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Abstract: The drought episodes in the second half of the 20th century have profoundly modified 
the state of Lake Chad and investigation of its variations is necessary under the new circumstances. 
Multiple remote sensing observations were used in this paper to study its variation in the recent 25 
years. Unlike previous studies, only the southern pool of Lake Chad (SPLC) was selected as our 
study area, because it is the only permanent open water area after the serious lake recession in 
1973–1975. Four satellite altimetry products were used for water level retrieval and 904 Landsat 
TM/ETM+ images were used for lake surface area extraction. Based on the water level (L) and 
surface area (A) retrieved (with coinciding dates), linear regression method was used to retrieve the 
SPLC’s L-A curve, which was then integrated to estimate water volume variations (∆ ). The results 
show that the SPLC has been in a relatively stable phase, with a slight increasing trend from 1992 to 
2016. On annual average scale, the increase rate of water level, surface area and water volume is 0.5 
cm year−1, 0.14 km2 year−1 and 0.007 km3 year−1, respectively. As for the intra-annual variations of 
the SPLC, the seasonal variation amplitude of water level, lake area and water volume is 1.38 m, 
38.08 km2 and 2.00 km3, respectively. The scatterplots between precipitation and ∆  indicate that 
there is a time lag of about one to two months in the response of water volume variations to 
precipitation, which makes it possible for us to predict ∆ . The water balance of the SPLC is 
significantly different from that of the entire Lake Chad. While evaporation accounts for 96% of the 
lake’s total water losses, only 16% of the SPLC’s losses are consumed by evaporation, with the other 
84% offset by outflow. 

Keywords: water level; water surface area; water volume variations; water balance; remote 
sensing; Lake Chad 

 

1. Introduction 

Lake Chad, one of Africa’s largest freshwater lakes, lies in an endoreic basin on the southern 
margin of the Sahara Desert (Figure 1). Like most lakes located in a hydrologically closed drainage 
system, the fluctuation of Lake Chad is directly related to river inflow, which varies according to the 
annual rainfall over the basin [1,2]. The climate of the Lake Chad basin can be classified as tropical 
hyper-arid, with four distinct climate zones of different rainfall levels. Moving from the north to the 
south of the basin, the climatic zones are the Saharan climate, the Sahelo-Saharan climate, the 
Sahelo-Sudanian climate and the Sudano-Guinean climate, respectively. Accordingly, the annual 
average rainfall ranges from nearly 1600 mm in the southwest to less than 150 mm in the north [3]. 
As a result, approximately 90% of Lake Chad’s water comes from the Chari/Logone River system in 
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the south of the basin, with the remaining 10% coming from local precipitation and from the El Beid 
and Komadougou Yobe Rivers [4–7]. 

 
Figure 1. Location of our study area, with its main tributaries and the four riparian countries. 

As a highly variable shallow lake (less than 7 m), Lake Chad is very sensitive to precipitation 
and runoff changes. For example, in the 1960s, Lake Chad was the world’s sixth largest inland water 
body, with an open water area of 25,000 km2, but it has since shrunk dramatically to only 2000 km2 in 
the subsequent forty years [8]. The most striking variation of Lake Chad during this period is the 
recession of the lake in 1973–1975, which has been widely reported in the media [2]. As Figure 2 
shows, due to a series of devastating droughts over the African Sahel belt, the open water area of 
Lake Chad has been separated into two individual parts by a shallow zone termed as the “Great 
Barrier” since 1973 [9]. Since then, Lake Chad has been composed of two basins: the southern basin 
of the lake, fed directly by the inflows from the Chari/Logone River (annual mean 27.14 km3 year−1 
between 1960 and 2013) and the northern basin, which receives only a small contribution from the 
Yobe River (annual mean 0.56 km3 year−1 between 1960 and 2013). As a result, these two basins vary 
differently with time: the northern basin has been occasionally and partially inundated while the 
southern basin has remained a free water zone [2]. 

Bounded by four countries (Cameroon, Chad, Niger and Nigeria), Lake Chad provides a vital 
source of water to more than 30 million people in these riparian states [10]. The lake recession in the 
second half of the 20th century has triggered conflicts related to food security, poverty, and 
migration [11,12]. It is therefore crucial to continuously monitor Lake Chad to increase our 
understanding of water resource availability. Due to the lack of reliable in situ meteorological and 
hydrological observations, it is very challenging and costly to document the fluctuation of Lake 
Chad using traditional techniques. Consequently, researchers have resorted to the use of satellite 
gravimetry, altimetry and imagery to investigate the water resources in the Lake Chad basin. For 
example, Coe and Birkett [13] adopted altimetric stage measurements from the TOPEX/Poseidon 
satellite to estimate the height of Lake Chad. Leblanc et al. [14] retrieved and analyzed the monthly 
total inundated area of Lake Chad from 1986 to 2011 using METEOSAT thermal maximum 
composite data. The spatio-temporal characteristics of water storage change within the Lake Chad 
basin from 2003 to 2013 was investigated by Buma and Lee [15] using the Gravity Recovery and 
Climate Experiment (GRACE) and Landsat imageries. Additionally, Buma et al. [12] investigated the 
diverse aspects of the Lake Chad basin through a combined used of updated remotely sensed and 
hydrological model datasets. 
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Figure 2. The serious lake recession of Lake Chad observed from Landsat images. 

These studies revealed the hydrological variations of the Lake Chad basin from different 
aspects, which is important for local water resource management in the light of climate change. That 
said, these studies, in addition to those based on remote sensing techniques, have focused mainly on 
monitoring either water surface area or lake level [4,13,14,16–18]. Although several studies have 
tried to reveal the water storage change of Lake Chad, they are conducted on the whole basin scale 
[12,19]. The water volume variation of the lake itself has seldom been investigated. Furthermore, 
most studies have only focused on the variation of Lake Chad as a whole to study the serious lake 
recession in the second half of the 20th century. Few studies have investigated the recent variations 
of its two basins individually [2,20]. The drought episodes in the region have profoundly modified 
the natural resources in the basin and around the lake [21–23], and a re-evaluation of Lake Chad’s 
water resources is necessary. Since the lake’s separation into two individual parts during 1973–1975, 
open water has persisted only in the southern basin, mostly near the Chari delta [2]. Therefore, our 
study focuses on the open water body in Lake Chad’s southern basin. 

The development of sophisticated remote sensing techniques has made it possible to retrieve 
both water level and surface area directly from remote sensing observations. Several recent studies 
show that water volume variations can be estimated indirectly using the combination of satellite 
altimetry and imagery data [24–27]. The innovation of this research is the application to Lake Chad 
and the investigation of the water budget components. Accordingly, the main objectives of this 
paper are: (1) to provide comprehensive monitoring of the south pool of Lake Chad (SPLC) in the 
recent 25 years through multiple remote sensing observations, in which water level, surface area and 
volume variations of Lake Chad are estimated without any in situ measurements and bathymetry 
maps; and (2) to conduct water balance analysis to investigate different components of the lake’s 
water budget, based on the estimated water volume variations, river inflow observations and 
meteorological datasets from the Climatic Research Unit (CRU). 

2. Study Area 

2.1. Lake Chad Setting 

Lake Chad features several types of landscape, which vary according to the water level [28,29]. 
Over the first half of the 20th century and up until the start of the 1970s, Lake Chad is a single body 
of water with limited marshy vegetation along the shores. The water surface area over this period 
ranges from 15,000 to 25,000 km2. Since 1973, Lake Chad has been experiencing a small lake phase 
with an area of about 2000–14,000 km2 [30]. Most of its areal extent is covered by permanent or 
seasonal marshes rather than open water. The most distinguishing feature of “Small Lake Chad” is 
the division of the inundation area into two separate large basins by shoals covered with dense 
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vegetation, which are referred to the “Great Barrier”. As a result, Lake Chad in this phase is 
composed of several water bodies with only one permanent water pool facing the Chari delta in the 
southern basin [2]. Due to the small inflow of Yobe River, the northern basin has been occasionally 
and partially inundated since 1975. There are even observations showing that it has completely 
dried up on several occasions [9]. The term “Dry Small Lake Chad” proposed by Lemoalle et al. [2] is 
used to describe a state when the northern basin remains dry all year long. 

The research of Lemoalle et al. [2] shows that Lake Chad has been functioning as a Small or Dry 
Small Lake since 1975. As a result, it has been a shriveled, fragmented collection of several water 
bodies for more than 40 years. The permanent open water pool in the southern basin was adopted as 
our study area in this paper, because it is the only one of several water bodies that provides reliable 
water resources to human, livestock and wildlife communities (Figure 2). 

2.2. Climatic and Hydrologic Variability 

Direct rainfall and the discharge from Chari River are the only two water sources for the 
southern pool of Lake Chad (SPLC). Consequently, the level, volume and surface area of the lake 
fluctuate as a function of climatic and hydrological variations. The monthly discharge of the 
Chari/Logone River system at N’Djamena, the direct rainfall over SPLC, and the regional average 
rainfall of the whole basin are presented in Figure 3. The discharge observations are provided by the 
Lake Chad Basin Commission (LCBC), and the rainfall data are retrieved from the gridded climate 
dataset produced by the Climatic Research Unit (CRU). More details about the data source are 
presented in Section 3. Because of the steep south-to-north rainfall gradient, the average 
precipitation over the whole basin is more than twice the direct precipitation over Lake Chad. 
Although all previous studies have confirmed the general decreasing trend of precipitation since the 
1960s, the precipitation time series can be divided into two phases by adopting the severe drought in 
1984 as a turning point. 

During the first period, Lake Chad’s direct precipitation decreased from 655.20 mm year−1 to 
190.20 mm year−1 with an annual average rate of −7.87 mm year−1. At the basin scale, precipitation 
decreased from 1074.90 mm year−1 to 679.44 mm year−1, with an annual average rate of −7.40 mm 
year−1. In contrast, the precipitation has increased since 1985. Specifically, the annual average rate of 
increase over Lake Chad and the whole basin is 5.48 mm year−1 and 4.84 mm year−1, respectively. As 
for the discharge of the Chari/Logone River, it has decreased by almost 50% over the first 40 years, 
from about 43 km3 year−1 in the 1950s to about 23 km3 year−1 in the 1980s. The annual average rate of 
decrease is about −0.73 km3 year−1. However, due to the increase in rainfall, the variation of discharge 
from 1985 to 2013 shows a slightly increasing trend, with an annual average rate of 0.02 km3 year−1. 

 
Figure 3. Time series of monthly discharge of the Chari/Logone River, the direct rainfall of the 
southern pool of Lake Chad (SPLC) and the regional average rainfall of the whole basin. 
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Besides significant inter-annual variation, the seasonal variation of precipitation over the study 
area is obvious. Lake Chad has a Sahelian climate, which is characterized by a relatively short rainy 
season from June to October and a long dry season for the rest of year [30]. As presented in Figure 4, 
the precipitation during the rainy season accounts for about 85% of the total annual precipitation. 
The comparison of these two curves shows that there is a time lag of about one to two months in the 
response of streamflow to precipitation. As a result, most of the discharge is observed from July to 
December with a peak value in October. 

 
Figure 4. Seasonal variations of river discharge and regional average rainfall of the whole basin. 

3. Data Source 

3.1. Satellite Altimetry Products for Water Level 

Satellite radar altimetry is a successful technique that is widely used to monitor lake level 
variations [25–27,31,32]. In this paper, four satellite altimetry products were used to monitor the 
fluctuations of Lake Chad. 

The Global Reservoir and Lake Monitor (GRLM) product is prepared by the United States 
Department of Agriculture’s Foreign Agricultural Service (USDA-FAS), in cooperation with NASA 
and the University of Maryland. Near-real time data from multiple missions including the Jason-3, 
Jason-2/OSTM, Jason-1, TOPEX/POSEIDON (T/P) and ENVISAT, are utilized in this product to 
routinely monitor lake and reservoir height variations [33]. Relative height variations of Lake Chad 
from 1992 to 2016 are provided with respect to a nine-year mean level derived from T/P altimeter 
observations (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/). 

Hydroweb is developed by LEGOS (Laboratoire d’Etudes en Géophysique et Océanographie 
Spatiales) in France. Based on altimetry data from T/P, Jason-1, Jason-2, ENVISAT and GFO data, 
Hydroweb provides time series over water levels of about 100 lakes and 250 sites on large rivers [34]. 
Water level records of Lake Chad from 1992 to 2016 are available now in Hydroweb 
(http://hydroweb.theia-land.fr/). 

The River Lake Hydrology (RLH) product developed by the European Space Agency and 
Montfort University is based on altimetry observations mainly from ENVISAT and Jason-2 
(http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main). It provides the relative water level 
variations of Lake Chad from 2003 to 2016 with respect to the corresponding climatological mean 
level, which is determined by averaging all the available water levels (referenced to the EGM96 
(Earth Gravitational Model) geoid) during this period [35]. More details about the EGM96 geoid can 
be found in the research of Chander and Majumdar [36]. 

The Database for Hydrological Time Series of Inland Waters (DAHITI) is developed by the 
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München [37]. It provides 
inland water level time series over lakes, rivers and reservoirs from multi-mission satellite altimetry 
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(TOPEX, Jason-1, Jason-2, GFO, ENVISAT, Cryosat-2, and Saral/Altika). For Lake Chad, water level 
series with different references from 1992 to 2016 are available now in DAHITI 
(http://dahiti.dgfi.tum.de/en/). Within this study, ellipsoidal heights with respect to WGS84 ellipsoid 
have been used. 

3.2. Landsat Imagery for Water Surface Area 

Landsat TM/ETM+ images, because of their high spatial resolution (30 m), have been widely 
used to monitor the variations of water surface area [38–40]. In total, 904 Landsat TM/ETM+ images 
from 1991 to 2016 were obtained from the USGS Glovis data archive (http://glovis.usgs.gov). All 
images used are cloud free or have a slight cloud cover (less than 5%). Due to the post-2003 Scan Line 
Corrector (SLC) failure, there are wedge-shaped gaps and missing pixels in the ETM+ images 
acquired afterwards [41]. A simple gap-filing extension toolbox (landsat_gapfill.sav) in the ENVI 
(Environment for Visualizing Images) software was used to remove the gaps in the ETM+ SLC-off 
images. This gap-filling method is based on the local linear histogram matching technique chosen by 
USGS [42,43]. Following the instructions presented by Chander et al. [44], scenes were screened to 
remove cloud and cloud shadow and converted to Top-of-Atmosphere (TOA) reflectance based on 
the coefficients in the header file. 

3.3. Gridded Climate Dataset 

Gridded climate dataset produced by the Climatic Research Unit (CRU) is used in this paper to 
represent the climatic conditions of the study area. It contains interpolated average data from 
climatic models and stations over a spatial grid of 30 arc minutes for the period 1901–2015. A 
number of climatic variables (e.g., cloud cover, precipitation, temperature, vapor pressure, potential 
evapotranspiration, and forest day frequency) at the monthly time scale are available in the current 
version 4.00. More details about data interpolation and quality assessment can be found in the 
studies of Harris et al. [45] and Harris and Jones [46]. In this study, monthly precipitation and 
potential evapotranspiration from the grid cells covering Lake Chad were extracted from CRU TS 
Version 4.00 product using the water surface area derived from Landsat imagery. 

3.4. Field Observations 

In situ observations of water level and surface area would be very helpful to studies similar to 
ours. The research of Bouchez et al. [47] shows that the lake level of Lake Chad has been monitored 
non-continuously from 1956 to 2008. However, the fact is that no such observations are available for us 
during the period under consideration (1991–2016). Monthly discharge of the Chari/Logone River 
system observed at N’Djamena is used for water balance analysis. Monthly precipitation and potential 
evaporation observations from seven meteorological stations (Figure 1) are used to evaluate the 
accuracy of CRU products. All of these field observations are provided by the Lake Chad Basin 
Commission (LCBC) composed of Cameroon, Chad, Niger, Nigeria, Central African Republic and 
Libya. 

4. Methodology 

4.1. Water Surface Mapping 

The vivid spectral information provided by Landsat TM/ETM+ images has been widely used 
for mapping water surface area [38–40]. The basic logic of these studies is to highlight the difference 
between water bodies and other objects through the calculation of water indexes [48]. The water 
index used in this research is the Modified Normalized Difference Wetness Index (MNDWI) 
proposed by Xu [49], which was demonstrated by previous studies to have a relatively strong 
performing metric compared to various water detection indexes across a range of environments 
[38,50–52]. The definition of MNDWI is given as follows: 
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MNDWI = Green − MIRGreen + MIR (1) 

where Green and MIR are the surface reflectance of the green band and middle infrared band (MIR) 
of Landsat TM/ETM+ images, respectively. Because of their high absorption in the MIR band 
(1.55~1.75 μm) and high reflectance in the Green band (0.52~0.60 μm), water features usually have 
high positive values. Non-water features such as soil and vegetation have low negative values 
because they reflect more in MIR band than in the green one. Therefore, a proper definition of 
specific thresholds of MNDWI classification can be used to distinguish water features from other 
land cover components. Following the procedure proposed by Zhu et al. [53], the water surface area 
of Lake Chad is extracted as follows: 

(1) Calculation of MNDWI. As cloud and cloud shadow have already been filtered out from the 
surface reflectance data, MNDWI can be calculated directly for all the Landsat images available. 

(2) Establishment of water mask. For each scene, all pixels with positive MNDWI values are 
recognized initially as water surface. However, for the whole period from 1991 to 2016, only 
pixels with a frequency higher than 90% were assumed as water surface. A ten-pixel buffer zone 
was then created over the continuous water surface and used as the water mask of our study area. 

(3) Definition of the MNDWI threshold. Although numerous studies have been conducted to 
address the threshold of water indexes, how the threshold should be defined is still far from 
conclusive. It seems that the proper threshold of water indexes is variable for different lakes. 
Following the manual adjustment procedure by Xu [49] and recommendation by Ji et al. [54], 
different MNDWI threshold values were tested within the water mask established above. After 
repeated tests and careful checks on the resulting water body boundary, the threshold value of 
MNDWI for Lake Chad was set as 0.20. 

(4) Extraction of water surface area. Applying the threshold to each Landsat image within the 
water mask, we obtained the aquatic surface distribution over the study area. The water surface 
area of the SPLC was extracted by summing up the area of the large continuous pixels 
identified as aquatic surface. 

4.2. Processing of Water Level Products 

For all of the four satellite altimetry products, water level datasets are given in the form of 
graphs and tables. As a result, Lake Chad’s water level can be retrieved directly from these four 
products. However, two issues remain to be addressed. 

(1) The accuracy of the altimetry products. Due to the lack of in situ water level observations, it is 
impossible for us to evaluate the accuracy of these altimetry products directly. In this paper, the 
accuracy of altimetry products is evaluated indirectly through their correlation with the water 
surface area extracted above. For a given lake, the relationship between water level and surface 
area is certain. There should be significant positive correlations between these two variables 
[55]. Therefore, the Pearson correlation coefficient (r) between the water level and its 
corresponding surface area was used here to evaluate the accuracy of different altimetry 
products, and is calculated as: = ∑ − −∑ − ∑ −  (2) 

where  and  are the corresponding water surface area and water level acquired on the 
same day, respectively. 

(2) The inconsistency of the altimetry products. Firstly, the water level retrieved from different 
altimetry products is referenced to different geoids. Secondly, both GRLM and RLH provide 
relative water level variations, while the water level retrieved from Hydroweb and DAHITI is 
presented as an absolute value. These altimetry products need to be transformed into the same 
reference system so that consistent comparisons can be made. In this paper, this transformation 
is achieved through a simple offset method, and the WGS84 ellipsoid involved in the DAHITI 
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product is adopted as the universal reference system. Specifically, the offset is determined by 
averaging the differences between water levels retrieved from DAHITI and those retrieved 
from other altimetry products. To remove the noise of some outliers, the differences larger than 
three times the standard deviation have been removed. After the reference system of all 
altimetry products has been transformed into WGS84 ellipsoid, a direct comparison is 
conducted to further investigate the accuracy of different altimetry products. 

4.3. Water Volume Estimation 

The relationship between water level (L) and surface area (A) for a given lake is certain. 
Therefore, once enough water level and surface area observations are available, the L-A curve can be 
determined through statistical analysis [56,57]. Specifically, following the scatter diagram of water 
level and surface area, the L-A curve can be retrieved by either linear or nonlinear regression. Once 
the L-A curve is known, the water volume variations (∆V) caused by a given water level change ( −

) can be estimated as: ∆V =  (3) 

where  is the water surface area corresponding to water level  following the retrieved L-A 
curve. According to Duan and Bastiaanssen [25] and Tong et al. [27], the total volume ( ) of a lake 
can be defined as the sum of a constant volume ( ) and ∆  as follows. V = + ∆  (4) 

If we define  as the water volume corresponding to the lowest water level during the study 
period, the resulting ∆  is referred to as Water Volume Above the Lowest water Level (WVALL). 
Consequently, the relationship between WVALL and water level (L-V curve) can be established by 
defining  in Equation (3) as the lowest water level. The retrieved L-V curve is the integration of the 
functional relationship between surface area and water level, and the estimated WVALL is the relative 
water volume variation for the purpose of water balance analysis, rather than an absolute value. 

4.4. Lake Water Balance 

The water balance of the southern pool of Lake Chad can be expressed by the following: ∆ = − + − + ε (5) 

where  and  are the amount of direct precipitation and evaporation, respectively. These two 
components are functions of water surface area and their respective rate.  is the inflow of the 
lake from the Chari/Logone River system.  is the outflow from the lake, which includes both the 
discharge of the surface water to the northern basin and the seepage of the lake in the form of 
groundwater discharge. ε represents the uncertainties in the water balance arising from errors in 
the data and water losses due to human and animal consumption, which usually cannot be 
accounted for directly [58,59]. 

In this research, ∆  is estimated from remote sensing observations as described above.  and 
 are retrieved directly from the CRU product by using the water surface extracted from Landsat 

images as the mask.  is the discharge of the Chari/Logone River observed at N’Djamena. 
Therefore,  is the only unknown component to be estimated from water balance analysis. 
Depending on the objective, the budget equation is applied to three time scales, including daily scale 
between two successive dates, monthly scale and annual scale. 

5. Results 

5.1. Comparison of Different Altimetry Products 

Figure 5 presents water level variations retrieved from different altimetry products and there is 
significant difference in the number of samples. RLH product only provide water level monitoring 
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over a very short period. Its time period ranges from 3 October 2006 to 7 September 2010 with a 
sample size of 25. In contrast, long-term water level monitoring is observed in GRLM, Hydroweb 
and DAHITI products, all of which provide 25-year monitoring data of Lake Chad from 1992 to 2016. 

 
Figure 5. Water level variations retrieved from four altimetry products: GRLM (a), Hydroweb (b), 
DAHITI (c), RLH (d). The red lines indicate the trend of variation. 

Due to the lack of in situ water level observations, it is difficult to evaluate the accuracy of 
altimetry water level products directly. However, a close look of Figure 5 shows that the difference 
in the accuracy of these four products is significant. Take GRLM and Hydroweb for example: 
although both products provide monitoring data of Lake Chad from 1992 to 2016, they have 
opposing water level variation trends. Specifically, a slight downward trend is observed in the 
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GRLM product with an annual average rate of −0.7 cm year−1, while the water level retrieved from 
Hydroweb indicates a slight upward trend with an annual average rate of 0.9 cm year−1. A slighter 
increasing trend is observed in the water levels provided by DAHITI product. The rate of increase on 
annual average scale is only 0.3 cm year−1. Therefore, the accuracy of the altimetry products need to 
be evaluated before they are used to judge the variation trend of Lake Chad. 

In this paper, we used correlation analysis to evaluate the accuracy of different altimetry 
products. Figure 6 presents the scatterplots of the water level retrieved from altimetry products and 
water surface area extracted from Landsat images. Due to the small sample size of RLH, it is 
impossible to obtain enough samples with dates consistent with that of the Landsat observations. 
Consequently, only the scatterplots of GRLM, Hydroweb and DAHITI are shown here. There is 
significant difference in the number of points for the three datasets. The difference is mainly caused by 
the sample size of different altimetry products, because the number of Landsat images is constant. As 
presented in Figure 5, the sample size of GRLM, Hydroweb and DAHITI is 669, 421 and 866, 
respectively. As a result, the number of points for the three datasets in Figure 6 follows the same order. 

 
Figure 6. Scatterplots of the water surface area extracted from Landsat images and water level 
retrieved from: Hydroweb (a); GRLM (b); and DAHITI (c) products. The black, red and green colors 
in GRLM product represent OSTM, Jason-1 and T/P dataset, respectively. 
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In general, good agreement is achieved between the water levels retrieved from Hydroweb and 
DAHITI products and the corresponding water surface area extracted from Landsat images. The r 
produced is 0.70 and 0.67, respectively. However, a poor positive correlation is observed in the 
GRLM product with r of 0.16. A careful inspection of the GRLM product shows that this poor 
correlation relationship is mainly caused by the water levels retrieved from Jason-1 and 
TOPEX/POSEIDON (T/P). After removing these samples, the Pearson’s r obtained between the 
water levels retrieved from OSTM and the corresponding surface area is as high as 0.78. Besides, the 
GRLM product itself also presents the respective errors of each samples. The average errors of 
Jason-1, T/P and OSTM calculated for Lake Chad are 0.07 m, 0.06 m and 0.05 m, respectively. Based 
on the values of r and errors, it is reasonable to conclude that the accuracy of OSTM is highest among 
these three datasets. Therefore, only the OSTM dataset of the GRLM time series was used in this 
study. 

5.2. Water Level Variations 

Considering the limited samples of the RLH product and the relatively low accuracy of the 
Jason-1 and T/P datasets within GRLM, only the Hydroweb (1992–2016), DAHITI (1992–2016) and 
GRLM/OSTM dataset (2008–2016) were used to monitor the water level variations of Lake Chad. 
However, as presented in Figure 5, the water levels provided by Hydroweb and DAHITI are based 
on different reference surfaces, and GRLM/OSTM provides relative water level rather than absolute 
water level. Therefore, it is necessary to conduct consistency processing. A simple offset method 
was used here to transform all altimetry products into the WGS84 ellipsoid of the DAHITI product. 
Figure 7 presents the scatterplots of the water levels retrieved from Hydroweb and GRLM and the 
corresponding water levels retrieved from DAHITI. In general, there is good agreement of water 
levels retrieved from different altimetry products. The correlation coefficient r is as high as 0.98. The 
offset obtained for Hydroweb and GRLM is −13.77 m and 266.42 m, respectively. 

 
Figure 7. Scatterplots of the water levels retrieved from: Hydroweb (a); and GRLM/OSTM (b), and 
the corresponding water levels retrieved from DAHITI. 

Adding the above offset to the original water levels retrieved from Hydroweb and GRLM, we 
obtained water level observations with the same reference as those provided by DAHITI. As a 
result, it is possible for us to conduct a direct comparison of different altimetry products. Figure 8 
shows the time series of water level on days when the observations of all the three products are 
available. The water level retrieved from different altimetry products agrees well with each other 
with r as high as 0.99. The increase of r from 0.98 in Figure 7 to 0.99 in Figure 8 is caused by the 
number of samples. Judging from the magnitude of errors, the mean absolute error (MAE) and root 
mean square error (RMSE) are 7.86 cm and 9.82 cm, respectively. It is reasonable because the 
accuracy of satellite altimetry for lake level monitoring is generally reported to be better than 10 cm 
[60]. Figure 9 shows the time series of water levels retrieved from the combination of GRLM/OSTM, 
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DAHITI and Hydroweb with the WGS84 ellipsoid. During the combination, when two or more 
samples are available on the same day, the mean values of these samples are used to represent the 
water level of that day. Figure 10 presents the mean monthly water level retrieved from Figure 9. 
Controlled by the precipitation and river inflow presented in Figure 4, the water level of Lake Chad 
demonstrates significant seasonal variation. It increases gradually from July to November, and then 
decreases from November to June of the following year. The amplitude of variation is about 1.38 
meter on an annual average scale. According to Figure 9, the inter-annual variations of water level 
in recent 25 years show a slight increasing trend, which is opposite to the significant recession trend 
in the second half of the 20th century. The annual average rate of increase is only about 0.5 cm 
year−1. The low rate of increase indicates that Lake Chad has been in a relatively stable phase over 
the past 25 years. 

 
Figure 8. Time series of water level on days when the observations of all three altimetry products 
are available. 

 
Figure 9. Variations of water levels retrieved from the combination of Hydroweb, GRLM/OSTM and 
DAHITI. 

 
Figure 10. Monthly average water level of the SPLC from 1992 to 2016. 
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It should be noted that the number of samples presented in Figure 9 varies with time. As a 
result, there are some missing values in individual months. To investigate the variations in extreme 
water levels and eliminate the noise caused by sample size, Figure 11 presents the time series of 
water levels observed in June and November. These two time series confirm the upward trend of 
Lake Chad’s water levels, although the rate of increase is different. Specifically, the increasing rate 
of the low water level and high level of Lake Chad is 0.7 cm year−1 and 0.6 cm year−1, respectively. 
The lack of in situ water level observations makes it impossible for us to investigate the errors and 
uncertainties involved in Figures 9 and 11. However, considering the consistent increasing trend 
presented in these two figures, it is reasonable to conclude that the southern pool of Lake Chad has 
stopped shrinking since the 1990s. 

 
Figure 11. Time series of water levels observed in June and November. 

5.3. Lake Surface Area Variations 

The estimation of water volume variations is based on the relationship between water surface 
area ( ) and water level ( ). To cover the variation range of water level as much as possible, all the 
black points of the three altimetry products presented in Figure 6 are used. The Landsat images are 
acquired on the same day as the altimetry water level observations. In total, there are 110 pairs of 
data satisfying this criterion. However, due to the lack of in situ measurements for validation, only 
77 pairs of data (70% of the sample size) were used to establish the relationship. The other 33 pairs, 
selected by the equidistant sampling method after all the 110 pairs were sorted by water level, were 
used to verify the performance of the established relationship. The results are presented in Figure 
12. Nonlinear regression methods were also used in the retrieval of the L-A curve, such as the 
quadratic polynomial relationship proposed by Duan and Bastiaanssen [25] and Tong et al. [27], but 
no significant improvement was observed. Therefore, a simple linear regression model with r of 
0.71 was used in this paper to describe the L-A curve of Lake Chad. In the validation process, the 
lake surface area estimated from the linear regression model was compared with that extracted 
from the Landsat TM/ETM+ images. In general, the surface area derived from the L-A curve agrees 
well with that retrieved from Landsat images with r as high as 0.70. The MAE and RMSE are 9.50 
km2 and 12.50 km2, respectively. 

The retrieval of the L-A curve makes it possible for us to estimate lake surface area as long as 
water level data are available. The retrieved time-series of the lake surface area from 1992 to 2016 
are shown in Figure 13. In general, the variations of lake surface area indicate a slight increasing 
trend with an annual average rate of about 0.14 km2 year−1. That means the southern pool of Lake 
Chad has increased by 3.4 km2 over the past 25 years. However, it should be noted that the MAE of 
the retrieved L-A curve is 9.50 km2. Therefore, the low rate of increase shows that the surface area of 
the SPLC has been relatively stable in recent 25 years, with an annual average surface area of 1446 
km2. 
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Figure 12. The water level-surface area (L-A) curve retrieved for the SPLC (a); and its accuracy for lake 
surface area estimates (b). 

 
Figure 13. Variations of lake surface area of the SPLC retrieved from the L-A curve. 

Figure 14 presents the seasonal variations of water surface area on annual average scale. It is 
clear that seasonal variation of the lake surface area coincides with the rainy season, with the largest 
surface area of 1465 km2 in November and the smallest surface area of 1427 km2 in June. The 
amplitude of intra-annual variation is about 38.08 km2. To further investigate the intra-annual 
variation of each year, Figure 15 shows the time series of lake surface area observed in June and 
November, which are used to represent the smallest and largest water area during a year, 
respectively. Consistent with Figure 11, the slight increasing trend is observed in both of these two 
time series. The annual average rate of increase in June and November is 0.19 km2 year−1 and 0.17 
km2 year−1, respectively. 
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Figure 14. Monthly average lake surface area of the SPLC from 1992 to 2016. 

 
Figure 15. Time series of lake surface area retrieved in June and November. 

5.4. Water Volume Variations 

Based on the L-A curve retrieved in Figure 12, the water volume variation of the SPLC was 
estimated by integration. The function is described as follows: ∆V = 0.013763 − 5.883357 |  (6) 

where ∆V is the water volume variation (km3) caused by the water level (m) change defined as 
( − ). Applying the function to all water levels present in Figure 9, we obtained the water 
volume variations of the SPLC between two adjacent water levels from 1992 to 2016. The results are 
shown in Figure 16a. However, because the sample size of each year varies with time, it is difficult 
to evaluate the water volume variations on a daily scale. For example, due to the limited number of 
samples prior to 2008, the time interval between two adjacent samples is much larger than that 
observed afterwards. As a result, the water volume variations are much more significant. To 
eliminate the noise caused by sample size, we applied the function to monthly scale. The results are 
presented in Figure 16b. Based on Figure 16, we also obtained the monthly distribution of water 
volume variations on annual average scale (Figure 17). 
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Figure 16. Variation of ∆V of the SPLC on: daily (a); and monthly (b) scale. 

 
Figure 17. Monthly average water volume variation of the SPLC from 1992 to 2016. 

With the exception of individual months, the results effectively captured the seasonal variation 
of water volume. During the rainy season from July to November, the water volume of Lake Chad 
increases with positive ∆V values, while the negative ∆V values from December to June of the 
following year indicate that the water volume decreases during the dry season. On annual average 
scale, the water volume of Lake Chad increases most quickly in September with a rate of 0.67 km3 
per month, and decreases most significantly in January with a rate of 0.38 km3 per month. To 
further investigate the relationship between ∆V and precipitation, the scatterplots of monthly ∆V 
and precipitation are presented in Figure 18. The results show that monthly water volume 
variations are mostly correlated with the precipitation of the previous two months, with r as high as 
0.75. Therefore, there is a time lag of about one to two months in the response of water volume 
variations to precipitation, which means that ∆V can be predicted in advance. Linear regression 
method was used here to make the prediction. Seventy percent of the total 246 samples were used 
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for calibration, and the other 30% were used for validation. The linear regression model established 
is described as follows: ∆V = 0.0024 + 0.0026 − 0.3855 (7) 

where ∆V is the monthly water volume variation (km3) to be predicted.  and  are the average 
precipitation (mm) of the Chari/Logone River basin of the previous two months, respectively. The 
validation results presented in Figure 19 shows that the ∆V estimated from the regression model 
agrees well with that retrieved from Equation (6), with r as high as 0.81. The MAE and RMSE 
produced are 0.017 km3 and 0.023 km3, respectively. 

 
Figure 18. Correlations between ∆V and precipitation of: the same month (a); the prior month (b); 
the second month prior to the same (c); and the third month prior to the same (d). 

 
Figure 19. Scatterplots of ∆  retrieved from remote sensing observations and ∆  retrieved from 
the regression model. 

In Section 4.3, if  in Equation (3) is defined as the lowest water level during the study period, 
the resulting ∆  is referred to as Water Volume Above the Lowest water Level (WVALL). The time 
series presented in Figure 9 shows that the lowest water level from 1992 to 2016 is observed on 7 
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July 1993 with a value of 265.03. As a result, the L-V curve of the southern pool of Lake Chad is 
defined as follows: WVALL = 0.013763 − 5.883357 + 592.540587 (8) 

The time series of the WVALL retrieved from the L-V curve is presented in Figure 20. Because 
WVALL is retrieved using water level as an input, its variation trend is basically the same as that 
presented in Figure 9. The water volume of the SPLC has been relatively stable in the recent 25 
years with respect to inter-annual variation. The annual average WVALL from 1992 to 2016 is 1.76 
km3 with a small increase rate of 0.007 km3 year−1. However, the intra-annual variation of WVALL is 
very significant (Figure 21). On annual average scale, the amplitude of seasonal variation is as high 
as 2.00 km3, with the largest WVALL in November and the smallest WVALL in June. 

 
Figure 20. Time series of the Water Volume Above the Lowest water Level (WVALL) retrieved from 
the L-V curve. 

 
Figure 21. Monthly average WVALL of the SPLC from 1992 to 2016. 

5.5. Water Balance of the LAKE 

The water budget was calculated with Equation (5) using the direct precipitation and 
evaporation retrieved from the CRU product, lake inflow from the Chari/Logone River, and water 
volume variation retrieved in Section 5.4. Because values from the CRU product and discharge 
observations are at monthly scale, the components of the lake’s water budget presented in Figure 22 
are also at monthly scale. To evaluate the accuracy of CRU product, Figure 23 presents the 
scatterplots of precipitation and evaporation observations versus those retrieved from CRU product. 
The definition of the bias (B) is defined as follows: = ∑∑ − 1 (9) 
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where  and  are the variables retrieved from meteorological stations and CRU product, 
respectively. It is obvious that the bias used here is a statistical indicator reflecting relative error. 
The precipitation retrieved from CRU product agrees well with observations with r as high as 0.88. 
The MAE and RMSE are 25.76 mm and 44.82 mm, respectively. In contrast, the Pearson’s r for 
evaporation is only 0.59. The high values of MAE and RMSE also indicate that there is large errors 
in evaporation estimates. The negative values of bias show that both precipitation and evaporation 
are underestimated by the CRU product. Specifically, the bias of precipitation is only −0.06 while 
the bias of evaporation is as high as −0.19. Consequently, it is necessary to calibrate the CRU 
product before it is used to investigate the water balance of Lake Chad. Here, the calibration is 
conducted by using the bias correction method. All the precipitation and evaporation presented in 
Figure 22 are corrected using their original values divided by 1 + . 

 
Figure 22. Variations of different water budget components of the SPLC from 1992 to 2016. 

 
Figure 23. Scatterplots of precipitation and evaporation observations versus those retrieved from 
CRU product. 
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Table 1 shows the monthly average of the five components of the water balance over the past 
25 years. Considering the small values of ∆V on annual average scale, precipitation and river 
inputs of Lake Chad are basically consumed by evaporation and outflow. Specifically, the main 
input of the southern pool of Lake Chad is the inflow from the Chari/Logone River. The annual 
average discharge is 23.91 km3 year−1, which accounts for 97% of total input. The remaining 3% is 
supplemented by direct precipitation with an annual average of 0.67 km3 year−1. The losses result 
mainly from the surface and underground water discharge (84%) and evaporation (16%). The 
annual average losses caused by outflow and evaporation are 20.54 km3 year−1 and 4.03 km3 year−1, 
respectively. However, it should be noted that these two components have significant seasonal 
variation. Evaporation accounts for the bigger share of water losses from March to May. The 
contribution of outflow during these three months ranges only from 30% to 40%. 

Table 1. Monthly mean values (km3) for the components of the SPLC water budget. 

Month ∆
1 −0.37 1.03 0.00 0.31 1.09 
2 −0.30 0.54 0.00 0.33 0.51 
3 −0.29 0.38 0.00 0.41 0.26 
4 −0.31 0.24 0.00 0.41 0.15 
5 −0.29 0.28 0.02 0.40 0.19 
6 −0.18 0.49 0.08 0.35 0.40 
7 0.11 1.40 0.17 0.30 1.15 
8 0.47 2.88 0.24 0.26 2.39 
9 0.68 4.38 0.14 0.29 3.55 

10 0.55 5.89 0.02 0.33 5.04 
11 0.19 4.32 0.00 0.33 3.80 
12 −0.24 2.09 0.00 0.31 2.01 

Total 0.01 23.91 0.67 4.03 20.54 

6. Discussion 

6.1. Evaluating the Water Budget of the SPLC within the Whole Lake Chad Domain 

The water budget of Lake Chad has been studied by a number of authors [3,30,61–64], but 
most of them focused on the water budget of the entire Lake Chad. Table 2 presents the summary of 
these previous studies. Lake Chad in the first three studies is in medium state. Only the fourth 
study is conducted to investigate the water budget of the Small Lake Chad. Therefore, the results of 
our research are compared with those observed from 1988 to 2010 by LCBC [30]. The comparison 
shows that there is a significant difference in the water budget components. This difference is partly 
caused by the selection of the study area. For example, both precipitation and evaporation are 
functions of the water surface area and their respective rates. The study domain of previous 
research is the whole of Lake Chad, while our research is focused on the permanent open water in 
the southern pool. According to Odada et al. [3], the open water of Lake Chad only accounts for 
one-third of its total area. It explains well why the amount of precipitation during 1988–2013 in 
LCBC [30] is three times as much as that of our research. No significant difference is observed in the 
amount of , because  in both of these studies is taken from in situ observations. 

Table 2. Comparison of water budget components (km3) estimated in different studies. 

Study Time Period Study Area  
LCBC [30] 1954–1969 Lake Chad 7.4 48.8 44.2 2.5 

Odada et al. [3] Pre-1970 Lake Chad 6.0 43 42.89 3 
Odada et al. [3] 1971–1990 Lake Chad 2.1 23.1 22.57 1.4 

LCBC [30] 1988–2010 Lake Chad 1.9 22.6 21.9 1 
This study 1991–2013 SPLC 0.67 4.03 23.91 20.54 
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The most distinct difference is the ratio of  and  to total water losses. Specifically, total 
water losses of these two studies are generally the same, which are 23.60 km3 year−1 and 24.57 km3 
year−1, respectively. The results of LCBC [30] show that 96% of the water losses are consumed by 
evaporation. The research of Bouchez et al. [47] indicates that the outflow of the whole Lake Chad 
through infiltration represents around 10% of the total water losses. However, in our research, 
evaporation only accounts for 16%, with the other 84% offset by outflow. The difference in the 
source of water losses is explained as follows. The research of Leblanc et al. [14] indicates that most 
of the Small Lake Chad is covered by permanent or seasonal marshes rather than open water, 
which for our purposes we distinguish as “non-water area”, in contrast with the permanent open 
water area. According to LCBC [30], the discharge of the Chari/Logone River accounts for 96% of 
the total lake inflow from 1988 to 2010. It means that the inflow from other small tributaries such as 
El Beid and Komadugu Yobe is only 1.00 km3 year−1. Except for the precipitation falling directly on 
the lake surface, the amount of precipitation over the non-water area of Lake Chad is  
1.23 km3 year−1. Therefore, the sum of  and  over the non-water area is 2.23 km3 year−1. 
However, the total water losses caused by  and  over the non-water area is 19.57 km3 year−1. 
There is a gap of 17.34 km3 year−1 in water losses to make up. It explains why the outflow of the 
southern pool of Lake Chad is as high as 20.54 km3 year−1. 

In summary, although the water balance of the entire Lake Chad has been reported in several 
studies, the water balance of the southern pool of Lake Chad is significantly different. The water 
losses of the SPLC are mainly caused by outflow in the form of net surface and underground water 
discharge with an annual average of 20.54 km3 year−1. This outflow provides the main water source 
of evaporation for the whole of Lake Chad. 

6.2. Evaluating Present Research in Light of Previous Work 

The use of multiple remote sensing data for water volume estimation has been applied to 
different lakes worldwide [24–27,53,65]. For example, the water volume variations of three lakes 
(Lake Mead in the U.S.A., Lake Tana in Ethiopia, and Lake IJsell in Netherlands) were estimated by 
Duan and Bastiaanssen [25] using four satellite altimetry databases and Landsat images. The results 
show that estimated water volumes agree welll with in situ measurements with R2 ranging from 
0.95 to 0.99 and the RMSE within 1.6% to 13.1% of the mean volumes of in situ measurements. 
Based on ICESat (Ice, Cloud, and Elevation Satellite) altimetry data and MODIS (Moderate 
Resolution Imaging Spectroradiometer) images, the water volume variations of Lake Qinghai in 
China were monitored in our previous research [53]. The RMSE produced is 0.5 km3, which 
accounts for about 0.7% of the observed total water volume variations. In general, the framework of 
these previous studies as well as this research is basically the same as each other. Firstly, water level 
and surface area are retrieved from satellite altimetry and imagery, respectively. Subsequently, the 
water volume variations are estimated through integration of the functional relationship between 
surface area and water level. The difference lies in the specific satellite altimetry and imagery 
product and the method used to retrieve the functional relationship between surface area and water 
level. In our research, four altimetry products were used to make sure that the time series of water 
level are as long as possible. As for the method used for the retrieval of the L-A curve, it is generally 
conducted based on statistical analysis [65]. The statistical model used can be either linear [26,53] or 
nonlinear [25,27]. Both linear and nonlinear models have been tried in this research, but no 
significant difference is observed in the model performance. Consequently, linear regression model 
is adopted because of its simplicity. In the research of Duan and Bastiaanssen [25] and Tong et al. 
[27], only the Water Volume Above the Lowest water Level (WVALL) was estimated by selecting the 
lowest water level during the study period. In contrast, as presented in Equation (6) and Figure 16, 
the empirical model established in our research makes it possible for us to estimate water volume 
variations caused by any water level change. Consequently, compared with Equation (4) 
recommendation by Duan and Bastiaanssen [25] and Tong et al. [27], Equation (3) proposed in this 
paper is more universal for monitoring the variations of water volume. The major drawback of this 
research is the uncertainties involved in the estimation of water volume variations. In most 
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previous studies [24–27,53], the water level and surface area retrieved from remote sensing data are 
usually calibrated and validated based on in situ observations before they are used for the retrieval 
of the L-A curve. Besides, the estimated water volumes are also validated based on in situ 
observations so that the statistical method used can be adjusted and calibrated. In this research, 
however, due to the lack of in situ observations, it is impossible for us to evaluate directly the 
accuracy of water level, surface area and water volume retrieved from remote sensing data. Instead, 
their accuracy is evaluated indirectly. Specifically, the accuracy of water level and surface area is 
investigated through cross validation using correlation analysis. The validity of water volume 
variations is assessed through water balance analysis. Therefore, the results presented in this paper 
contain uncertainties arising from errors in the remote sensing data and linear regression model. The 
availability of reliable in situ measurements would be indispensable for future research. 

7. Conclusions 

Due to a series of devastating droughts, Lake Chad has shrunk dramatically in the second half 
of the 20th century. As a result, its open water area has been separated into two individual parts 
since 1973, with the water pool facing the Chari delta in the southern basin as the only permanent 
water area. In this paper, the variation of the southern pool of Lake Chad (SPLC) in the recent 25 
years was investigated comprehensively using multiple remote sensing observations. 

Four satellite altimetry products, GRLM, Hydroweb, RLH and DAHITI, were used to retrieve 
water level. Water surface area of the SPLC was extracted from 904 Landsat TM/ETM+ images. 
Because of the lack of in situ observations, the accuracy of the altimetry products was evaluated by 
correlation analysis, and only water levels correlating significantly with the extracted lake surface 
area were adopted. As a result, the Hydroweb, DAHITI and GRLM/OSTM dataset were used in this 
paper to monitor the water level variations of Lake Chad from 1992 to 2016. Based on the water levels 
retrieved above and the lake surface area extracted from Landsat images, the relationship between 
water level (L) and surface area (A) for the southern pool of Lake Chad was established through linear 
regression method. The retrieval of the L-A curve makes it possible for us to estimate lake surface area 
as long as water level data are available. Finally, the water volume variations were estimated through 
integration of the functional relationship between surface area and water level, and the water balance 
equation was established to investigate the components of the lake’s water budget. 

The results show that Lake Chad has stopped shrinking since the 1990s. It has been in a 
relatively stable phase in the recent 25 years with a slight increasing trend. On annual average scale, 
the increase rate of water level, surface area and water volume is 0.5 cm year−1, 0.14 km2 year−1 and 
0.007 km3 year−1, respectively. As for the intra-annual variations of the SPLC, it increases gradually 
from July to November, and then deceases from November to June of the following year. The 
seasonal variation amplitude of water level, lake area and water volume is 1.38 m, 38.08 km2 and 2.00 
km3, respectively. The discharge of the Chari/Logone River and direct precipitation account for 97% 
and 3% of the SPLC’s total inputs respectively. The water losses result mainly from outflow (20.54 
km3 year−1) and evaporation (4.03 km3 year−1). The outflow of the southern pool of Lake Chad 
provides the main water source of evaporation for the whole of Lake Chad. However, it should be 
noted that the outflow in this paper was estimated as the residual of the water balance equation. It 
contains uncertainties arising from errors in the data and water losses due to human and animal 
consumption. The availability of reliable in situ measurements would be indispensable for future 
research. 
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