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Abstract: As a result of the large semantic gap between the low-level features and the high-level
semantics, scene understanding is a challenging task for high satellite resolution images. To achieve
scene understanding, we need to know the contents of the scene. However, most of the existing
scene classification methods, such as the bag-of-visual-words model (BoVW), feature coding, topic
models, and neural networks, can only classify the scene while ignoring the components and the
semantic and spatial relations between these components. Therefore, in this paper, a bottom-up scene
understanding framework based on the multi-object spatial context relationship model (MOSCRF) is
proposed to combine the co-occurrence relations and position relations at the object level. In MOSCRF,
the co-occurrence relation features are modeled by the fisher kernel coding of objects (oFK), while the
position relation features are represented by the multi-object force histogram (MOFH). The MOFH is
the evolution of the force histogram between pairwise objects. The MOFH not only has the property
of being invariant to rotation and mirroring, but also acquires the spatial distribution of the scene
by calculating the acting force between multiple land-cover objects. Due to the utilization of the
prior knowledge of the objects’ information, MOSCRF can explain the objects and their relations
to allow understanding of the scene. The experiments confirm that the proposed MOSCRF can
reflect the layout mode of the scene both semantically and spatially, with a higher precision than the
traditional methods.

Keywords: scene understanding; object-oriented classification; co-occurrence relations; position
relations; multi-object force histogram

1. Introduction

With the development of high resolution satellites, the spatial resolution of remote sensing images
has been better than 0.5 m. Compared to mid-low resolution satellite images, high resolution satellite
images (HRSIs) can obtain more details of clearer ground objects. To take full advantage of this rich
information, scene understanding of higher level is needed. However, it is difficult to cross the chasm
between the low-level features and the high-level scene semantics because of the diversity of the
objects, the variability of the low-level features, and the complex spatial layouts [1,2].

To bridge this semantic chasm, scene classification methods based on mid-level features have
been proposed, including the bag-of-visual-words model (BoVW), feature coding, topic models, and
some deep learning models. Among these methods, traditional BoVW [3,4], feature coding [5,6], and
topic models [7,8] treat the image as a set of local features called visual words, and then describe the
scene according to the coding of the visual dictionary formed by visual words or the distribution of
topics. However, visual words or topics are modeled based on pixels, which ignores the information
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of objects and is not helpful to understand the internal compositions of the scene. As for deep learning,
the end-to-end learning method only tells the scene category of the image, instead of what constitute
the scene. Though feature expressed by the final layer of the network can express some information, it
is too abstract to understand [9,10].

Compared to scene classification, scene understanding based on objects concerns more about
recognizing the objects and describing the relations of the objects. The scene categories are obtained
based on the relations of objects [11–13]. Object recognition has evolved from pixel-based classification
based on single features to object-oriented classification based on multiple features [14,15]. To construct
the relations of objects more precisely, the objects should be crisp objects with continuous boundaries.
Therefore, object-oriented classification is more suitable. Object-oriented classification usually involves
segmenting the images into meaningful homogeneous regions and then classifying these regions into
different land-cover types. The relations of objects can be summarized into visual context and semantic
context, where visual context is the low-level association and semantic context is the high-level
association, fusing the prior knowledge of the objects. Semantic context includes spatial context and
scene context [16]. There are two types of spatial context relations: one is the co-occurrence relations,
meaning the categories of objects being relevant (e.g., if water is the main part of the scene, buildings
will be less likely to appear); and the other is the position relations, meaning that the distribution of the
objects follows certain rules, such as trees being on both sides of a road. Co-occurrence relations and
position relations are complementary, because position is essential in distinguishing scene categories
with objects of similar frequencies but different spatial distributions, and co-occurrence excludes those
objects with a similar distribution but totally different number.

Co-occurrence relations can be described by mixture of topics modeling by latent Dirichlet
allocation (LDA) [17], concept occurrence vector modeling by the proportion of object patches [18], and
object bank representation by the use of a set of filters to calculate the object responses [19]. However,
these methods express the co-occurrence relations with clusters or patches of features extracted from
pixels, instead of the real geo-objects, or they need a feature library. Position relations include distance
relations, direction relations, and topology relations. Those methods using the basic geometric features,
such as the ratio of the perimeter, ratio of the area, azimuth, and moment invariants, model the topology
relations, the distance relations, and the direction relations of the pairwise objects separately [20,21].
Compared to methods based on geometric features, the histogram of force (F-histogram) is sensitive to
size, distance, shape, and direction, indirectly uniting the three types of position relations by calculating
the force between two objects. The F-histogram is also more convenient to obtain because it does not
require the calculation of the boundary perimeter of the objects [22–27]. However, the F-histogram
is designed to acquire the position relations between pairwise objects [28], and it is not suitable for
modeling multiple objects in remote sensing images. In image indexing and retrieval, the F-histogram
has been extended to describe a group of objects located near the image center [24,25]. However, this
method needs two reference objects placed outside the circumcircle of the group of objects.

In this paper, to solve the problem of scene understanding, a bottom-up scene understanding
framework based on the multi-object spatial context relationship model (MOSCRF) is proposed to
bridge the semantic gap between pixels and the high-level semantics of HRSIs scene understanding.
MOSCRF abides by a bottom-up sequence of pixels-objects-scenes, making it easy to parse the
image hierarchically. In MOSCRF, the scene understanding includes three parts: (1) object-oriented
classification; (2) construction of the co-occurrence relations and position relations; and (3) scene
sematic category understanding.

The contributions of this paper are as follows:

(1) MOSCRF is used to understand the scene components and their co-occurrence relations and
position relations. When determining the scene, MOSCRF takes advantage of the complementary
nature of the fisher kernel coding of objects (oFK) and the multi-object force histogram (MOFH) to
dissect the scene from two different aspects. The oFK is concerned more about the co-occurrence



Remote Sens. 2017, 9, 1030 3 of 19

relations of different objects, whereas the MOFH pays more attention to the spatial distribution
of the scene.

(2) The oFK is used to model the co-occurrence relations by introducing the fisher kernel coding to
objects. Compared to the traditional methods, the oFK is a compact, low-dimensional and refined
representation of the distribution of objects categories by using a gradient vector.

(3) The MOFH is used to model the position relations for multiple objects. Aimed at dealing with the
multiple objects in HRSIs, the MOFH adds a global scan line strategy and a rollback strategy to
the traditional F-histogram. To keep the invariance to rotation and mirroring, the initial direction
is defined as the centroid line between the object with the biggest area and the object with the
smallest area. Finally, the feature is the mean and standard deviation of the MOFH curve. The
MOFH explains the interaction of the internal objects in different directions.

The remainder of this paper is organized as follows. Section 2 introduces the basic theory of the
fisher kernel coding (FK) and F-histogram. Section 3 describes the MOSCRF construction procedure.
The experimental results are reported in Section 4, followed by the sensitivity analyses in Section 5.
Finally, the conclusions are provided in Section 6.

2. Basic Theory

2.1. Fisher Kernel Coding

Fisher kernel (FK) was first proposed to model the generation process of the signal with a gradient
vector derived from a probability density function (pdf) and later introduced by Perronnin and Dance
to image classification as the extensions of BoVW to overcome the diversity of the low-level features
and the complexity of the distribution [6,29]. The main idea is as follows:

Let X = {xi}n
i=1 be the n local features extracted from the image, which can be described by the

gradient vector GX
λ . p(X|λ) is the pdf and λ is the parameters (Equation (1)). To make the classifier

more efficient, Fisher information matrix (Equation (2)) is used to normalize the gradient vector
(Equation (3)).

GX
λ = ∇λ log p(X|λ) (1)

Fλ = EX

[
GX

λ

(
GX

λ

)′]
(2)

gX
λ = F−

1
2

λ GX
λ (3)

Finally, the normalized vector is the representation of the image and can be the input of the
classifier to recognize the image.

2.2. F-Histogram

The F-histogram, developed from the histogram of angles and first proposed by Matsakis in
1999 [28], is an effective way to build direction relationships between a pair of objects [30]. The
F-histogram treats the image as a set of longitudinal sections instead of points, leading to rapid
computation (Figure 1).

In Figure 1, A and B are two objects, and A is to the left of B. It is assumed that it is the scalar
resultant of the elementary forces that forms the present relative position. The force between two
homogeneous objects can be obtained by the sum of the force generated by all the longitudinal sections
in the interior. The force in direction θ is calculated by the integral of the secant lines with Equation (4)
(Figure 2). In Equation (4), FAB represents the force between the object pair; w and u are the point
positions in the secant line; x, y, z is the secant line; and θ is the direction. According to Equation (4),
if there are more points involved in the action, the force will be larger in direction θ. Therefore, the
F-histogram directly reflects the direction relations, while reflecting the distance, topology, size, and
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shape information of the objects. When scanning the object pair between 0 and 360 degrees, the force
distribution in all directions can be acquired and expressed as the histogram.

FAB(θ) =
w x+y+z

y+z

(w z

0
ϕ(u− w)dw

)
du (4)
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Figure 2. Calculation of the histogram of force. The histogram in one direction is calculated by
Equation (1). We then sum the force in all the scan lines with the same direction, and traverse to acquire
all the directions.

The F-histogram of a pair of objects has the property of invariance to rotation, mirroring, and
scale. It can therefore be introduced into remote sensing images as a method of building the spatial
relationship between a pair of homogenous objects.

3. Scene Understanding Framework Based on the Multi-Object Spatial Context
Relationship Model

To solve the problem of scene understanding, a scene understanding framework based on
the multi-object spatial context relationship model is proposed to understand scenes according
to the objects and their spatial context relations. MOSCRF is modeled under the following three
steps: (1) scene component understanding by object-oriented classification; (2) components’ relations
understanding by the atf -idf and the MOFH; and (3) scene sematic category understanding. The
flowchart of scene understanding based on MOSCRF is shown in Figure 3, and is described as follows.
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Figure 3. The flowchart of scene understanding based on MOSCRF. Multi-agent object-based
segmentation (MAOS) and majority voting (MV) is used to realize the object recognition. AG means the
agent. oFK and MOFH is used to construct the spatial context of objects. Finally, the scene classification
is recognized based on support vector machine (SVM).

3.1. Scene Component Understanding by Object-Oriented Classification

The object-oriented classification accuracy directly influences the authenticity of the scene
understanding. Object-oriented classification consists of segmentation and classification. Compared to
using a classic segmentation algorithm such as the mean shift algorithm [31], the fractal net evolution
approach (FNEA) algorithm [32], or the split-and-merge algorithm [33], and classification algorithms
such as KNN, support vector machine (SVM) [14,34], or deep learning methods [35,36], the multi-agent
object-based segmentation (MAOS) algorithm can achieve a better result [37,38] by taking advantage
of the strong interaction, high flexibility, and parallel global control capability of the multiple agents.
The segmentation result and majority voting (MV) are then used to constrain the classification result
according to the spectral feature and texture feature. Consequently, the change from the pixel level to
the object level is achieved.

3.2. Components’ Relations Understanding

3.2.1. Co-Occurrence Relations Based on the oFK

After object-oriented classification, the relations between different objects can be mined.
Co-occurrence relations can reduce the conflict caused by ambiguous objects. Compared to traditional
fisher kernel coding in scene classification, the biggest differences of oFK are the following two
points: the local features are extracted from the object-oriented classification and the local features
are the mean and standard deviation of the object categories. Figure 4 shows the process flow of the
co-occurrence relations.
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The input of the co-occurrence relation construction process is the land-cover classification image.
Uniform patch sampling is used to obtain the mean and standard deviation of each patch, and the

extracted features are represented as X =
{

xm
i , xstd

i

}n

i=1
, where n is the number of patches, m is the

mean and std is the standard deviation. Let Equation (5) be the likelihood function of the pdf of
the input image, p(X|λ) be the pdf and λ be the parameters. Under the assumption that the feature
is independent, p(xi|λ) can be represented by some models generated by Gaussian Mixture Model
(GMM). Expectations-Maximum algorithm (EM) is used to learn the parameters and the codebook is
then constructed.

ς(X|λ) = logp(X|λ) (5)

Finally, the co-occurrence vector vF is derived based on the codebook according to fisher kernel
coding theory.

3.2.2. Position Relations Based on the MOFH

The MOFH is designed to acquire the position relations among multiple objects. Compared to
the F-histogram of a pair of objects, there are three main differences. The first is that each scan line
crosses several objects, and the MOFH uses a rollback strategy to calculate the force between it and the
other objects. The second is that the initial direction is defined as the centroid line between the object
with the biggest area and the object with the smallest area. The final difference is that the mean and
standard deviation of the F-histogram are used as the position feature. The calculation process of the
MOFH is described in Figure 5.

The input image is first translated into a binary image consisting of the target objects {Oi}N
i

belonging to category l and the background objects, where N means the number of objects in category
l. The task is to calculate the relative position between the target objects and background objects. We
let θ be the current direction of the K scan lines, which can be generated by the Bresenham algorithm.
The objects Oi and Oj are crossed by the scan line k with secant lengths x and z, respectively, and
the distance between x and z is y. The force index fr(θ) between Oi and Oj is then calculated by
Equation (1), and ϕr(d) is the force function (Equation (6)). In Equation (6), the different values of r
represent different meanings. When 0 < r < 1, the F-histogram can deal with any spatial relations.
When 1 < r < 2, the F-histogram reflects the disjoint or tangential objects. When r ≥ 2, the F-histogram
can only describe the disjoint relationships.
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ϕr(d) =
1
dr (6)

When using the F-histogram to calculate the position relations in a traditional environment, the
next step is to use Equation (4) for every pair of objects separately. In contrast, in the MOFH, the scan
line crosses the image, i.e., multiple objects are considered. To traverse all the objects, forward and
backward actions are used. The force index of scan line k is then obtained by Equation (7):

f k
r (θ) = ∑

i
∑

i,j 6=i
fr(θ) (7)

Considering Equations (4), (6) and (7), when the sizes of the objects remain constant, f k
r (θ) becomes

larger with the increase of the degree of dispersion. When the distance is fixed, f k
r (θ) increases as the

sizes broaden. Therefore, the force index is proportional to the size, frequency, and compactness of the
objects. In other words, f k

r (θ) records the scale of the objects and the degree of dispersion of object l
along this scan line.
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index in direction θ can be calculated by Equation (8). As for the force in each scan line, is calculated
by Equation (4). The force histogram is obtained by calculating the force index in direction from 0 to
180 degrees [0, 180◦).

Through traversing all the scan lines, the force index of object l in direction θ can be described by
Equation (8). By varying the direction θ, the force indices of the different directions can be obtained.
Here, the direction range is [0, 180◦). The increase interval ∆θ is usually set to 3◦. The smaller ∆θ is,
the more detail information is retained, but the potential error and computing cost will be larger. After
traversing all the directions, the histogram of Fl

r =
(

Fl
r (θ1), Fl

r (θ2), . . . , Fl
r
(
θp
))

is acquired, where p is
the number of directions. Once this step is completed, the spatial distribution of class l in the scene
is determined. The F-histograms of all the classes can then be connected to build a position feature
vector FH =

(
F1

r , F2
r , . . . , FL

r
)
.
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Fl
r (θ) = ∑

k
f k
r (θ) (8)

To ensure that the MOFH is invariant to rotation and mirroring, the initial direction of the
F-histogram is defined as the direction from the focus of the largest object in the land-cover type with
the highest area proportion to the largest object in the land-cover type with the lowest area proportion.
Furthermore, to prevent false classification of scene categories caused by the large difference of FH in
local direction, FH is normalized and represented by the mean and standard deviation to make the
feature more robust. Finally, the F-histogram of class l is expressed as vl

H = (µl
H , σl

H). The final form

of the MOFH is vH =
(
v1

H , v2
H , . . . , vL

H
)T .

The pseudo-code of the MOFH is described in Algorithm 1. The input of Algorithm 1 is the
object-oriented classification result I of the image.

Algorithm 1. Pseudo-code of the MOFH.

Procedure vH = MOFH(I, ∆θ, r)
Initial θ

For θ = 0◦ to 180◦ do
Generate scan lines to cover all the image with θ.
For each scan line k do

For l = 1 to L do
Compute f k

r (θ) for current class l using Equations (4), (6) and (7).
End For
Compute the histogram of force f l

r (θ) using Equation (8).
End For

End for
Compute µl

H , σl
H of FH

Normalize vl
H

Return vl
H

End Procedure

3.3. Scene Sematic Category Understanding

After acquiring the spatial context relations of the objects, the two relation feature vectors are
connected as a long normalized vector end to end as the new feature vector v = (vF, vH) to describe
the high-level semantics. Finally, a traditional classifier such as SVM is used to train and classify the
images into different scene categories.

4. Experiments and Analysis

To test the performance of the proposed MOSCRF, three datasets with progressive levels of
complexity were put into use: a synthetic dataset, a USGS dataset, and the Wuhan IKONOS dataset.
The synthetic dataset was used to verify the spatial layout through a visual inspection. The other two
datasets were used to test the classification accuracy of MOSCRF.

In the step of object-oriented classification, the features were the spectral feature and the
homogeneity of the gray-level co-occurrence matrix (GLCM) feature, and the classifier was SVM with
radial basis function (RBF) kernel. The parameters of SVM were obtained by five-fold cross-validation.
MAOS and MV were combined to restrict the result. The scale of the segmentation was 20 and the
number of initial agents was 2000. In the step of scene sematic category understanding, we compared
methods based on visual words of low-level features, such as the BoVW, spatial pyramid match
(SPM), LDA and FK, methods based on deep learning features such as CNN, and methods based on
objects such as frequency vector and a pair of objects (FH2) with MOSCRF. Besides, we compared
the performance of different classifiers like SVM, naive Bayesian (NB), k-Nearest Neighbor (kNN),
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random forest (RF), and artificial neural network (ANN) acting on MOSCRF. The overall accuracy
(OA) was measured by the mean, along with the standard deviation. The consistency test is Wilcoxon
test. The details of the experiments are as follows.

4.1. Experiment 1: Synthetic Dataset

The synthetic dataset is defined based on the Google dataset of SIRI-WHU [6] (http://rsidea.
whu.edu.cn/resource_sharing.htm), including three types of scenes: residential, commercial, and
industrial area (Figure 6). The process of generating the synthetic is as follows. First, select five images
randomly from the Google dataset. Second, divide the images into building, road, tree, and other
land-cover classes by artificial annotation. Third, rotate each image 90◦, 180◦, and 270◦ to generate
other images. Fourth, flip all images in the horizontal and vertical directions to acquire the remaining
images. Consequently, the synthetic dataset consists of 120 images and each scene contains 40 images.
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Figure 7 shows the visual result. From left to right in Figure 7a are the initial image, its rotation, its
mirror. Figure 7b is the MOFH. From top to bottom, the scene categories are commercial, commercial,
industrial, industrial, residential, and residential. Since the horizontal three images have the same
force histogram, they are represented by a graph. According to the transverse comparison, it is easy to
see the invariance to rotation and mirroring of the MOFH. According to the vertical comparison, it is
clear that the different scenes have different spatial configurations.
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4.2. Experiment 2: USGS Dataset

The USGS dataset was generated from a USGS database of Montgomery, Ohio, and contains a
large image (Figure 8a) with the size of 10,000 × 9000 pixels and four scene classes of residential, farm,
forest, and parking lot, with 143, 133, 100, and 139 images, respectively (Figure 9). For all the images,
the size was 150 × 150 pixels and the resolution was 0.61 m. In these scenes, the objects were divided
into five land-cover classes, namely, water, grass, tree, road, and building, whose numbers of samples
were 208,299, 637,054, 594,930, 304,919, and 246,824, respectively.

For the object-oriented classification, the accuracies of the land-cover classification with the
different types of features and different numbers of training samples are shown in Figure 10. It can
be seen that it is better to use the spectral feature and the GLCM for the USGS dataset, as the OA
is generally higher than when just using the spectral feature. The OA increases rapidly at first and
then tends to stabilize with the increase of the training samples. The best OA, 92.2%, is obtained with
400 training samples in each class, which is the same as the Wuhan IKONOS dataset. Therefore, for
the land-cover classification, the low-level feature was the combination of the spectral feature and the
GLCM. The number of training samples was 400 in each class of land cover.

For oFK, the patch size was 8, the grid spacing was 4, and the number of cluster center was
32. For MOFH, ∆θ of MOSCRF was set to 3◦, and r was chosen as 0.5. The force indices were then
from 60 different directions. SVM classifiers with RBF kernel were selected. The penalty factor and
the bandwidth coefficient were tested by three-fold cross-validation. In the process of scene sematic
category understanding, 50 images in every scene class were randomly selected as training samples,
and the process was repeated 100 times. The accuracies of the scene understanding are listed in Table 1.
The accuracies of MOSCRF based on different classifiers are listed in Table 2.
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Table 1. Accuracies of the different methods for the USGS dataset.

Method Accuracy (%)

Features based on visual words of
low-level features

BoVW [4] 95.43
SPM [39] 94.63
LDA [7] 95.24
FK [6] 96.48

Deep learning features CNN [40] 87.08

Features based on objects
Frequency vector [18] 74.80

FH2 [32] 90.39
MOSCRF 92.73

Table 2. Accuracies of MOSCRF based on different classifiers.

Methods OA (%) Wilcoxon Test (α = 0.05)

SVM 92.73 ± 1.34 0.8344
NB 86.89 ± 2.25 0.5343

kNN 91.85 ± 1.29 0.4483
RF 90.05 ± 1.37 0.9428

ANN 90.93 ± 1.22 0.8179

In Table 1, it can be seen that, compared to traditional methods based on objects, MOSCRF has
the highest accuracy of 92.73%; it especially has an improvement of about 17% compared to frequency
vector. When the dataset is relatively small, the performance of MOSCRF exceeds the simple CNN
about 5%. Although MOSCRF is lower than methods based on visual words of low-level features,
it considers the distribution of internal components of the scene and is more in line with people’s
understanding of the scene. In Table 2, it is obvious SVM performs best, followed by ANN, and NB
performs worst. The p-values of all classifiers are bigger than 0.05, reflecting the classifier is efficient.

According to the confusion matrix in Figure 11a, MOSCRF performs the best in distinguishing the
forest area with almost zero error. Though the number of test images of farm is smaller than residential
area and parking lot, the misclassification is larger than other scene categories because the farm area
contains cars, buildings and trees, leading to divide into residential and forest. The training ratio
and accuracy of parking lot and residential is similar, meaning the recognizing ability of MOSCRF is
similar, too.
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Figure 11b shows some of the images classified correctly by MOSCRF but incorrectly by frequency
vector. It can be seen that both methods can classify the pure scenes such as forest, but MOSCRF has a
better ability to recognize those scene categories with complex spatial configuration.

According to Figure 8b, we can see that the Montgomery area is covered by water, grass, trees,
roads, and buildings, with farm being the commonest scene class. Parking lots are found at the sides
of the roads, and the residential area is to the northeast and east. Parking lots are obviously more
common in the residential area.

4.3. Experiment 3: Wuhan IKONOS Dataset

The third dataset is the IKONOS images of the Wuhan Hanyang district obtained in 2009,
including a large image (Figure 12a) with the size of 6150 × 8250 pixels and eight scene classes:
dense residential, idle land, industrial, medium residential, parking lot, commercial district, vegetation,
and water (Figure 13). Each scene includes 30 images with the size of 150 × 150 pixels and a 1 m
resolution. The objects are divided into nine land-cover classes, including three types of buildings,
three types of roads, vegetation, water, and soil, with 23,637, 46,307, 118,710, 118,238, 119,392, 22,996,
89,955, 102,614, and 13,006 samples, respectively.
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(b) the scene understanding result.

In Figure 14, for the Wuhan IKONOS dataset, it can be seen that it is more valid to use joint
features (i.e., the spectral feature and the GLCM) than just the spectral feature when the number
of training samples ranges from 30 to 400. The best accuracy, 87.5%, is acquired when there are
400 training samples and the features are joint features. The land-cover recognition result with the
highest accuracy was then used in the subsequent scene sematic category understanding.
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In this case, 80% of the images in every scene class were randomly selected as training samples.
The other parameters of the relation construction and scene sematic category understanding were the
same as in the USGS dataset. Table 3 lists the accuracies of the different methods.

Table 3. Accuracies of the different methods for the Wuhan IKONOS dataset.

Method Accuracy (%)

Features based on visual words of
low-level features

BoVW [4] 73.85
SPM [39] 71.69
LDA [7] 77.34
FK [6] 77.35

Deep learning features CNN [40] 74.45

Features based on objects
Frequency vector [18] 73.31

FH2 [32] 73.27
MOSCRF 80.63

In Table 3, it can be seen that the performance is different from the USGS dataset. Here, MOSCRF
acquires the best accuracy, 80.63%, which is at least 3% higher than the other methods. Comparing CNN
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to MOSCRF explains that MOSCRF is more suitable when lacking training samples, while comparing
FK or LDA to MOSCRF reflects that ground object information is useful to scene classification. That is,
the relations of objects are helpful in scene understanding. Both co-occurrence relations and positions
relations are essential in scene understanding, according to the result that MOSCRF is 7% higher than
frequency vector and FH2. In Table 4, all classifiers are usable, while SVM is the best, followed by RF.
NB is the worst and is nearly 20% lower than SVM.

Table 4. Accuracies of MOSCRF based on different classifiers.

Methods OA (%) Wilcoxon Test (α = 0.05)

SVM 80.63 ± 4.54 0.5971
NB 60.73 ± 4.70 0.6602

KNN 70.60 ± 6.11 0.5096
RF 72.92 ± 5.70 0.8260

ANN 71.88 ± 5.10 0.8969

According to the confusion matrix in Figure 15a, MOSCRF performs the best in distinguishing
dense building, vegetation and water because of their regular distribution and relatively pure objects.
Meanwhile, the idle and industrial scene classes are difficult to distinguish because of the vague and
similar spatial configurations of their internal components: roads, buildings, and soil. Figure 15b
shows some of the images that are classified correctly by MOSCRF but incorrectly by frequency vector.
It can be seen that MOSCRF is good at recognizing those objects with similar area proportions but
different spatial configurations.
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Figure 15. (a) The confusion matrix for the Wuhan IKONOS dataset based on MOSCRF; and (b) some
of the classification results that MOSCRF can recognize while frequency vector cannot.

In Figure 12b, we can see that the land-cover types are complex in Hanyang, including three types
of buildings, three types of roads, vegetation, water, and soil. The area is still developing and the city
planning is incomplete. As a result, the spatial layout of Hanyang is not regular.

5. Sensitivity Analysis

5.1. Sensitivity Analysis of the Interval ∆θ of MOFH

∆θ is an important parameter for the MOFH, and it indicates the direction continuity of the
MOFH. To test the sensitivity of MOSCRF to ∆θ, land-cover classification results of the same accuracy
and SVM with linear kernel were used. ∆θ was set to 2, 3, 4, 6, and 9, and the results are shown in
Figure 16. Figure 16a is the result for the USGS dataset, where the effect of ∆θ is very small as the
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range of OA is from 89.74% to 89.79%. Figure 16b is the result for the Wuhan IKONOS dataset, where
the effect of ∆θ is increased. Furthermore, the USGS dataset obtains the best performance at 6◦, while,
for the Wuhan IKONOS dataset, it is 2◦. The specific spatial layout of the different datasets causes
the different direction continuity, leading to the highest accuracy being obtained at different values
of ∆θ. However, the smaller the value of ∆θ, the higher the calculation cost; thus, 3◦ was chosen in
Experiment 1 and Experiment 2.Remote Sens. 2017, 9, 30  16 of 19 
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Figure 16. Sensitivity analysis of ∆θ: (a) the scene sematic category understanding result for the USGS
dataset; and (b) the scene sematic category understanding result for the Wuhan IKONOS dataset.

5.2. Sensitivity Analysis of r in the MOFH

Parameter r is an important parameter to quantify the distance in the MOFH. When r is 0, the
forces are constant, while, when r is 2, the form of the force is similar to gravity. Values of r = 0, r = 0.5,
and r = 2 were tested. The classifier was SVM with RBF kernel. According to Table 5, it is clear that
r = 2 is not suitable for MOFH because it can only model disjoint relationships. r = 0 and r = 0.5 can
both be used in MOFH, but r = 0.5 performs better. Therefore, the choice of r should follow the actual
distribution of the objects.

Table 5. Sensitivity analysis of r in the MOFH.

Value OA of the USGS Dataset (%) OA of the Wuhan IKONOS Dataset (%)

0 90.23 78.54
0.5 92.73 80.63
2 16.37 14.23

5.3. Sensitivity Analysis of the Land-Cover Classification Accuracy

The land-cover classification accuracy affects the scene sematic category understanding accuracy.
To test how this affects MOSCRF, five groups of different land-cover classification results and SVM
with linear kernel were used. The values of ∆θ and r were kept the same. In Figure 17a, it is clear that
the higher the accuracy of the land-cover classification, the higher the accuracy of the scene sematic
category understanding, as the curve is monotonically increasing. This can be explained by the fact
that, if the land-cover classification accuracy is high, there will be less loss of land-cover information.
However, for the Wuhan IKONOS dataset, the curve is irregular (Figure 17b). The highest accuracy of
scene sematic category understanding, 75.58%, is obtained when the land-cover classification accuracy
is 78.419%, instead of 84.187%. This may be because, when the land-cover classification result is poor,
the spatial configuration is easily affected by small but incorrect regions, leading to the turbulence of
the curve. When the land-cover classification accuracy is relatively high, the trend is the same as for
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the USGS dataset, as seen in the end of the curve in Figure 17b. Therefore, it is important to improve
the land-cover recognition result to reduce the noise in constructing MOSCRF.Remote Sens. 2017, 9, 30  17 of 19 
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The experimental results not only show that the proposed method performs better with than 
the traditional methods and classifiers, but it also identifies the internal composition of the scene 
and the relations of the objects. Therefore, MOSCRF has clear geographical significance in 
researching the internal patterns of scenes and is very deserving of further study to mine more 
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6. Conclusions

Although BoVW, topic models, and deep learning algorithms can acquire a relatively high
accuracy in scene classification, they do not take the prior knowledge of the objects into consideration.
Therefore, they cannot fully understand the components of the images and their relations in the
scene. In this paper, to solve this problem, we have proposed scene understanding based on the
spatial context relations of multiple objects. The proposed approach consists of three main steps:
(1) object-oriented classification based on MAOS + MV; (2) spatial context relations construction
consisting of co-occurrence relations construction by the oFK and position relations construction by
the MOFH; and (3) scene sematic category understanding by SVM-RBF. The oFK is the extension of
the traditional FK based on low-level features in replacing the low-level features with the category
information to justify the distribution of the object categories. MOFH extends the F-histogram
of pairwise objects into multiple objects to serve the HRSIs and express the spatial layout of the
scene. Moreover, the proposed MOFH has the characteristics of invariance to rotation and mirroring.
MOSCRF is the framework of scene understanding based on these three steps.

The experimental results not only show that the proposed method performs better with than the
traditional methods and classifiers, but it also identifies the internal composition of the scene and
the relations of the objects. Therefore, MOSCRF has clear geographical significance in researching
the internal patterns of scenes and is very deserving of further study to mine more information and
improve the accuracy of scene understanding.
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