity of neighboring samples [43–45]
in the classification stages. Regularizations [15,46–53] can be added in the classifiers to refine the
classification performance. Different from the above-mentioned vector/matrix-based methods, there
are some three-dimension (3D)/tensor-based methods [34,54–57] that respect the 3D nature of the
HSI and process the 3D cube as a whole entity. The 3D/tensor-based methods have demonstrated
considerable improvement since the joint spectral-spatial structure information is effectively exploited.

However, most of the aforementioned methods can only extract features of the original HSI
dataset in a shallow manner. Deep learning [58], which can hierarchically obtain the high-level
abstract representation, has recently become a hotspot in the image processing area, especially in
hyperspectral classification. Typical deep architectures involve the stacked autoencoder (SAE) [59],
deep brief network (DBN) [60] and convolutional neural networks (CNN) [61]. The above-mentioned
classification frameworks are supervised, which require a large number of labeled samples for training.
Recently, a semi-supervised classifier based on multi-decision labeling and contextual deep learning
(i.e., CDL-MD-L) is proposed by [62], which has demonstrated promising results in hyperspectral
classification.

In this paper, a generative adversarial networks (GANs)-based semi-supervised method is
proposed for hyperspectral classification. To extract the spectral-spatial features, we extend the existing
two-dimensional bilateral filter (2DBF) [36,63,64] into its three-dimensional version (i.e., 3DBF), which
is a non-iterative method for nonlinear and edge-preserving smoothing. The 3DBF is suitable for
spectral-spatial feature extraction since it respects the 3D nature of the HSI cube. Subsequently,
the outputs of the previous step can be utilized to train GANs [65,66], which are promising neural
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networks that have been the focus of attention in recent years. In this paper, the GANs are trained for
semi-supervised classification of HSI to use the limited labeled samples and vast of unlabeled samples.
The semi-supervised learning is performed by adding samples from the generators to the extracted
features and increasing the dimension of the classifier output.

Compared to the existing literature, the contribution of this paper lies in two aspects:

1. We extract the spectral-spatial features by the 3DBF. Compared to the vector/matrix-based
methods, the structural features extracted by the 3DBF can effectively preserve the spectral-spatial
information by naturally obeying the 3D form of the HSI and treating the 3D cube as
a whole entity.

2. We classify the HSI in a semi-supervised manner by the GANs. Compared to the supervised
methods, the GANs can utilize both limited training samples and abundant of unlabeled samples.
Compared to the non-adversarial networks, the GANs take advantage of the discriminative
models to train the generative network based on game theory.

The remaining part of this paper is organized as follows. Section 2 describes the proposed
semi-supervised classification method in detail. Section 3 reports the experimental results and analyses
on three benchmark HSI datasets. Finally, discussions and conclusions are drawn in Sections 4 and 5.

2. Proposed Semi-Supervised Method

The conceptual framework of the proposed method is shown in Figure 1, which is composed
of two parts: (1) feature extraction; (2) semi-supervised learning. The spectral-spatial features of the
original HSI cube I can be extracted by the 3DBF, which is a 3D filter that can obey the 3D nature of
the HSI and extract the spectral-spatial features simultaneously. Subsequently, GANs are utilized in
the feature space for semi-supervised classification by taking full advantage of both the limited labeled
samples and the sufficient unlabeled samples. The classification map can be achieved by visualizing
the classification results of different samples.
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Upsample
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Figure 1. Flowchart of the proposed method.

It is noteworthy that both 3DBF and GANs are of great importance for semi-supervised learning of
HSI classification. On the one hand, 3DBF is adopted for extracting the spectral-spatial features of the
HSI. As emphasized in Section 1, incorporating spatial information into the hyperspectral classification
helps to improve the performance the classifiers, and thus, exploring spectral-spatial feature extraction
methods has become an important research topic in the hyperspectral community. In addition, since
the HSI data is naturally a 3D cube, the 3D/tensor-based methods are more effective to extract the
joint spectral-spatial structure information than the vector/matrix-based methods. As will be shown
in Section 3.3, the GANs with the original spectral features (i.e., Spec-GANs) provide much worse
performance than the GANs with 3DBF features (i.e., 3DBF-GANs), which further highlights the
significance of the 3DBF. On the other hand, GANs are utilized for semi-supervised classification of
the HSI. The recent development of deep learning has opened up new opportunities for hyperspectral
classification. GANs, which are newly proposed deep architectures for training deep generative



Remote Sens. 2017, 9, 1042 4 of 27

models by a minimax game, have shown promising results in unsupervised/semi-supervised learning.
Although the GANs have been successfully employed in various areas and demonstrated remarkable
success, the application of GANs in semi-supervised hyperspectral classification has never been
addressed in the literature to the best of our knowledge. Therefore, it is valuable for us to represent the
first attempt to develop a semi-supervised hyperspectral classification framework based on GANs.
In this section, we introduce the detailed procedure of the proposed semi-supervised classification
method, elaborating on the spectral-spatial feature extraction based on 3DBF and semi-supervised
classification of HSI by GANs.

2.1. Spectral-Spatial Features Extracted by 3D Bilateral Filter

The bilateral filter was originally introduced by [63] under the name “SUSAN”. It was then
rediscovered by [67] termed as “bilateral filter”, which is now the widely used name in the literature.
Over the past few years, the bilateral filter has emerged as a powerful tool for several applications,
such as image denoising [64] and hyperspectral classification [36]. The great success of the bilateral
filter stems from several properties. It is a local, non-iterative and simple filter, which smooths images
while preserving edges in terms of a nonlinear combination of the neighboring pixels. Although the
bilateral filter has announced impressive results in hyperspectral classification, it is performed in each
two-dimensional probability map, and thus ignoring the 3D nature of the HSI cube.

In this paper, we extend the bilateral filter to 3DBF for spectral-spatial feature extraction of the
HSI volumetric data. Suppose the original HSI cube can be represented as I ∈ Rm×n×b, where m, n
and b indicate the number of rows, columns and spectral bands, respectively, the result Ib f of the 3DBF,
which replaces each pixel in the I by a weighted average of its neighbors, can be defined by

Ib f (p) =
1

Wb f (p) ∑
q∈S

Gσs(‖p− q‖)Gσr (|I(p)− I(q)|)I(q) (1)

with
Wb f (p) = ∑

q∈S
Gσs(‖p− q‖)Gσr (|I(p)− I(q)|) (2)

where p refers to the coordinate of the HSI cube I, i.e., p = (x, y, z), x = 1, . . . , m, y = 1, 2, . . . , n,
z = 1, 2, . . . , b, q indicates the index of the neighborhoods centered at p, Wb f denotes the normalizing
term of the neighborhood pixels q, Gσs(‖p− q‖) = exp(−‖p− q‖2/2σ2

s ) and Gσr (|I(p)− I(q)|) =
exp(−|I(p)− I(q)|2/2σ2

r ) are the Gaussian filters measuring the distance in the 3D image domain
(i.e., the spectral-spatial domain S) and the distance on the intensity axis (i.e., the range domain
R), respectively.

To speed up the implementation, we decompose the 3DBF into a convolution followed by
two nonlinearities based on signal processing grounds. Note that the nonlinearity of the 3DBF
(see Equation (1)) originates from the division by Wb f and the dependency on the intensities by
Gσr (|I(p)− I(q)|), we study each point separately and isolate them during computation. Multiplying
both sides of Equation (1) by Wb f , Equations (1) and (2) can be rewritten as(

Wb f (p)Ib f (p)
Wb f (p)

)
= ∑

q∈S
Gσs(‖p− q‖)Gσr (|I(p)− I(q)|)

(
I(q)

1

)
(3)

We then define a function W whose value is 1 everywhere (W is a function whose value is 1
everywhere, i.e., W((x, y, z)) = 1, x = 1, . . . , m, y = 1, 2, . . . , n, z = 1, 2, . . . , b. Therefore, the size of W
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is the same as that of the original HSI cube) to maintain the weighted mean property of the 3DBF and
represent Equation (3) as(

Wb f (p)Ib f (p)
Wb f (p)

)
= ∑

q∈S
Gσs(‖p− q‖)Gσr (|I(p)− I(q)|)

(
W(q)I(q)

W(q)

)
(4)

The above-mentioned Equation (4) can be equivalently expressed as(
Wb f (p)Ib f (p)

Wb f (p)

)
= ∑

q∈S
∑

ζ∈R
Gσs(‖p− q‖)Gσr (|I(p)− ζ|)δ(ζ − I(q))

(
W(q)I(q)

W(q)

)
(5)

whereR denotes the intensity interval, δ(ζ) is the Kronecker symbol with δ(ζ) = 1 if ζ = 0, and δ = 0
otherwise. Specifically, δ(ζ − I(q)) = 1 if and only if ζ = I(q). The sum in Equation (5) is over the
product space S ×R, on which we express the functions by lowercases. That means, gδs ,δr represents
a Gaussian kernel given by

gδs ,δr : (x ∈ S , ζ ∈ R) 7−→ Gδs(‖x‖)Gδr (|ζ|) (6)

Based on Equation (5), two functions i and w can be build on S ×R by

i : (x ∈ S , ζ ∈ R) 7−→ I(x) (7)

and
w : (x ∈ S , ζ ∈ R) 7−→ δ(ζ − I(x))W(x) (8)

Observed from the definitions of i and w in Equations (7) and (8), we have

I(x) = i(x, I(x)) (9)

W(x) = w(x, I(x)) (10)

w(x, ζ) = 0, ∀ζ 6= I(x) (11)

Let the input of gδs ,δr be (p− q, I(p)− ζ), the input of i and w be (q, ζ), Equation (5) becomes(
Wb f (p)Ib f (p)

Wb f (p)

)
= ∑(q,ζ)∈S×R gδs ,δr (p− q, I(p)− ζ)

(
w(q, ζ)i(q, ζ)

w(q, ζ)

)

=

[
gδs ,δr ⊗

(
wi
w

)]
(p, I(p))

(12)

where “⊗” indicates the convolution operator.
Therefore, the 3DBF can be modeled by

Ib f (p) =
wb f (p, I(p))ib f (p, I(p))

wb f (p, I(p))
(13)

where the functions wb f and ib f are defined as (wb f ib f , wb f ) = gδs ,δr ⊗ (wi, w).
In hyperspectral analysis, the 3D image domain (i.e., the spectral-spatial domain S) is a xyz

volume and the range domainR is a simple axis labelled ζ. As described in Equation (13), the 3DBF
can be achieved by the following three steps:

• Convolve wi and w with a Gaussian defined on xyzζ. In this step, wi and w are “blurred” into
wb f (x, y, z, ζ)ib f (x, y, z, ζ) and wb f (x, y, z, ζ), respectively.

• Obtain ib f (x, y, z, ζ) by dividing wb f (x, y, z, ζ)ib f (x, y, z, ζ) by wb f (x, y, z, ζ);
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• Compute the value of ib f at (x, y, z, ζ) to get the filtered result Ib f (x, y, z).

Moreover, the 3DBF can be accelerated by downsample and upsample without changing the
major steps of the implementation. That is, we downsample (wi, w) to obtain (w↓i↓, w↓), perform

the convolution to generate (wb f
↓ ib f
↓ , w↓)b f , followed by upsample (wb f

↓ ib f
↓ , wb f

↓ ) to get (wb f
↓↑i

b f
↓↑, wb f

↓↑).
The remaining steps are the same as the above-mentioned steps 2 and 3. To sum up, the schematic
diagram of the 3DBF can be depicted in Figure 2, by which the original HSI cube I is filtered and
the spectral-spatial feature cube Ib f is obtained. It is worth underlining that the dimension of the
3DBF cube Ib f is the same as that of the original HSI cube, i.e., Ib f ∈ Rm×n×b. As will be shown
in Figures 9 and 10, the spectral and spatial profiles of the 3DBF smooth the original data while still
preserving edges.
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Figure 2. Schematic diagram of the 3DBF.

2.2. Semi-Supervised Classification of HSI by Generative Adversarial Networks

2.2.1. Brief of Generative Adversarial Networks

GANs are newly proposed deep architectures based on adversarial nets to train the model in
an adversarial fashion to generate data mimicking certain distributions. Unlike the other deep learning
methods, a GAN is an architecture around two functions (see Figure 3), i.e., a generator G, which
can map a sample from a random uniform distribution to the data distribution, and a discriminator
D, which is trained to distinguish whether a sample belongs to the real data distribution. In GANs,
the generator and discriminator are learned jointly based on game theory. The generator G and the
discriminator D can be trained in an alternating manner. In each step, G produces a sample from
the random noise z that may fool D, and D is then presented the real data samples as well as the
samples generated by G to classify the samples as “real” or “fake”. Subsequently, G is rewarded for
producing samples that can “fool” D and D for correct classification. Both functions are updated and
the iteration stops until a Nash equilibrium is achieved. In greater detail, let D(s) be the probability
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that s comes from the real data rather than the generator, G and D play a minimax game with the
following value function

min
G

max
D

V(D, G) = Es∼pdata(s)

[
log D(s)

]
+Ez∼pz(z)

[
log(1− D(G(z)))

]
(14)

Much work has been carried out to improve the GAN since it was pioneered by
Goodfellow et al. [65] in 2014. Two remarkable aspects can be highlighted: theory and application.
On the one hand, several improved versions of GANs in aspects of stability of training, perceptual
quality, etc., have been proposed in recent literature, including the well-known deep convolutional
GAN (DC-GAN) [68], conditional GAN (C-GAN) [69], Laplacian pyramid GAN (LAP-GAN) [70],
information-theoretic extension to the GAN (Info-GAN) [71], unrolled GAN [72] and Wasserstein
GAN (W-GAN) [73]. On the other hand, recent work has also shown that GANs can provide very
successful results in image generation [74], image super resolution [75], image inpainting [76] and
semi-supervised learning [77].

Real world data

G
Generator

Latent space

Noise

Fine tuning

G
Generator

Latent space

Noise

Real world data

D
Discriminator

Discrimination results 
D tries to make D(s) near 1 and D(G(z)) near 0, 

G tries to make D(G(z)) near 1 

Fine tuning

Figure 3. The general GANs architectures.

2.2.2. Generative Adversarial Networks for Classification

GANs, which can train deep generative models with a minimax game, have recently emerged
as powerful tools for unsupervised and semi-supervised classification. Several unsupervised/
semi-supervised techniques motivated by the GANs have sprung up over the past few years to
overcome the difficulties of labeling large amounts of training samples. For instance, DC-GAN is
proposed in [68] to bridge the gap between the success of the CNN for supervised and unsupervised
learning. Several constraints are evaluated to make the convolutional GANs stable to train, and the
trained discriminators are applied for image classification tasks, resulting in competitive performance
with other unsupervised methods. Info-GAN is proposed in [71] to learn disentangled representations
in a completely unsupervised manner. As an information-theoretic extension to the GAN, the Info-GAN
maximizes the mutual information between a small subset of the latent variables and the observation,
and therefore, interpretable and disentangled representations can be learned. Categorical GAN
(CatGAN) [77], which is a framework for robust unsupervised and semi-supervised learning, combines
ANN classifiers with an adversarial generative model that regularizes a discriminatively trained
classifier. By heuristically understanding the non-convergence problem, an improved semi-supervised
learning method is proposed in [66], which can be regarded as a continuation and refinement of
the effort in [77]. Moreover, Premachandran and Yuille [78] learns a deep network by generative
adversarial training. Features learned by adversarial training is fused with a traditional unsupervised
classification approach, i.e., k-means clustering, and the combination produces better results than direct
prediction. In situation of semi-supervised classification, the adversarial training has the potential to
outperform supervised learning.

Note that different versions of GANs have different objective functions and procedures, it is hard
to obtain a unified architecture for describing the unsupervised/semi-supervised techniques. In this
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section, we try to give a schematic illustration of the procedure for unsupervised/semi-supervised
learning in Figure 4, which contains the main steps in most of the scenarios but not all of them.
It is noteworthy that the logistic regression classifier based on the soft-max function is employed to
discriminate different classes in Figure 4. That means, by applying the soft-max function, the class
probabilities of s can be expressed as

pmodel(c = j|s) =
exp(lj)

C
∑

c=1
exp(lc)

, j = 1, 2, . . . , C (15)

and the class label of s can be determined by

class(s) = arg max
j

pmodel(c = j|s) (16)

In addition, despite remarkable success of GANs, their applications in semi-supervised
classification of HSI are surprisingly unstudied to the best of our knowledge. Therefore, this study
represents the first attempt to develop a semi-supervised classification framework for the HSI.

Real world data

G
Generator

Latent space

Noise

D
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Discrimination results 
D tries to make D(s) near 1 and D(G(z)) near 0, 
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amounts of unlabeled samples

Soft-max is used in the discriminator output. 
Labeled samples can be adopted to fine tune 

the networks in semi-supervised learning

Classification results of the 
unsupervised/semi-supervised learning

Figure 4. Schematic illustration of the procedure for unsupervised/semi-supervised learning based on GANs.

2.2.3. Hyperspectral Classification Framework Using Generative Adversarial Networks

In hyperspectral classification, a standard classifier assigns each sample s to one of the C possible
classes based on the training samples available for each class. For instance, a logistic regression
classifier takes s as input and outputs a C-dimensional vector, which can be turned into the class

probabilities by soft-max pmodel(c = j|s) = exp(lj)
C
∑

c=1
exp(lc)

. Classifiers like this usually have a cross-entropy

objective function in supervised scenario. That means, a discriminative model can be trained by
minimizing the objective function between observed labels and the model predictive distribution
pmodel(c|s). However, the supervised learning usually needs enough labeled training samples to
guarantee the representativeness and prevent the classifier from overfitting, especially for a deep
discriminative model with huge parameter volume such as CNN. The strong demand for abundant
training samples conflicts with the fact that the labels of the samples are extremely difficult and
expensive to identify. At the same time, there are vast of unlabeled samples in the HSI. Therefore,
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we propose a GANs-based classification method [65,66] to simultaneously utilize both the limited
labeled samples and the sufficient unlabeled samples in a semi-supervised fashion.

To establish a new semi-supervised hyperspectral classification framework based on GANs,
we add the generated samples to the HSI dataset and denote them as the (C+ 1)th class. The dimension
of the classifier output is correspondingly increased from C to (C + 1). The probability when s comes
from G can be represented as pmodel(c = C + 1|s), which is a substitution of 1− D(s) in the objective
function V(D, G) of the original GANs [65]. Note that the unlabeled training samples belong to the
former C classes, we can learn from those unlabeled samples to improve the classification performance
by maximizing log pmodel(c ∈ 1, 2, . . . , C|s).

Without loss of generality, assuming half of the dataset consists of real data and half is the
generated data, the loss function L of the classifier yields

L = − Es,c∼pdata(s,c)

[
log pmodel(c|s)

]
−Es∼G

[
log pmodel(c = C + 1|s)

]
= Lsupervised + Lunsupervised

(17)

Lsupervised = − Es,c∼pdata(s,c) log pmodel(c|s, c < C + 1) (18)

Lunsupervised = −
{
Es∼pdata(s) log

[
1− pmodel(c = C + 1|s)

]
+ Es∼G log

[
pmodel(c = C + 1|s)

]} (19)

where Lsupervised represents the negative log probability of the label with the data is from the real
HSI features, Lunsupervised equals the standard GAN game-value function in case we substitute
D(s) = 1− pmodel(c = C + 1|s) into Equation (19)

Lunsupervised = −
{
Es∼pdata(s) log D(s) +Ez∼noise log

[
1− D(G(z))

]}
(20)

According to the Output Distribution Matching (ODM) cost theory of [79], if we have
exp[lj(s)] = f (s)p(c = j, s), ∀j < C + 1 and exp[lC+1(s)] = f (s)pG(s) for some undetermined scaling
function f (s), the unsupervised loss will be consistent with the supervised loss. As such, by combining
Lsupervised and Lunsupervised, we can get the total cross entropy loss L, whose optimal solution can be
estimated by minimizing both loss functions jointly.

Moreover, to address the instability of the unsupervised optimization part related to the GANs,
we adopt a strategy called feature matching to substitute the traditional way of training the generator
G by requiring it to match the statistics characteristics of the real data. In greater detail, the generator G
is trained to match the expected value of the output d(s) on an intermediate layer in the discriminator

D. By optimizing an alternative objective function defined as
∥∥∥Es∼pdata(s)d(s)−Ez∼pz(z)d(G(z))

∥∥∥2

2
,

we obtain a fixed point where G matches the distribution of training data. Based on the above analysis,
we show a visual illustration of the semi-supervised hyperspectral classification method by GANs in
Figure 5. The network parameters of the generator G and the discriminator D in Figure 5 are trained
by optimizing the loss function in Equation (17). The unlabeled data is taken as the true data s ∼ pdata
in Equation (19) to train both generator G and discriminator D. Moreover, the latent space of the
generator G is chosen from the unlabeled data (To be exact, the latent space can also be chosen from
the labeled data by ignoring the class labels), the noise follows the uniform distribution, and the
output of the generator G is the fake data. By jointly minimizing the loss functions in Equation (17),
the parameters of the generator G are updated to fool the discriminator D, and the fake examples are
generated accordingly. The logistic regression classifier based on the soft-max function is adopted to
perform the multi-class classification in the GANs. It is notable that the actual differences between
the traditional GANs and the modified GANs used in this paper lie in threefold: (1) the objective
functions are changed to make full use of both labeled and unlabeled samples; (2) the output layer
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of the discriminator is modified from binary classification to multi-class semi-supervised learning;
(3) feature matching is adopted to improve the stability of the traditional GANs.

G
Generator

Latent space

Noise

D
Discriminator

Fine tuning

Spectral-spatial 

features of the 

labeled and 

unlabeled training 

samples obtained 

by the 3DBF 
unlabeled labeled Class 1

Class 2

Class C

Class (C+1)

… Real

Fake

Generated fake data

Figure 5. A visual illustration of the semi-supervised hyperspectral classification method by GANs.

3. Experimental Section

In this section, we investigate the performance of the proposed method (abbreviated as
3DBF-GANs for simplicity) on three benchmark HSI datasets. A series of experiments are conducted
to perform a comprehensive comparison with other state-of-the-art methods, including 2DBF [64],
SVM [12], Laplacian SVM (LapSVM) [22,24] and CDL-MD-L [62]. 2DBF and 3DBF are feature extraction
methods, SVM is a widely-used supervised classifier, while LapSVM, GANs and CDL-MD-L are
classifiers based on semi-supervised learning. Moreover, the original spectral features are also
considered as a baseline for comparison.

3.1. Dataset Description

In the experiments, three publicly available hyperspectral datasets (i.e., Indian Pines data,
University of Pavia data and Salinas data) are employed as benchmark datasets. What follows
are details of the three hyperspectral datasets.

1. Indian Pines data: the first dataset was captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the agricultural Indian Pines test site in the Northwestern
Indiana, USA, on 12 June 1992. The original image contains 224 spectral bands. After removing
4 bands full of zero and 20 bands affected by noise and water-vapor absorption, 200 bands are
left for experiments. It consists of 145× 145 pixels with a spatial resolution of 20 m per pixel,
and the spectral coverage ranging from 0.4 to 2.5 µm. Figure 6 depicts the color composite of
the image as well as the ground truth map. There are 16 classes of interest and the number of
samples in each class is displayed in Table 1, whose background color denotes different classes of
land-covers. Since the number of samples is unbalanced and the spatial resolution is relatively
low, it poses a big challenging to the classification task.

2. University of Pavia data: the second dataset was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor over an urban area surrounding the University of Pavia,
northern Italy, on 8 July 2002. The original data contains 115 spectral bands ranging from 0.43
to 0.86 µm and the size of each band is 610× 340 with a spatial resolution of 1.3 m per pixel.
After removing 12 noisiest channels, 103 bands remained for experiments. The dataset contains
9 classes with various types of land-covers. The color composite image together with the ground
truth data are shown in Figure 7. The detailed number of samples in each class is listed in Table 2,
whose background color also corresponds to the color in Figure 7.

3. Salinas data: the third dataset was collected by the AVIRIS sensor over the Salinas Valley,
Southern California, USA, on 8 October 1998. The original dataset contains 224 spectral bands
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covering from the visible to short-wave infrared light. After discording 20 water absorption
bands, 204 bands are preserved for experiments. This dataset consists of 512× 217 pixels with
a spatial resolution of 3.7 m per pixel. The color composite of the image and the ground truth are
plotted in Figure 8, which contains 16 classes of interest. The detailed number of classes in each
class is shown in Table 3, whose background color represents different classes of land-covers.

0 175 350Meters

500 1000Meters0

(a)

0 175 350Meters

500 1000Meters0

(b)

Figure 6. Indian Pines data. (a) Three-band false color composite and (b) ground truth data with 16 classes.

Table 1. Number of samples (NoS) used in the Indian Pines data.

Class Name NoS Class Name NoS
1 alfalfa 54 9 oats 20
2 corn-no till 1434 10 soybean-no till 968
3 corn-min till 834 11 soybean-min till 2468
4 corn 234 12 soybean-clean till 614
5 grass/pasture 497 13 wheat 212
6 grass/trees 747 14 woods 1294
7 grass/pasture-mowed 26 15 bldg-grass-tree-drives 380
8 hay-windrowed 489 16 stone-steel towers 95

Total 10,366

500 1000Meters0

175 350Meters

(a)

500 1000Meters0

175 350Meters

(b)

Figure 7. University of Pavia data. (a) Three-band false color composite and (b) ground truth data
with 9 classes.
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Table 2. NoS used in the University of Pavia data.

Class Name NoS Class Name NoS
1 asphalt 6631 6 bare soil 5029
2 meadows 18,649 7 bitumen 1330
3 gravel 2099 8 bricks 3682
4 trees 3064 9 shadows 947
5 metal sheets 1345 Total 42,776

370 740 Meters
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Figure 8. Salinas data. (a) Three-band false color composite and (b) ground truth data with 16 classes.

Table 3. NoS used in the Salinas data.

Class Name NoS Class Name NoS
1 brocoli-green-weeds-1 2009 9 soil-vinyard-develop 6203
2 brocoli-green-weeds-2 3726 10 corn-senesced-green-weeds 3278
3 fallow 1976 11 lettuce-romaine-4wk 1068
4 fallow-rough-plow 1394 12 lettuce-romaine-5wk 1927
5 fallow-smooth 2678 13 lettuce-romaine-6wk 916
6 stubble 3959 14 lettuce-romaine-7wk 1070
7 celery 3579 15 vinyard-untrained 7268
8 grapes-untrained 11,271 16 vinyard-vertical-trellis 1807

Total 54,129

3.2. Experimental Setup

In order to evaluate the performance of the proposed 3DBF-GANs method, we compare it
with some other algorithms, i.e., 2DBF, SVM, LapSVM, and CDL-MD-L. The original spectral features
(abbreviated as “Spec”) are also considered in the experiments. Specifically, the “Spec”, 2DBF and 3DBF
are feature extraction methods, while SVM, LapSVM and CDL-MD-L are supervised/semi-supervised
classifiers. The LapSVM, which is a graph-based semi-supervised learning method, introduces
an additional manifold regularizer on the geometry of both unlabeled and labeled data in terms
of the Graph Laplacian. It has been applied to hyperspectral classification and the results have
demonstrated the advantage of this graph-based method in semi-supervised classification of the
HSI. As to the GANs, the standard framework is used, except for adding a softmax classifier
in the output of the discriminator and adopting feature matching to improve the stability of
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the original GANs. By combining the feature extraction and classification methods in pairs,
12 methods (i.e., Spec-SVM, Spec-LapSVM, Spec-GANs, Spec-CDL-MD-L, 2DBF-SVM, 2DBF-LapSVM,
2DBF-CDL-MD-L, 2DBF-GANs, 3DBF-SVM, 3DBF-LapSVM, 3DBF-CDL-MD-L and 3DBF-GANs) are
obtained for comparison. Since the spectral-spatial information is used in the original CDL-MD-L,
Spec-CDL-MD-L and 3DBF-CDL-MD-L denote the input of the CDL-MD-L is the original HSI and the
dataset given by 3DBF, respectively.

In the experiments, a training/test sample is a single pixel, whose size is 1× b. Each pixel can be
taken as the feature of a certain class and classified by the discriminator of the GANs or other classifiers.
Each pixel corresponds to a unique label. The whole cube contains many pixels and therefore, has lots
of labels. All the HSI datasets are normalized between zero and one at the beginning of the experiments.
All the experiments are implemented on the normalized hyperspectral datasets, whose available data
is randomly divided into two parts, i.e., about 60% for training and the rest for testing. In all the
datasets, very limited labeled samples, i.e., 5 samples per class, are randomly selected from the training
samples as labeled samples, and the remaining ones are used as unlabeled samples. The experiments
are repeated ten times using random selection of training and test sets, and the average accuracies are
reported. To assess the experimental results quantitatively, we compare the aforementioned methods
by three popular indexes, i.e., overall accuracy (OA), average accuracy (AA) and kappa coefficient (κ).
Moreover, the F-Measure of various methods is also compared.

For the parameter settings, since the number of labeled samples is limited, leave one out cross
validation is adopted in this paper. The range of the filtering size σs and blur degree σr in the 2DBF are
selected in the range of [1, 2, . . . , 9] and [0.1, 0.2, . . . , 0.5], respectively, whereas both σs and σr in the
3DBF are chosen from [5, 10, . . . , 50]. In the SVM and LapSVM, radial basis function (RBF) kernels are
adopted. The RBF parameter γ is obtained from the range [2−2, 2−1, . . . , 210] and the penalty term is set
to 60. 4 spectral neighbors are adopted to calculate the Laplacian graph in the LapSVM. Three layers
are used in the CDL-MD-L, whose window size and the number of hidden units are set to the same
as [62]. The generator in the GANs has two hidden layers, and the number of units is set to 500 and 300,
respectively. In the discriminator, three hidden layers are adopted, and the number of units is set to
300, 200 and 150, respectively. Gaussian noise is added to the output of each layer of the discriminator.
Moreover, the learning rate and training epoch are set to 0.001 and 100, respectively.

3.3. Experimental Results

To demonstrate the effectiveness of the 3DBF for spectral-spatial feature extraction, we compare
the spectral profiles of the pixel (18,6) from the original Indian Pines data, and the features obtained
by the 2DBF and the 3DBF in Figure 9. Moreover, the spatial scenes of the 4th, 22nd, 34th bands are
compared in Figure 10. As can be seen, the profiles of 3DBF preserve the trend of the original data
while provide smoother features in both spectral and spatial domains.
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Figure 9. The spectral profiles of the pixel (18,6) from the original Indian Pines data, the 2DBF and the 3DBF.
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(a) Original (4th band) (b) 2DBF (4th band) (c) 3DBF (4th band)

(d) Original (22nd band) (e) 2DBF (22nd band) (f) 3DBF (22nd band)

(g) Original (34th band) (h) 2DBF (34th band) (i) 3DBF (34th band)

Figure 10. Spatial scenes of the 4th, 22nd, 34th bands. (a,d,g) are chosen from the original Indian Pines
data, (b,e,h) are obtained by the 2DBF, and (c,f,i) are obtained by the 3DBF.

The qualitative evaluations of various methods are shown in Tables 4–6, and the classification
maps are also visually compared in Figures 11–13. Based on the above-mentioned experimental
results, a few observations and discussions can be highlighted. It can be first seen that, the methods
(i.e., Spec-SVM, 2DBF-SVM, and 3DBF-SVM) using only the limited labeled training samples provide
worse classification performance than the semi-supervised methods that take the unlabeled training
samples into consideration. This stresses yet again the importance of unlabeled samples for HSI
classification. For instance, it is observed from Table 4 that the SVM leads to lower classification
accuracies than other classifiers (i.e., LapSVM, CDL-MD-L and GANs). Taking the same original
“Spec” features as inputs, the OA of SVM is 2.15%, 23.28% and 9.49% lower than those of the
LapSVM, CDL-MD-L and GANs, respectively. Similar properties can also be found in Tables 5 and 6.
The above-mentioned phenomena demonstrate the effectiveness of utilizing the abundant unlabeled
samples for the HSI data.

Second, the “Spec”-based features provide higher classification errors than the 2DBF/3DBF-based
features. As shown in Table 5, the OA, AA, κ and F-Measure of Spec-SVM are lower than those
of the 2DBF-SVM and 3DBF-SVM. Similarly, the OA, AA, κ and F-Measure of Spec-LapSVM/
CDL-MD-L/GANs are also lower than 2DBF-LapSVM/CDL-MD-L/GANs and 3DBF-LapSVM/
CDL-MD-L/GANs. It is also clearly visible that more scattered noise is generated in Figure 12a than in
Figure 12e,i. This is due to the fact that the “Spec” features based only on spectral characteristics, while
2DBF and 3DBF methods can effectively incorporate the spatial information. Since the CDL-MD-L
can make use of both spectral and spatial information in the classification process, the classification
accuracies of Spec-CDL-MD-L are much higher than those of the Spec-SVM, Spec-LapSVM and
Spec-GANs. As shown in Table 5, the OA of Spec-CDL-MD-L is at least 8% higher than other classifiers.
Moreover, with the same classifiers, the 3DBF performs much better than 2DBF. For instance, the OA
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of 3DBF-GANs in Table 5 is about 4% higher than that of the 2DBF-GANs. The reason for good results
of 3DBF is that it exploits the spectral-spatial features by obeying the 3D nature of the HSI cube.

Finally, as to different classifiers, the GANs with 2DBF or 3DBF features provides better or
comparable classification results as compared with SVM, LapSVM and CDL-MD-L. It is observed from
Table 4 that the OA of 2DBF-GANs is 19.65%, 17.02% and 0.25% higher than those of the 2DBF-SVM,
2DBF-LapSVM and 2DBF-CDL-MD-L, respectively, the OA of 3DBF-GANs is also much higher than
3DBF-SVM and 3DBF-LapSVM, and slightly higher than 3DBF-CDL-MD-L. Classification results of
the University of Pavia data (see Table 5) and the Salinas data (see Table 6) also yield similar properties.
Specifically, it is noteworthy that the “meadows” (i.e., class 2) and “bare soil” (i.e., class 6) in the
University of Pavia are difficult to be separated, and the classification accuracies of those two classes
obtained by the 3DBF-GANs outperform other methods (see Table 5). Moreover, the GANs with
the original spectral features are much inferior to the CDL-MD-L. As shown in Table 4, the OA of
Spec-GANs is 13.79% less than that of the Spec-CDL-MD-L. In Table 5 (or Table 6), the OA of Spec-GANs
is also 8.17% (or 5.55%) lower than the Spec-CDL-MD-L. The main reason why Spec-GANs obtains poor
results is the ignorance of spatial information. In a nutshell, the afore-mentioned analysis validates the
effectiveness of the proposed 3DBF-GANs method in semi-supervised hyperspectral classification.
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Figure 11. Classification maps of the Indian Pines data with 5 samples per class.
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Figure 12. Classification maps of the University of Pavia data with 5 samples per class.
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Figure 13. Classification maps of the Salinas data with 5 samples per class.
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Table 4. Classification accuracy (%) of various methods for the Indian Pines data with 5 labeled training samples per class, bold values indicate the best result for a row.

Class
Spec 2DBF 3DBF

SVM LapSVM CDL-MD-L GANs SVM LapSVM CDL-MD-L GANs SVM LapSVM CDL-MD-L GANs

1 a 40.17 46.15 96.58 48.42 77.65 84.48 96.47 95.46 95.27 94.27 96.51 96.08
2 33.07 32.98 65.31 48.02 39.67 39.93 64.93 63.71 46.01 45.05 63.70 66.31
3 40.06 38.02 51.35 44.96 30.16 29.03 52.21 53.14 39.72 36.61 49.89 49.95
4 25.93 27.73 50.79 37.30 26.89 22.67 50.25 48.09 45.35 39.42 46.41 53.98
5 61.38 55.02 85.21 74.23 69.10 74.06 89.35 88.73 74.51 77.23 92.42 91.75
6 68.90 73.71 97.18 80.31 92.52 94.23 97.59 97.62 97.04 97.90 97.96 98.19
7 38.11 56.80 64.58 60.39 28.52 29.10 61.23 61.04 56.22 53.82 81.33 71.89
8 77.12 87.39 99.84 89.10 96.84 98.83 99.86 99.81 99.81 99.83 99.83 99.79
9 24.62 20.01 81.08 39.60 25.03 26.61 81.20 79.68 73.88 73.93 80.34 79.03

10 46.77 43.29 57.60 57.66 34.88 34.35 57.81 60.08 45.63 46.59 56.66 58.37
11 48.73 50.98 66.44 55.36 41.81 53.06 66.17 67.86 52.04 60.77 69.22 71.61
12 26.28 28.31 61.31 36.92 37.96 38.06 60.56 57.50 46.19 51.53 64.85 64.34
13 85.68 83.23 99.23 88.16 96.76 96.99 99.15 98.90 98.91 99.27 99.60 99.41
14 76.75 78.87 89.22 82.70 85.81 88.12 91.57 90.95 85.47 88.30 93.18 95.11
15 30.73 19.03 81.53 38.46 60.38 62.74 83.55 82.73 68.39 69.76 82.06 85.36
16 73.24 75.93 83.13 87.75 95.58 97.26 82.94 83.16 66.14 69.46 87.97 84.49

OA 49.60 51.75 72.88 59.09 53.88 56.51 73.28 73.53 62.56 65.33 74.12 75.62

AA 60.93 59.62 79.29 70.12 68.85 70.04 79.99 79.48 70.64 70.92 80.47 81.05

κ 43.84 45.70 69.18 54.36 48.75 51.44 69.71 69.89 57.42 60.09 70.59 72.23

F-Measure 49.85 51.09 76.90 60.58 58.72 60.60 77.18 76.78 68.16 68.98 78.87 79.10
a Lines 3 to 18 are the F-Measure per class.
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Table 5. Classification accuracy (%) of various methods for the University of Pavia data with 5 labeled training samples per class, bold values indicate the best result
for a row.

Class
Spec 2DBF 3DBF

SVM LapSVM CDL-MD-L GANs SVM LapSVM CDL-MD-L GANs SVM LapSVM CDL-MD-L GANs

1 a 71.43 77.56 79.24 73.88 71.35 72.65 79.44 79.00 61.97 76.91 80.30 81.21
2 58.68 59.85 78.14 69.26 66.55 66.76 78.96 79.95 59.44 75.99 81.83 84.45
3 39.99 20.16 52.27 42.49 36.52 48.97 51.24 53.92 46.36 49.88 60.12 58.56
4 48.83 62.14 65.65 67.27 60.17 57.39 68.42 71.53 79.67 70.29 79.52 84.57
5 53.20 89.41 96.23 93.09 94.85 82.61 96.11 96.45 95.76 96.64 97.10 97.29
6 32.20 36.39 56.88 38.01 44.92 47.43 56.64 58.43 60.71 52.91 60.21 62.60
7 63.78 51.27 52.65 54.75 46.10 47.63 53.33 53.44 76.52 51.07 56.45 59.25
8 57.80 64.92 67.92 64.05 60.78 63.34 68.28 68.38 60.60 66.01 71.60 71.54
9 95.61 99.92 95.91 99.90 94.55 93.84 95.44 95.63 96.98 94.52 96.31 96.28

OA 53.62 60.17 71.83 63.66 61.80 62.62 72.32 73.29 63.39 69.87 75.78 77.94

AA 63.76 69.53 76.08 72.85 70.21 70.66 76.37 77.33 70.89 75.43 80.43 81.36

κ 44.18 51.33 64.24 54.62 52.81 53.81 64.85 66.04 54.47 62.07 69.26 71.82

F-Measure 57.95 62.40 71.65 66.97 63.98 64.51 71.98 72.97 64.82 70.47 75.94 77.30
a Lines 3 to 11 are the F-Measure per class.
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Table 6. Classification accuracy (%) of various methods for the Salinas data with 5 labeled training samples per class, bold values indicate the best result for a row.

Class
Spec 2DBF 3DBF

SVM LapSVM CDL-MD-L GANs SVM LapSVM CDL-MD-L GANs SVM LapSVM CDL-MD-L GANs

1 a 82.66 87.42 97.35 92.06 82.37 93.65 97.81 97.89 94.24 93.82 97.75 98.18
2 86.98 92.44 98.01 92.98 88.92 94.71 98.25 98.30 95.93 95.70 98.37 98.63
3 46.08 32.97 89.44 66.85 46.42 65.43 89.60 90.14 67.57 68.24 90.88 92.86
4 96.56 96.00 95.04 96.47 88.05 93.57 95.95 96.05 95.04 95.10 96.18 94.63
5 87.68 84.84 93.79 90.16 81.58 87.39 94.35 94.48 88.76 89.75 95.52 94.10
6 98.88 94.60 98.08 98.72 98.84 97.25 98.19 98.91 96.97 97.04 98.94 99.64
7 91.97 93.90 97.20 93.71 93.05 93.39 97.19 97.17 93.43 93.46 97.22 98.18
8 56.12 59.05 66.00 58.39 68.87 58.12 69.10 68.05 59.30 61.64 73.27 76.40
9 93.92 96.45 98.04 96.49 97.91 97.02 98.20 98.20 97.46 97.49 98.33 98.45

10 52.58 69.94 76.58 71.22 43.17 65.56 77.37 79.16 65.01 64.47 81.58 83.23
11 61.79 71.97 83.86 73.16 55.93 74.06 84.04 86.07 74.48 74.72 84.05 88.22
12 72.09 75.79 97.52 83.88 72.09 82.98 97.61 97.70 83.76 82.06 96.02 98.18
13 72.10 77.04 84.87 78.53 75.46 78.43 88.99 89.04 79.28 79.97 85.15 89.56
14 79.22 81.93 81.64 79.74 74.10 80.11 82.54 81.24 81.75 80.82 82.18 85.53
15 55.90 56.25 56.73 51.64 59.81 50.32 55.05 61.31 55.52 54.94 56.34 67.11
16 62.32 76.79 88.19 73.46 78.34 71.90 87.53 91.80 69.92 71.45 92.57 94.58

OA 73.22 74.23 82.72 77.17 75.15 76.47 83.53 84.38 77.78 78.12 85.11 87.63

AA 77.92 78.89 89.48 83.18 77.45 82.75 89.88 90.71 83.57 83.90 90.61 92.30

κ 70.40 71.47 80.84 74.70 72.44 73.93 81.71 82.69 75.39 75.77 83.44 86.26

F-Measure 74.80 77.96 87.65 81.09 75.31 80.24 88.24 89.09 81.15 81.29 89.02 91.09
a Lines 3 to 18 are the F-Measure per class.
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4. Discussions

4.1. Statistical Significance Analysis of the Results

The statistical significance of the classification differences between various methods is assessed
by the McNemar’s test, which is based upon the standardized normal test statistic

Z =
f12 − f21√

f12 + f21
(21)

where fij refers to the number of samples classified correctly by the classifier i but incorrectly
by classifier j and Z indicates the pairwise statistical significance of the classification difference
between the ith and jth classifiers. In case the test statistic |Z| > 1.96, the difference of classification
accuracies between the ith and jth classifiers is regarded as statistical significant at the 5% level
of significance. For comparison purpose, the results of the McNemar’s test on the 3DBF-GANs
and other methods are listed in Table 7, which shows that the proposed 3DBF-GANs is superior
(Z > 1.96) to Spec-SVM, Spec-LapSVM, Spec-GANs, Spec-CDL-MD-L, 2DBF-SVM, 2DBF-LapSVM,
2DBF-CDL-MD-L, 2DBF-GANs, 3DBF-SVM, 3DBF-LapSVM, or comparable (|Z| < 1.96 in the Indian
Pines data) with 3DBF-CDL-MD-L. According to the McNemar’s test, both the 3DBF and GANs are
helpful for improving the classification performance since the test statistic is statistical significant,
which further confirms the effectiveness of the proposed method.

Table 7. McNemar’s test between 3DBF-GANs and other classifiers.

Methods Z Z Z
(Indian Pines Data) (University of Pavia Data) (Salinas Data)

3DBF-GANs vs. Spec-SVM 28.04 42.21 40.21
3DBF-GANs vs. Spec-LapSVM 26.93 41.45 38.54
3DBF-GANs vs. Spec-CDL-MD-L 5.91 18.52 17.24
3DBF-GANs vs. Spec-GANs 18.62 30.72 18.38
3DBF-GANs vs. 2DBF-SVM 25.01 41.32 29.31
3DBF-GANs vs. 2DBF-LapSVM 19.63 39.79 24.52
3DBF-GANs vs. 2DBF-CDL-MD-L 4.72 17.92 20.11
3DBF-GANs vs. 2DBF-GANs 4.45 17.63 19.54
3DBF-GANs vs. 3DBF-SVM 16.71 38.22 18.91
3DBF-GANs vs. 3DBF-LapSVM 15.57 25.07 18.57
3DBF-GANs vs. 3DBF-CDL-MD-L 1.64 10.37 16.81

4.2. Sensitivity Analysis of the Parameters

There are four important parameters in the proposed 3DBF-GANs method: the filtering size σs,
the blur degree σr, the training epoch and the learning rate. The influence of these parameters on the
classification performance (e.g., OA) is analyzed in Figures 14 and 15. In Figure 14, the effect of σs and
σr is plotted with the training epoch is fixed to 100. It can be seen from Figure 14 that, if the filtering size
σs and the blur degree σr are too small or too large, the OA of 3DBF-GANs is not satisfactory. This is
due to the fact that very little spatial information is considered in case σs and σr are too small, while
too large σs and σr will cause oversmooth. Furthermore, the influence of the training epoch is depicted
in Figure 15, from which one can observe that, the OA rapidly increases at first, then slowly increases
and finally trends to a certain stable value with the increasing of training epoch. The influence of the
learning rate is shown in Figure 16, from which one can find that the OA with a large learning rate
(e.g., 0.1) is much lower than that with a smaller learning rate. The reason is that too large learning
rate can cause the loss function to fluctuate around the minimum, or even worse, to diverge. Note that
too small (e.g., 0.00001) will lead to slow convergence, it is better to set the learning rate to 0.001 or
0.0001. In analogy to the other comparison methods, the appropriate parameters are of importance to
the classification performance our proposed 3DBF-GANs method. It is highlighted from the above
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analysis that we are able to gain satisfying classification results for different hyperspectral datasets
with the provided parameter settings.
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Figure 14. The impact of parameters σs and σr on the OA in (a) Indian Pines data, (b) University of
Pavia data and (c) Salinas data.
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Figure 15. The impact of training epoch on the OA in (a) Indian Pines data, (b) University of Pavia
data and (c) Salinas data.
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Figure 16. The impact of learning rate on the OA in (a) Indian Pines data, (b) University of Pavia data
and (c) Salinas data.

Moreover, the impact of the number of labeled training samples is also evaluated in this section.
We randomly choose 5, 10, 15 and 20 samples from each class as the labeled training samples and the
OA of various methods is plotted in Figure 17, which shows that the classification accuracy increases
as the number of labeled training samples goes up and the 3DBF-GANs method is superior to other
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methods when the same number of labeled training samples is chosen. Although the performance
of different methods changes as the number of training samples changes, the 3DBF-GANs provides
higher classification accuracies than other methods. In addition, it should be pointed out here that the
number of synthetic examples generated by the 3DBF-GANs method equals to the total number of
training samples (including labeled samples and unlabeled samples), and therefore, is not varied with
the number of labeled samples.
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Figure 17. The impact of the number of labeled training samples per class on the OA in (a) Indian Pines
data, (b) University of Pavia data and (c) Salinas data.

5. Conclusions

In this paper, we have proposed a semi-supervised learning method based on 3DBF and GANs for
hyperspectral classification. The proposed 3DBF-GANs method relies on two aspects. The first is the
extraction of spectral-spatial features by the 3DBF. The main advantage of the 3DBF is that it is able to
smooth the hyperspectral cube while preserving the edges by naturally treating the HSI as a volumetric
dataset. The second one is the semi-supervised classification by the GANs. The GANs can make
full use of both the limited labeled samples and the abundance of unlabeled samples for significant
semi-supervised learning. Compared to the shallow learning and non-adversarial networks, the GANs
are one of the effective deep learning methods which can take advantage of the discriminative models
to train the generative network in an adversarial fashion. The proposed method has been tested
on AVIRIS and ROSIS datasets with very limited labeled samples, and the comparison with other
state-of-the-art methods (i.e., 2DBF, SVM, LapSVM, and CDL-MD-L) has confirmed the effectiveness
of the proposed method. Quantitatively, the OA of 3DBF-GANs improves about 1% to 25% compared
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to other state-of-the-art methods. Note that the GANs have a complex structure, a future research
topic is to investigate how to determine the network parameters in a more effective and automatic way.
Introducing the graph-based semi-supervised learning method [26] from other areas to hyperspectral
classification is also a probable future research direction.
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