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Abstract: To date, little attention has been given to remote sensing-based algorithms for inferring 

urban surface evapotranspiration. A multi-source parallel model based on ASTER data was one of 

the first examples, but its accuracy can be improved. We therefore present a modified multi-source 

parallel model in this study, which has made improvements in parameterization and model 

accuracy. The new features of our modified model are: (1) a characterization of spectrally 

heterogeneous urban impervious surfaces using two endmembers (high- and low-albedo urban 

impervious surface), instead of a single endmember, in linear spectral mixture analysis; (2) inclusion 

of an algorithm for deriving roughness length for each land surface component in order to better 

approximate to the actual land surface characteristic; and (3) a novel algorithm for calculating the 

component net radiant flux with a full consideration of the fraction and the characteristics of each 

land surface component. HJ-1 and ASTER data from the Chinese city of Hefei were used to test our 

model’s result with the China–ASEAN ET product. The sensitivity of the model to vegetation and 

soil fractions was analyzed and the applicability of the model was tested in another built-up area in 

the central Chinese city of Wuhan. We conclude that our modified model outperforms the initial 

multi-source parallel model in accuracy. It can obtain the highest accuracy when applied to 

vegetation-dominated (vegetation proportion > 50%) areas. Sensitivity analysis shows that 

vegetation and soil fractions are two important parameters that can affect the ET estimation. Our 

model is applicable to estimate evapotranspiration in other urban areas. 

Keywords: evapotranspiration; impervious surfaces; multi-source; ASTER; HJ-1A; China–ASEAN 

ET product 

 

1. Introduction 

Land surface evapotranspiration (ET) is the largest component of the land surface water and 

energy balance [1]. It consists of soil evaporation and vegetation transpiration from land surfaces into 

the atmosphere, as well as the evaporation of canopy interception and surface water [2]. ET is 

fundamental to water balance in natural environments, particularly in semi-arid and arid regions 

where ecosystem processes are often impacted by the limited availability of water and where water 

loss is dominated by ET [3,4]. In urban environments, ET plays an essential role in alleviating urban 

heat island effect and regulating urban climate [5]. Nevertheless, urban land surface 
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evapotranspiration remains little studied due to the complexity of urban land covers and of urban 

ET processes. 

A variety of techniques were used to assess evapotranspiration on different scales, which have 

been summarized by Verstraeten et al. [6]. On point/leaf/plant and field scales, which rarely exceed 

1–2 km [4,7], ET observation methods including lysimetry (LM), water balance (WB), Bowen ratio-

energy balance (BR), Scintillometer (SCM) Sap-flow (SF), and the Penman–Monteith (PM) equation 

have been widely applied. On a landscape scale, methods such as Eddy covariance (EC), WB, and 

PROMET remain dominant. On large scales (i.e., regional and continental), the spatial and 

topographic heterogeneity of land surfaces are more complex [4]. Therefore, thermal remote sensing, 

which can record heat information of large-scale land surfaces in the thermal infrared region of 

electromagnetic spectrum, has been combined with mathematical models and meteorological data to 

estimate ET [4,8–14]. Based on the turbulent heat flux exchange mode between land surfaces and 

near-ground atmosphere, remote sensing-based ET estimation models fall into two main categories: 

single-source and dual-source. 

In single-source models, a land surface is considered homogeneous without distinguishing 

between vegetation and soil, i.e., the energy exchange interface is assumed to be a big leaf with a 

uniform component. A number of single-source models have been developed, such as the surface 

energy balance algorithm for land (SEBAL) model [15], mapping evapotranspiration with 

internalized calibration (METRIC) model [16,17], the surface energy balance system (SEBS) model 

[18], and the simplified surface energy balance index (S-SEBI) model [19,20]. These models are simple 

and extensively used as their parameters are easy to obtain. However, they have large errors because 

of heterogeneous land cover, particularly in urban areas [4]. 

Under most conditions, vegetation canopy is not compact and is therefore mixed with vegetation 

and soil. Shuttleworth and Wallance [21] proposed a dual-source model in which evapotranspiration 

is considered consisting of soil evaporation and vegetation transpiration [22]. In addition, according 

to the interaction mechanism and resistance connection model between soil and vegetation, dual-

source models are either serial or parallel models. A serial model takes soil and vegetation canopy as 

a continuum where vapor and heat of the canopy converge at a hypothetical height inside the 

vegetation canopy from which it is then exchanged to the atmosphere, i.e., the water and energy flux 

of the entire land surface is equal to the sum of each layer’s flux. Due to the difficulty of obtaining the 

required parameters, application of serial models is restricted. 

In arid and semi-arid regions, vegetation distribution is sparse and uneven, and the coupling 

between soil and vegetation canopy is weak and can be ignored. Based on this, parallel models such 

as the two-source model (TSM) [23–25], the atmosphere-land exchange inverse model (ALEXI) [26–

28] and the two-source trapezoid model for evapotranspiration (TTME) [29] consider vegetation and 

soil as two independent components without interaction, i.e., the turbulent exchanges with 

atmosphere for vegetation and soil are two parallel processes. Parallel models are in fact simplified 

versions of dual-source models, and thus easier to use. 

As urban land surface energy balance has four main components, i.e., vegetation, soil, 

impervious surfaces, and water [30], dual-source models only take vegetation and soil into account, 

and the proportions of vegetation and soil in a mixed pixel are always ignored, and thus are not 

suitable for urban areas. In order to solve the problem, Zheng [5] first developed a multi-source 

parallel model in which evapotranspiration of each pixel in a satellite image of urban land surface 

was inferred based on an energy residual algorithm through combining the transpiration and 

evaporation of the vegetation component and the soil component that are extracted by linear spectral 

mixture analysis. The multi-source parallel model (hereinafter referred to as Zheng’s model) has 

improved evapotranspiration inversion accuracy for urban areas [5]. However, Zheng’s model 

ignored the spectral heterogeneity of urban impervious surfaces in linear spectral mixture analysis, 

and used general empirical algorithms or coefficients for calculating momentum roughness length, 

heat roughness length, and component net radiant flux, and failed to consider the characteristic of 

each component in the study area. As such, Zheng’s model can be improved by optimizing its 

parameterization and simplifying part of its algorithm. 
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Based on Zheng’s model, this study presents a modified multi-source parallel model (hereinafter 

referred to as the modified model or our model). We aim to improve the accuracy of estimating urban 

surface evapotranspiration through our model by: 

(i) Characterizing spectrally heterogeneous urban impervious surfaces with two spectral 

endmembers (high- and low-albedo); 

(ii) Revising the methods of deriving roughness length for each land surface component; 

(iii) Recalculating the component net radiant flux with a full consideration of the fraction and the 

characteristic of each land surface component. 

2. Study Area and Data 

2.1. Study Area 

Hefei (31°40′–31°59′N, 117°4′–117°26′E), the capital city of the eastern Chinese province of Anhui, 

was selected for this study. Hefei is located on the western side of the Yangtze River Delta between 

the Yangtze River and Huaihe River. It covers an area of 11,445.1 km2, including the 770 km2 area of 

Chaohu Lake, one of the five largest freshwater lakes in China. Situated at mid-latitudes, Hefei has a 

subtropical humid monsoon climate with four distinguishable seasons and large precipitation and 

insolation, with an average annual temperature of 15.7 °C, an average annual rainfall of 1000 mm, an 

average annual sunshine period of 2000 hours and an average annual frost-free period of 228 days 

[31]. Hefei is generally flat and characterized by low elevations ranging from 20 m to 40 m. 

By the end of 2015, the urban population of Hefei reached 5.484 million, with an urbanization 

rate of 70.4%. This suggests that Hefei has become a highly urbanized city. In order to focus on urban 

land surface evapotranspiration, we extracted the urban built-up area from Hefei’s HJ-1A satellite 

imagery (presented in Section 2.2) as the study area (Figure 1). The selected area highlights the four 

main land cover types of Hefei, i.e., impervious surfaces, vegetation, bare soil, and water. 

 

Figure 1. Study area: (a) Anhui province in China; (b) study area in Anhui’s capital city of Hefei; (c) 

study area highlighted in red in the true color composite of HJ-1A satellite imagery (13 October 2013). 

2.2. Data and Preprocessing 

In order to inverse urban land surface ET through a multi-source model, satellite image data 

must have at least three different thermal infrared (TIR) bands in the wavelength range of 8–13 μm—
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ASTER (carried by the satellite of Terra) and MODIS (carried by the two satellites of Terra and Aqua) 

are the only two sensors producing such freely available data (note that ASTER data are free as of 1 

April 2016) [32]. ASTER has a lower time resolution but a higher spatial resolution than MODIS (16 

days vs. four days; 90 m vs. 1 km). Since our focus was on an urban built-up area with heterogeneous 

land cover types and a higher spatial resolution can result in a finer ET map, we decided to select the 

90-meter-resolution ASTER for inferring component temperatures. An ASTER L1B level image of 

Hefei acquired on 13 October 2013 was downloaded from MADAS (METI AIST Data Archive System) 

of the Geological Survey of Japan for the study. 

ASTER SWIR detectors malfunctioned as of April 2008, and thus no usable ASTER SWIR data 

have been provided since then [32]. Although the remaining three VNIR bands can be used to 

decompose mixed pixels through spectral unmixing, they do not suffice for more than three 

endmembers due to inter-band correlations. As a result, HJ-1A CCD2 data at 30 m spatial resolution, 

acquired on 13 October 2013, were used to provide visible and near-infrared (VNIR) bands for 

decomposing mixed pixels. Technical specifications of ASTER TIR and HJ-1A CCD2 VNIR bands are 

shown in Table 1. 

Table 1. Technical specifications of ASTER TIR and HJ-1A CCD2 VNIR bands. 

Sensor Band 
Wavelength 

(μm) 
Resolution (m) 

Revisit 

Cycle 

(day) 

Acquisition 

Time (GMT) 

Acquisition 

Date 

ASTER 

(TIR) 

10 8.125–8.475 

90 16 03:00:43 13 October 2017 

11 8.475–8.825 

12 8.925–9.275 

13 10.25–10.95 

14 10.95–11.65 

HJ-1A CCD2 

(VNIR) 

1 0.43–0.52 

30 2 01:57:19 13 October 2017 
2 0.52–0.60 

3 0.63–0.69 

4 0.76–0.90 

The ASTER image was georeferenced to the HJ-1A image with an overall error of less than half 

a pixel. An FLAASH based atmospheric correction was applied to the HJ-1A CCD bands as they were 

used for linear spectral mixture analysis. All ASTER thermal bands were then spatially resampled to 

30 m to match the HJ-1A CCD bands. In this study, the four VNIR bands of HJ-1A CCD (band 1 to 4) 

and the four TIR bands of ASTER (band 11–14) were required for decomposing mixed pixels and 

inferring component temperatures respectively. 

In the absence of field-based latent heat radiation data of the study area, the 1-km resolution 

MODIS global evapotranspiration product (hereinafter referred to as the MOD16 ET product) [33] 

was firstly considered as the validation data for assessing the modeled ET because it has a good 

correlation with flux tower data (𝑟 = 0.86) [34]. However, the data of the study area on 13 October 

2013 (i.e., the 286th day of 2013) is missing from the MOD16 ET product due to its coarse temporal 

resolution (eight days). Another freely available ET dataset is the 1 km/daily evapotranspiration 

product over China and the Association of Southeast Asian Nations (ASEAN) for 2013 (hereinafter 

referred to as the China–ASEAN ET product), provided by the Chinese Academy of Sciences [35]. 

The China–ASEAN ET product is distributed in 40 adjacent non-overlapping sinusoidal tiles that are 

approximately 10° × 10° (at the equator). It has a higher temporal resolution (one day) but an equal 

spatial resolution (1 km) in relation to the MOD16 ET product [35]. 

Because the accuracy of the China–ASEAN ET product has not been reported by its provider, 

we here assessed it by comparison with the MOD16 ET product of October 8, 2013 (i.e., the 281st day 

of 2013). As the ET data of all urban area were excluded in the MOD16 ET product, a rectangular test 

site consisting of 81250 pixels (~1 km × 1 km) near the study area was used to perform the comparative 

analysis. A total of 1000 sample points were randomly generated, using ArcGIS, in the rectangular 

test site with a minimum allowed distance of 1 km. Values of the pixels containing the 1000 sample 

points were extracted from the two ET datasets and compared in Figure 2. The observations are 
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nearly evenly distributed around the 1:1 line with a correlation coefficient of 0.7253. This strong 

correlation suggests [36,37] that the China–ASEAN ET product has a reliable quality and thus can be 

used as alternative validation data for assessing our model’s accuracy. 

 

Figure 1. Scatter plot of the China–ASEAN ET product against the MOD16 ET product on the 281st 

day of 2013 for a rectangular site near the study area. 

3. Methodology 

In contrast to natural surfaces, urban built-up areas have uneven and sparse vegetation 

distribution. As a result, the coupling between soil evaporation and vegetation transpiration is weak 

and ignorable, which enables parallel models to estimate surface evapotranspiration [23,38]. 

However, traditional parallel models only take two components (vegetation and soil) into account 

and neglect the important role that impervious surface plays in surface energy balance [5]. In low-

resolution satellite imagery, a pixel is usually a mixture of different land cover types in urban areas. 

It is, therefore, necessary to consider different components in the pixel when estimating 

evapotranspiration in urban areas. Multi-source models, however, take vegetation, soil, impervious 

surfaces (water can be excluded and its evapotranspiration can be calculated separately) as the three 

components for urban mixed pixels. The urban land surface energy balance relationship of the net 

radiant flux, the sensible heat flux, the latent heat flux and the internal heat flux for each pixel can be 

considered as a combination of the energy balance of the three components, which could be expressed 

as follows [5]: 

𝑅𝑛,𝑣 = 𝐻𝑣 + 𝐿𝐸𝑣 (1) 

𝑅𝑛,𝑠 = 𝐻𝑠 + 𝐿𝐸𝑠 + 𝐺𝑠 (2) 

𝑅𝑛,𝑖𝑚𝑝 = 𝐻𝑖𝑚𝑝 + 𝐺𝑖𝑚𝑝, (3) 

where 𝑅𝑛,𝑣 , 𝑅𝑛,𝑠 , and 𝑅𝑛,𝑖𝑚𝑝  refer respectively to the net radiant flux of vegetation, soil and 

impervious surface; 𝐻𝑣, 𝐻𝑠 and 𝐻𝑖𝑚𝑝 refer respectively to the sensible heat flux of vegetation, soil 

and impervious surface; 𝐿𝐸𝑣 and 𝐿𝐸𝑠 refer respectively to the latent heat flux of vegetation and soil 

(evapotranspiration does not apply to impervious surfaces except in rainy weathers); 𝐺𝑠 refers to 

soil heat flux, and 𝐺𝑖𝑚𝑝 refers to the heat flux inside impervious surface. 

Based on Equations (1)–(3), the total latent heat flux (𝐿𝐸) (i.e., the sum of vegetation latent heat 

flux 𝐿𝐸𝑣 and soil latent heat flux 𝐿𝐸𝑠) can be calculated if the net radiant flux (𝑅𝑛), the sensible heat 

flux (𝐻) and the internal heat flux (𝐺) of each component are calculated. But prior to that, two 

important intermediate parameters be, namely pixel component fraction (𝑓𝑘, 𝑘 refers to component 

type, 𝑘 = 1, 2, 3, 4 refer respectively to vegetation, soil, high- and low-albedo impervious surfaces) 

and pixel component temperature (𝑇𝑘), should be acquired first.  
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In order to better illustrate the methodology of this study, three flowcharts detailing the input 

data, parameters, and equations are given in different sections of the paper. The flowchart for the 

first step of our modified model (Sections 3.1 and 3.2) is shown in Figure 3. This figure demonstrates 

estimation of component temperatures from remotely sensed imagery. 

 

Figure 3. Flowchart of the first step (Step 1) of our model, as detailed in Sections 3.1 and 3.2. The gray 

rectangles represent the input data, and the other color rectangles indicate the parameters that were 

used more than once in the next steps. Equations used in each of the processes are highlighted in blue. 

Full forms of the variables in the flowcharts are listed in Table A1 in the Appendix. 

3.1. Linear Spectral Mixture Analysis 

In a linear spectral mixture analysis (LSMA) of an urban area, the spectrum of a pixel is 

considered as a linear combination of spectra of pure endmembers within the pixel weighted by their 

component abundance [30,39]. The fully constrained linear spectral mixture analysis where the sum 

of all components is one and no component is negative [39,40] was applied to inverse pixel 

component fraction using a least squares method. The fully constrained LSMA is expressed by the 

following equations: 

𝑅𝑏 = ∑ 𝑓𝑘𝑅𝑘,𝑏

𝑁

𝑘=1

+ 𝑒𝑏 (4) 

∑ 𝑓𝑘
𝑁
𝑘=1 = 1 𝑎𝑛𝑑 𝑓𝑘 ≥ 0, (5) 

where 𝑅𝑏 is the reflectance for each band 𝑏 in a pixel; 𝑅𝑘,𝑏 is the reflectance of endmember 𝑘 in 

band 𝑏 for that pixel; 𝑓𝑘 is the fraction of endmember 𝑘 in a pixel; 𝑒𝑏 is the residual; and 𝑁 is the 

number of components. 

As it adversely affects impervious surface estimation [30,41] and, in the form of open water 

bodies, is hardly mixed with other components, water was masked through land cover classification 

before endmember selection [30]. Endmember selection is a primary step of LSMA. Brightness 

normalization [42–44] was first applied to the HJ-1A CCD bands to decrease intra-class spectral 

variability, followed by a minimum noise fraction (MNF) transform to reduce data dimensionality 

[45]. After that, the pixel purity index (PPI) was calculated to extract the pure pixels [46,47], then the 
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pure pixels were loaded into the interactive N-Dimensional visualizer of software package ENVI. By 

trial and error, four different endmembers were determined in the pixel clouds: high-albedo feature 

(e.g., cement concrete, glass, and composite materials), low-albedo feature (e.g., asphalt road and 

asphalt roof), vegetation (e.g., grassland and tree crown), soil (e.g., bare soil in construction site and 

unused wasteland). Figure 4 shows the normalized spectral reflectance for HJ-1 VNIR bands of the 

four selected endmembers. The fraction of each endmember in a pixel was finally estimated through 

LSMA. 

 

Figure 4. Normalized spectral reflectance for HJ-1 VNIR bands of the four selected endmembers. 

Surface component fractions are fundamental model parameters of our model and should be 

assessed before they are used for calculating other parameters. Statistical analysis of the RMSE image 

(Figure 5) resulting from the fully constrained LSMA showed that the average RMSE was 0.006. 

Despite a maximum value of 0.12, approximately 99% of pixels on the RSME image had values 

ranging from 0 to 0.03. This suggests that the accuracy of the FLCS result was high. 

 

Figure 5. RMSE image resulting from the fully constrained LSMA. 

To further validate the accuracy of surface component fractions, a 2 m resolution satellite image 

on 2 October 2013 of the study area acquired from Google Earth as validation data of the spectral 

unmixing. A total of 100 validation samples, each consisting of 3 × 3 pixels (90 × 90 m2) of the HJ-1A 

image, were randomly generated on the Google Earth image (shown in Figure 6), and four surface 

component fractions of each validation sample were extracted by manual interpretation. 
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Figure 6. (a) A 2 m resolution satellite image of the study area on 2 October 2013; (b) one of 100 

randomly distributed validation samples (show in red rectangle) on the Google Earth image; (c) 

interpretation of one validation samples. 

Despite four surface component fractions, we here chose only vegetation and soil fractions for 

accuracy assessment for the ease of assessment and, more importantly, because only they were used 

for calculating other parameters. Scatter plots in Figure 7 shows high correlation coefficients (both 

approximately 0.92) and low RMSEs (both only slightly higher than 0.10) for the two different 

datasets of surface component fractions. Figure 7 indicates that LSMA produced good surface 

component fractions, which are acceptable and allow the following calculations. 

 

Figure 7. Scatter plots of LSMA modeled surface component fractions against those extracted from 

Google Earth image: (a) vegetation fraction; (b) soil fraction. 
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3.2. Retrieval of Land Surface Component Temperature 

According to Planck’s law, the thermal radiation of isothermal surface is related to the blackbody 

radiation, which can be expressed as [48]: 

𝐿𝜆 = 휀𝜆𝐵𝜆(𝑇𝑠𝑢𝑟), (6) 

where 𝐿𝜆 is the thermal radiation of land surface at wavelength 𝜆; 휀𝜆 is the land surface emissivity 

at wavelength 𝜆; 𝐵𝜆(𝑇𝑠𝑢𝑟) is the Planck blackbody radiation when the land surface temperature is 

𝑇𝑠𝑢𝑟. Qin et al. [49] have found the following relationship between 𝐵𝜆(𝑇𝑠𝑢𝑟) and at-sensor thermal 

radiation 𝐵𝜆,𝑠𝑒𝑛𝑠: 

𝐵𝜆,𝑠𝑒𝑛𝑠 = 𝜏𝜆휀𝜆𝐵𝜆(𝑇𝑠𝑢𝑟) + (1 − 𝜏𝜆)[1 + 𝜏𝜆(1 − 휀𝜆)]𝐵𝜆(𝑇𝑎𝑖𝑟), (7) 

where 𝜏𝜆 is atmospheric transmittance at wavelength 𝜆, 𝑇𝑎𝑖𝑟 is near-surface average atmospheric 

temperature. The thermal radiation of each mixture pixel can be considered as a linear combination 

of the thermal radiation of each component [50]: 

𝐿𝜆 = ∑ 𝑓𝑘휀𝜆𝑘𝐵𝜆(𝑇𝑘)𝑁
𝑘=1 , (8) 

where 휀𝜆𝑘  is the emissivity of component 𝑘  at wavelength 𝜆 ; 𝐵𝜆(𝑇𝑘)  is the Planck blackbody 

radiation of component 𝑘 at wavelength 𝜆 when the temperature of component 𝑘 is 𝑇𝑘. 

The Planck blackbody radiation shows an approximately linear relationship with temperature 

in the range between 273.15 K and 330.15 K [51] (Figure 8 and Table 2). 

 

Figure 8. The relationship between the Planck blackbody radiation and temperature for ASTER 

thermal infrared bands. 

Table 2. The linear fitting coefficients of Planck function for ASTER thermal infrared bands 1. 

Band 𝒂𝟐𝝀 𝒃𝟐𝝀 R2 

11 0.19450 −48.602 0.9953 

12 0.18754 −46.329 0.9960 

13 0.14532 −33.685 0.9966 

14 0.13266 −30.273 0.9972 
1 The result of linear fitting between Planck blackbody radiation (𝐵𝜆(𝑇)) and temperature (𝑇) could 

be expressed as this form: 𝐵𝜆(𝑇) = 𝑎2𝜆𝑇 + 𝑏2𝜆. 

Based on Table 2 and Equations (6)–(8), the following equation was obtained: 
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∑ 𝑓𝑘휀𝑘𝜆𝑎2𝜆𝑇𝑘
𝑁
𝑘=1 =

𝐵𝜆,𝑠𝑒𝑛𝑠−(1−𝜏𝜆)[1−𝜏𝜆(1−𝜀𝜆)]𝐵𝜆(𝑇𝑎𝑖𝑟)

𝜏𝜆
− ∑ 𝑓𝑘휀𝑘𝜆𝑏2𝜆

𝑁
𝑘=1 , (9) 

where 𝑓𝑘 have already been obtained in Section 3.1, when 휀𝑘𝜆, 휀𝜆, 𝐵𝜆,𝑠𝑒𝑛𝑠, 𝜏𝜆 and 𝐵𝜆(𝑇𝑎𝑖𝑟) have 

been obtained in the next calculations, the land surface component temperatures 𝑇𝑘 would be the 

four unknowns. Based on the four equations established with the four ASTER thermal infrared bands, 

optimal surface component temperatures 𝑇𝑘 were solved using a least squares method. 

3.2.1. Average Land Surface Emissivity 

For a pixel mixed only with vegetation and soil, Mao et al. [52] have proposed that average pixel 

emissivity can be obtained based on the relationship between emission and vegetation fraction. As 

two different impervious surface endmembers (high- and low-albedo), in addition to vegetation and 

soil, were identified in this study, we assume that average surface emissivity can be given by: 

휀𝜆 = 𝑓𝑣𝑅𝑣휀𝜆𝑣 + 𝑓𝑠𝑅𝑠휀𝜆𝑠 + 𝑓𝑖𝑚𝑝_ℎ𝑅𝑚휀𝜆𝑖𝑚𝑝_ℎ + 𝑓𝑖_𝑙𝑅𝑚휀𝜆𝑖𝑚𝑝_𝑙, (10) 

where 휀𝜆 is average land surface emissivity; 𝑓𝑣, 𝑓𝑠, 𝑓𝑖𝑚𝑝_ℎ and 𝑓𝑖𝑚𝑝_𝑙 are the fraction of vegetation, 

soil, high- and low-albedo imperious surfaces respectively; 휀𝜆𝑣 , 휀𝜆𝑠 , 휀𝜆𝑖_ℎ  and 휀𝜆𝑖_𝑙  are the 

emissivity of each component at wavelength 𝜆 respectively; 𝑅𝑣, 𝑅𝑠 and 𝑅𝑚 are the temperature 

ratio [53] of vegetation, soil and man-made construction with 𝑅𝑘 = (𝑇𝑘/𝑇𝑠𝑢𝑟)4 respectively. As it has 

a good linear relationship with vegetation coverage 𝑃𝑣 , which is calculated through 𝑁𝐷𝑉𝐼 , the 

temperature ratio for each of the components is given by: 

𝑅𝑣 = 0.9332 + 0.0585𝑃𝑣 (11) 

𝑅𝑠 = 0.9902 + 0.1068𝑃𝑣 (12) 

𝑅𝑚 = 0.9886 + 0.1287𝑃𝑣 (13) 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
)2, (14) 

where 𝑁𝐷𝑉𝐼𝑣 and 𝑁𝐷𝑉𝐼𝑠, which are the NDVIs for dense vegetation and bare soil, respectively. In 

the context of our study area, 𝑁𝐷𝑉𝐼𝑣 and 𝑁𝐷𝑉𝐼𝑠 were given approximate values of 0.65 and 0.05, 

respectively. 

When radiation makes its way to a surface, the sum of reflectivity, transmissivity, and emissivity 

for the surface is 100% [54]. The transmissivity is 0% for an opaque surface—a surface component’s 

emissivity can be calculated if its reflectivity is given. We investigated the typical urban ground 

objects in Hefei through a field survey conducted on 2 October 2016 and extracted their emissivity 

from the ASTER Spectral Library (Version 2.0) [55]: three types of vegetation (conifer, deciduous and 

grass), two types kinds of soil (light yellowish brown clay and light yellowish brown loam), four 

types of construction concrete (concrete paving solid 0092uuu, 0397uuu, 0424uuu and construction 

cement solid 0432uuu) and two types of construction asphalt (concrete paving solid 0095uuu and 

0096uuu). The extracted emissivity was averaged to approximate the emissivity of the four 

endmembers used in the study, i.e., vegetation, soil, high- and low-albedo impervious surfaces 

(Figure 9 and Table 3). 
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Figure 9. Emissivity spectral curve for each component. These curves were the average of typical 

urban ground objects listed in the ASTER Spectral Library (Versions 2.0). 

Table 3. Emissivity for each component at different ASTER thermal infrared bands. 

Band 

(𝝀) 

Vegetation 

Emissivity (𝜺𝝀𝒗) 

Soil Emissivity 

(𝜺𝝀𝒔) 

High-Albedo 

Impervious Surface 

Emissivity (𝜺𝝀𝒊𝒎𝒑_𝒉) 

Low-Albedo 

Impervious Surface 

Emissivity (𝜺𝝀𝒊𝒎𝒑_𝒍) 

11 0.9838 0.9764 0.9627 0.9574 

12 0.9788 0.9755 0.9606 0.9493 

13 0.9812 0.9781 0.9762 0.9665 

14 0.9829 0.9764 0.9670 0.9595 

3.2.2. Atmospheric Transmittance for ASTER Thermal Infrared Bands 

Since the geographical size of the study area is small and the image used was extracted from a 

high-quality ASTER scene, the atmospheric transmittance was assumed to be homogenous across the 

study area. As such, the atmospheric transmittance can be taken as a constant for the study area. Mao 

et al. [56] have noted that there is a good linear relationship between atmospheric transmittance and 

atmospheric vapor content (Table 4). 

Table 4. Coefficients for the linear relationship between atmospheric transmittance ( 𝜏𝜆 ) and 

atmospheric vapor content (𝑊) (𝜏𝜆 = 𝑎0𝜆𝑊 + 𝑏0𝜆) for ASTER thermal infrared bands [56]. 

Band 𝒂𝟎𝝀 𝒃𝟎𝝀 R2 

11 −0.068 0.9468 0.9983 

12 −0.066 0.9475 0.9975 

13 −0.074 0.9840 0.9845 

14 −0.100 1.0110 0.9899 

Since atmospheric vapor content of the study area was not directly observed by meteorological 

stations, Yang and Qiu [57] have proposed an algorithm for calculating atmospheric vapor content 

𝑊 of Chinese areas by using average atmospheric water vapor pressure data: 
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𝑊 = 𝑎1𝑒 + 𝑏1 (15) 

𝑎1 = 0.2 −
0.06

(𝜑 − 33)2 + 4.41
 (16) 

𝑏1 = 0.04𝑒0.6𝐸0 −
0.05

(𝜑−25)2+0.25
, (17) 

where 𝑒 is the average atmospheric water vapor, which can be obtained through the Daily Dataset 

of China Surface Climate [58] (detailed in Table 5); 𝜑 = 31.04°N, is the latitude of the center of the 

study area; and 𝐸0 = 200 m, the average elevation of the study area. This equation is applicable 

throughout China, except for part of south China [57]. 

Table 5. Meteorological parameters required for calculating average atmospheric water vapor [58]. 

Acquisition 

Date 

Average Atmospheric 

Temperature 
𝑻𝒂𝒊𝒓 (K) 

Average Atmospheric Water 

Vapor Pressure  
𝒆 (hPa) 

Mean Wind Speed at 

2 m Height 

𝒖𝒛 (m/s) 

Sunshine 

Duration 

𝑵𝒔 (h) 

2013-10-13 295.35 15.8 2.1 10.3 

3.3. Retrieval of Land Surface Component Sensible Heat Flux 

The flowchart for the second step of our modified model is shown in Figure 10. This figure 

demonstrates the estimation of component sensible heat flux followed by Step 1 in Figure 3. 

 

Figure 10. Flowchart of the second step (Step 2) of our model. 

In our modified multi-source model, land surface sensible heat flux is considered as the sum of 

the component sensible heat flux for mixed pixels. The component sensible heat flux can be described 

with a bulk transfer equation [59]: 

𝐻𝑘 = 𝑓𝑘𝜌𝐶𝑝(𝑇𝑘 − 𝑇𝑎𝑖𝑟)/𝑟𝑎ℎ𝑘, (18) 

where 𝐻𝑘 is the component sensible heat flux; 𝜌 is the air density (kg∙m−3); 𝐶𝑝 is the heat capacity 

of air at constant pressure (J∙kg−1∙K−1); 𝑇𝑎𝑖𝑟 is the air temperature (K), which can be obtained from a 
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daily dataset of China’s surface climate [58]; and 𝑟𝑎ℎ𝑘 is the aerodynamic resistance to heat transfer 

of component 𝑘 (s∙m−1). 

3.3.1. Aerodynamic Resistance to Heat Transfer 

The aerodynamic resistance to heat transfer of each component can be estimated separately as 

follows [60–62]: 

For stable conditions: 

𝑟𝑎ℎ𝑘 = ln (
𝑍 − 𝑑

𝑍0𝑚
− 𝜓) ln (

𝑍 − 𝑑

𝑍0ℎ
− 𝜓) /(𝑘2𝑢𝑧) (19) 

𝜓 = −5(𝑍 − 𝑑)/𝐿𝑀; (20) 

for unstable conditions: 

𝑟𝑎ℎ𝑘 = ln (
𝑍 − 𝑑

𝑍0𝑚
− 𝜓𝑚) ln (

𝑍 − 𝑑

𝑍0ℎ
− 𝜓ℎ) /(𝑘𝑐

2𝑢𝑧) (21) 

𝜓𝑚 = 2 ln (
1 + 𝑥

2
) + ln (

1 + 𝑥2

2
) − 2 arctan(𝑥) + 𝜋/2 (22) 

𝜓ℎ = 2ln (
1 + 𝑥2

2
) (23) 

𝑥 = (1 −
16(𝑍−𝑑)

𝐿𝑀
)0.25, (24) 

where 𝑍 is the elevation at which wind speed is observed (the elevation of Hefei meteorological 

observatory is 27 m); 𝑑 is the zero displacement height; 𝑍0𝑚 and 𝑍0ℎ are the roughness lengths for 

momentum and for heat, respectively; 𝑘𝑐 is von Karman’s constant with 𝑘𝑐 = 0.41; 𝑢𝑧 is the wind 

speed (m/s); 𝜓𝑚 and 𝜓ℎ are stability correction functions for momentum and heat respectively; and 

𝐿𝑀 is the Monin–Obukhov length with 𝑍/𝐿𝑀 > 0 being for stable conditions and 𝑍/𝐿𝑀 < 0 being 

for unstable conditions. 𝐿𝑀 can be estimated as follows [63]: 

𝐿𝑀 = 𝑢∗
2𝑇𝑎𝑖𝑟/𝑘𝑔𝑇∗, (25) 

where 𝑔  is the gravitational acceleration with 𝑔 = 9.8 m∙s−2; 𝑇∗  is temperature scale with 𝑇∗ =

𝑇𝑠𝑢𝑟 − 𝑇𝑎𝑖𝑟; 𝑢∗ is friction velocity estimated by [62]: 

𝑢∗ =
𝑘𝑐𝑢𝑧

𝑙𝑛 [(𝑍−𝑑)/𝑍0𝑚]
. (26) 

3.3.2. Momentum Roughness Length, Heat Roughness Length, and Zero Displacement Height 

Roughness length and zero displacement height are the most important parameters for 

characterizing the aerodynamics of land surface. Compared with natural land surfaces, the structure 

of urban surfaces is more complex. For a mixed pixel consisting of several land cover types, it is 

therefore less accurate to use a single value to represent roughness length or zero displacement height. 

As such, vegetation, soil, and impervious surfaces (high- and low-albedo) were calculated separately 

for roughness length and zero displacement in this study. 

 Roughness length and zero displacement of vegetation 

For vegetated surfaces, the relationship between average vegetation height ℎ and 𝑍0𝑚 and 𝑑 

is given by [64]: 



Remote Sens. 2017, 9, 1029  14 of 32 

 

𝑍0𝑚 = 0.125ℎ (27) 

𝑑 = 0.667ℎ, (28) 

where the average vegetation height ℎ was previously evaluated at 5 m for urban vegetation [65], 

and 𝑍0ℎ is given by [64]: 

𝑍0ℎ = 𝑍0𝑚𝑒−0.17𝑢𝑧|𝑇∗|. (29) 

 Roughness length and zero displacement of impervious surfaces 

For impervious surfaces, Grimmond et al. [66] have proposed empirical equations for calculating 

𝑍0𝑚 and 𝑑: 

𝑍0𝑚 = 0.6ℎ (30) 

𝑑 = 0.1ℎ, (31) 

where the average building height ℎ was evaluated at 20 m [67]. The thermal roughness length was 

defined in previous studies [68,69] for bluff-rough situations: 

𝑍0ℎ = 𝑍0𝑚[7.4exp(−2.46𝑅𝑒∗
0.25)] (32) 

𝑅𝑒∗ = 𝑍0𝑚𝑢∗/𝑣, (33) 

where 𝑅𝑒∗ is the roughness Reynolds number, with a kinematic molecular viscosity 𝑣 = 1.461 ×

10−5m∙s−1. 

 Roughness length and zero displacement of soil surfaces 

For bare soil surfaces, the values of momentum roughness length and zero displacement were 

obtained from Liu’s measurements [70]: 

𝑍0𝑚 = 0.0058 𝑚 (34) 

𝑑 = 0 𝑚. (35) 

Stewart et al. [71] have found a mean value of 4.5 for KB−1 (i.e., ln (𝑍0𝑚/𝑍0ℎ) [64]) for bare soil, 

so the thermal roughness length can be calculated as: 

𝑍0ℎ = 𝑍0𝑚exp (−4.5). (36) 

3.4. Retrieval of Land Surface Component Net Radiant Flux 

The flowchart for the third step of our modified model (Sections 3.4–3.6) is shown in Figure 11. 

This figure demonstrates the estimation of component net radiant flux, internal heat flux and the final 

ET result based on the intermediate parameters from Step 1 and Step 2. 

Land surface net radiant flux is the difference between incoming solar radiation to a land surface 

and outgoing radiation from the land surface [72]. The incoming radiation is mainly from solar 

radiation at shortwave lengths and atmospheric reflection received by the land surface, the outgoing 

radiation is the energy emitted into the atmosphere from the land surface itself. Therefore, land 

surface net radiant flux 𝑅𝑛 is given by [73]: 

𝑅𝑛 = 𝑅𝑠 ↓ −𝑅𝑠 ↑ +𝑅𝐿 ↓ −𝑅𝐿 ↑, (37) 

where 𝑅𝑠 ↓ and 𝑅𝐿 ↓ are solar shortwave radiation (i.e., incident solar radiation on ground 𝑄 [74]) 

and longwave radiation emitted from the atmosphere to the land surface respectively; 𝑅𝑠 ↑ and 𝑅𝐿 ↑ 

are shortwave radiation reflected by the land surface and longwave radiation emitted by the land 

surface. In Equation (37), the difference between shortwave radiations can be calculated as (1 − 𝑎)𝑄, 
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and the difference between longwave radiations can be calculated as 휀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4 − 휀𝜆𝜎𝑇𝑠𝑢𝑟

4  [74]. 

Therefore, the equation of calculating land surface net radiant flux can be also expressed as [18]: 

𝑅𝑛 = (1 − 𝑎)𝑄 + 휀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4 − 휀𝜆𝜎𝑇𝑠𝑢𝑟

4 , (38) 

where 𝑎 is the albedo of the land surface; 휀𝑎𝑖𝑟 is the effective emissivity of the atmosphere; and 𝜎 

is the Stefan Boltzmann constant with 𝜎 = 5.67 × 10−8 W·m−2·K−4. 

In Equation (38), the incident solar radiation on ground 𝑄 is not affected by the characteristics 

of the land surface. The effective atmospheric emissivity 휀𝑎𝑖𝑟  and the average atmospheric 

temperature 𝑇𝑎𝑖𝑟 are only affected by the atmosphere. This indicates that only land surface albedo 

𝑎, land surface emissivity 휀𝜆 and land surface temperature 𝑇𝑠𝑢𝑟 are related to the characteristics of 

the land surface. Therefore, for one single pixel, its surface net radiant flux for four surface 

components is given by: 

𝑅𝑛,𝑣 = 𝑓𝑣[(1 − 𝑎𝑣)𝑄 + 휀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4 − 휀𝑣𝜎𝑇𝑣

4] (39) 

𝑅𝑛,s = 𝑓𝑠[(1 − 𝑎𝑠)𝑄 + 휀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4 − 휀𝑠𝜎𝑇𝑠

4] (40) 

𝑅𝑛,𝑖𝑚𝑝_ℎ = 𝑓𝑖𝑚𝑝_ℎ[(1 − 𝑎𝑖𝑚𝑝_ℎ)𝑄 + 휀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4 − 휀𝑖_ℎ𝜎𝑇𝑖𝑚𝑝_ℎ

4 ] (41) 

𝑅𝑛,𝑖𝑚𝑝_𝑙 = 𝑓𝑖𝑚𝑝_𝑙[(1 − 𝑎𝑖𝑚𝑝_𝑙)𝑄 + 휀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4 − 휀𝑖_𝑙𝜎𝑇𝑖𝑚𝑝_𝑙

4 ], (42) 

where 𝑅𝑛,𝑣, 𝑅𝑛,s, 𝑅𝑛,𝑖𝑚𝑝_ℎ, and 𝑅𝑛,𝑖𝑚𝑝_𝑙 are component surface net radiant flux of vegetation, soil, 

high- and low-albedo impervious surfaces; 𝑎𝑣, 𝑎𝑠, 𝑎𝑖𝑚𝑝_ℎ, and 𝑎𝑖𝑚𝑝_𝑙 are the surface albedo of these 

components. 

 

Figure 11. Flowchart of the third step (Step 3) for Sections 3.4–3.6. 
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3.4.1. Incident Solar Radiation on Ground 

Since all information extracted from satellite image are instantaneous data, the instantaneous 

incident solar radiation on the ground should be used in the calculation as follows [75–77]: 

𝑄 = 𝑄0 × 𝑃𝑚
𝐴𝑀, (43) 

where 𝑄0 is instantaneous astronomical solar radiation; 𝑃𝑚 is atmospheric transparency; and 𝐴𝑀 

is the air mass that defines the direct optical path length through the Earth’s atmosphere. For the mid-

latitude area, 𝐴𝑀 can be estimated as 1.5 [78,79]. 

 Instantaneous astronomical solar radiation 

Because the height of the sun varies with time, astronomical solar radiation radiated on the 

horizontal plane of upper atmosphere can be computed as [80]: 

𝑄0 = 𝐼𝑠𝑐 · 𝑑𝑚
2(sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 cos 𝜔), (44) 

where 𝐼𝑠𝑐 is the solar constant with 𝐼𝑠𝑐 = 1367 w·m−2; 𝑑𝑚 is the correction coefficient of sun-earth 

distance; 𝛿 is the solar declination (rad); 𝜔 is solar hour angle (rad); 𝑑𝑚, 𝜔 and 𝛿 are given by: 

𝑑𝑚 = 1.000109 + 0.033494 cos 𝜃 + 0.001472 sin 𝜃 + 0.000768 cos 2𝜃 + 0.000079 sin 2𝜃 (45) 

𝛿 = 0.006894 − 0.399512 cos 𝜃 + 0.072075 sin 𝜃 − 0.006799 cos 2𝜃 + 0.000896 sin 2𝜃

− 0.002689 cos 3𝜃 + 0.001516 sin 3𝜃 

(46) 

𝜔 =
𝜋

12
(𝑆𝑇 − 12), (47) 

where 𝜃 is day angle (rad); 𝑆𝑇 is real solar time (hour). 𝜃 and 𝑆𝑇 are given by [81]: 

𝜃 = 2𝜋
𝐷𝑛 − 1

365
 (48) 

𝑆𝑇 = ℎ𝑏 +
(𝜆∗−𝜆𝑠

∗)×4+229.183𝜂

60
, (49) 

where 𝐷𝑛 is the number of days in the year; ℎ𝑏 is Beijing time (UTC+8); 𝜆𝑠
∗ is the longitude of local 

standard time (the longitude of Beijing is 120°E); 𝜆∗ is local longitude (the central longitude of the 

study area is 117.3°E); 𝜂 is the time lag (rad), it can be calculated as: 

𝜂 = 0.000043 + 0.002061 cos 𝜃 − 0.032040 sin 𝜃 − 0.014974 cos 2𝜃 − 0.040685 sin 2𝜃. (50) 

 Atmospheric Transparency 

Atmospheric transparency 𝑃𝑚  is the ratio of incident solar radiation on ground 𝑄  to 

astronomical solar radiation 𝑄0 [75]. Since it is challenging to acquire instantaneous atmospheric 

transparency data, the daily radiation data from ground radiation observation station in the study 

area was used to estimate 𝑃𝑚 by the following equation [75–77]: 

𝑃𝑚 = (
𝑄𝑑

𝑄0𝑑

)
−𝐴𝑀

, (51) 

where 𝑄𝑑  is the daily incident solar radiation on ground, the value of 𝑄𝑑  from Hefei radiation 

observation station on 13 October 2013 is 1887 MJ·m−2·d−1 [58]; 𝑄0𝑑  is daily astronomical solar 

radiation, which can be calculated as: 

𝑄0𝑑 =
𝑇𝑑

𝜋
𝐼𝑠𝑐 · 𝑑𝑚

2(𝜔0 sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 sin 𝜔0), (52) 

where 𝑇𝑑  is the time in one day in seconds, i.e., 86400 seconds; 𝜔0 and −𝜔0 are the solar hour 

angles at the time of sunrise and sunset, respectively; and 𝜔0 can be calculated as: 
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𝜔0 = 𝑎𝑟𝑐𝑜𝑠(− tan 𝛿 tan 𝜑). (53) 

3.4.2. Atmosphere Effective Emissivity 

Atmosphere effective emissivity 휀𝑎𝑖𝑟  is the function of average atmospheric water vapor 

pressure 𝑒 and average atmospheric temperature 𝑇𝑎𝑖𝑟, under the cloudless condition, 휀𝑎𝑖𝑟 can be 

estimated as [82,83]: 

휀𝑎𝑖𝑟 = 1.24(𝑒/𝑇𝑎𝑖𝑟)1/7. (54) 

3.4.3. Land Surface Albedo 

Liu et al. [84] have proposed an algorithm of land surface albedo for HJ-1 A/B CCD data, which 

transforms narrow band albedo to broad band albedo through regression analysis. It is described as 

follows: 

𝑎𝐻𝐽 = −0.5138𝑏𝑎𝑛𝑑1 + 0.5157𝑏𝑎𝑛𝑑2 + 0.4838𝑏𝑎𝑛𝑑3 + 0.3865𝑏𝑎𝑛𝑑4, (55) 

where 𝑎𝐻𝐽 is the broad band albedo; 𝑏𝑎𝑛𝑑𝑖 (𝑖 = 1,2,3,4) is the reflectance of each CCD band. Since 

𝑎𝐻𝐽 is average albedo of one pixel, for obtaining the albedo of each typical component, endmember 

pixels (i.e., pure pixels) of each component was used to calculate the average albedo of the four typical 

land cover types (Table 6). 

Table 6. Average albedo of the four components for the study area. 

Land Surface Component Albedo 

Vegetation 0.18 

Soil 0.28 

High-albedo impervious surfaces 0.15 

Low-albedo impervious surfaces 0.12 

3.5. Retrieval of Land Surface Component Internal Heat Flux 

For soil component, soil heat flux is the heat exchange between soil and the atmosphere. Friedl 

[85] established a proportional relationship between soil heat flux 𝐺𝑠 and soil surface net radiant 

flux: 

𝐺𝑠 = 0.25𝑅𝑛,𝑠(sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 cos 𝜔). (56) 

So far there is no widely-used empirical equation for estimating the internal heat flux for 

impervious surfaces (high- and low-albedo) but nevertheless, an algorithm based on surface energy 

balance for each component can be used to approximate internal heat flux of impervious surfaces: 

𝐺𝑖𝑚𝑝_ℎ = 𝑅𝑛,𝑖𝑚𝑝_ℎ − 𝐻𝑖𝑚𝑝_ℎ (57) 

𝐺𝑖𝑚𝑝_𝑙 = 𝑅𝑛,𝑖𝑚𝑝_𝑙 − 𝐻𝑖𝑚𝑝_𝑙, (58) 

where 𝐺𝑖𝑚𝑝_ℎ, 𝑅𝑛,𝑖𝑚𝑝_ℎ and 𝐻𝑖𝑚𝑝_ℎ are the internal heat flux, net radiant flux and sensible heat flux 

of high-albedo impervious surfaces, respectively; 𝐺𝑖𝑚𝑝_𝑙 , 𝑅𝑛,𝑖𝑚𝑝_𝑙  and 𝐻𝑖𝑚𝑝_𝑙  are the internal heat 

flux, net radiant flux and sensible heat flux of low-albedo impervious surfaces, respectively. The 

results of sensible heat flux and net radiant flux calculation have already been presented in Sections 

3.3 and 3.4. 

3.6. Retrieval of Daily Evapotranspiration 

After all parameters of the modified model were determined, the latent heat flux 𝐿𝐸  was 

obtained through adding together the component latent heat flux of vegetation and soil. Latent heat 

flux 𝐿𝐸 can be expressed as a product of evapotranspiration (𝐸𝑇, kg·m−2·s−1 or mm·s−1) and latent 
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heat of vaporization ( 𝐿 , 𝐿 = (2.501 − 0.00237 × 𝑇𝑎𝑖𝑟) × 106 , J·kg−1) [86]. For transforming 

instantaneous evapotranspiration (𝐸𝑇𝑖) into daily evapotranspiration (𝐸𝑇𝑑), Xie’s [87] research has 

established the relationship between 𝐸𝑇𝑑 and 𝐸𝑇𝑖 of any moment, which is expressed as: 

𝐸𝑇𝑑 =
2𝑁𝐸

𝜋 sin(𝜋𝑡/𝑁𝐸)
𝐸𝑇𝑖, (59) 

where 𝑡 is the time interval from sunrise to the acquisition time of satellite imagery (the local sunrise 

time on 13 October 2013 in Hefei was 06:12 AM Beijing Time (UTC+08:00) and 𝑁𝐸  is the 

evapotranspiration duration—which is two hours shorter than the insolation duration. 

4. Results 

Following the steps in Section 3 and the flowcharts (Figures 3, 10 and 11), we acquired the daily 

evapotranspiration of the study area on 13 October 2013 (Figure 12). Compared with the 2 m 

resolution satellite images of the study area, it was observed that the high ET values are mostly 

located in densely vegetated areas (e.g., green belts, city parks) and areas currently being developed, 

while low ET values are mainly distributed in intensive building areas, such as commercial and 

residential areas in downtowns, industrial areas in suburbs, and roads of contrasting levels. 

 

Figure 12. The spatial variability of daily evapotranspiration of Hefei’s urban built-up area on 13 

October 2013, inferred from our modified model. 

In order to make the result comparable with the China–ASEAN ET product, the image of daily 

evapotranspiration (Figure 12) was re-sampled to 1 km using the bilinear interpolation method. 

Scatter plots were used to compare the results and validation data (the China–ASEAN ET product) 

based on 552 sample points (Figure 13). The sample points could be linearly fitted with an R2 (R2) 

value of 0.5806 (Figure 13a). Such linear fitting varies with land cover type (vegetation, soil and 

impervious surfaces) (Figure 13b). The fraction image of each endmember was re-sampled to 1 km 

with pixels, with fractions >50% being selected as validation samples for each land cover type. Since 

the focus here was to explore the accuracy of the modeled ET for basic urban land cover types, high- 

and low-albedo impervious surfaces were combined as impervious surfaces in the following analysis. 
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The relationship between the two ET datasets for each land cover type was found to be linear, with 

each correlation coefficient >0.7. The linear fitting models are shown in Table 7. The R2 value for the 

linear relationship between our modeled ET and the validation ET in vegetation-dominated areas 

was 0.7495 (124 sampled points), obviously higher than that in soil-dominated areas (130 sampled 

points, R2 = 0.5349) and impervious surface-dominated areas (102 sampled points, R2 = 0.5200). 

However, the lowest MRE and RMSE values were obtained for the impervious surfaces. 

 

Figure 13. (a) Scatter plot of the modified model derived ET against the China–ASEAN ET product, 

based on the entire 552 sampled points; (b) scatter plot of the modified model derived ET against the 

China–ASEAN ET product, for each land cover (124 sampled points for vegetation, 130 for soil, and 

102 for impervious surfaces). 

Table 7. Linear relationship between our modeled ET and the China-ASEAN ET product for each 

land cover type (vegetation, soil, and impervious surfaces). 

Accuracy 

Measures 

Land Cover 

Type 

Correlation 

Coefficient (r) 
Regression Equation R2 

Mean 

Relative Error 

(MRE) 

Root Mean 

Square Error 

(RMSE) 

Vegetation 0.8669 𝑦 = 0.6464𝑥 + 0.7317 0.7495 6.08% 0.1281 

Soil 0.7339 𝑦 = 0.5302𝑥 + 0.7832 0.5349 6.12% 0.1370 

Impervious surfaces 0.7253 𝑦 = 0.4248𝑥 + 1.0224 0.5200 5.90% 0.1274 

5. Discussion 

Estimating urban land surface evapotranspiration did not receive sufficient attention in the 

community of quantitative remote sensing until the emergence of the multi-source parallel model 

proposed by Zheng [5]. Zheng’s model allows evapotranspiration to be estimated but its accuracy 

remains to be further improved. Based on his model, we therefore present a modified multi-source 

parallel model using ASTER thermal infrared bands.  

Important improvements are discussed below. 

5.1. Using HJ-1A CCD VNIR Data Alternative to ASTER SWIR Data 

Component temperature is an important intermediate parameter of evapotranspiration 

estimation in the multi-source parallel model. In order to infer component temperatures of the four 

endmembers (vegetation, soil and high- and low-albedo impervious surface) in urban surface, 

remotely sensed data with at least four thermal infrared bands are required. As such, ASTER data 

should have been considered as most appropriate for such purpose—but its SWIR detectors have 

failed since April 2008 [32]. Instead, Zheng [5] made use of Landsat TM data to estimate endmember 

fraction through linear spectral mixture analysis. Despite the same revisit cycle of Terra and Landsat 

satellites (16 days), it is difficult to acquire satellite images of the same location at the same overpass 

time. The CCD sensor mounted on the HJ-1A satellite that was launched together with the HJ-1B on 
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6 September 2008 has, however, offered a solution to such a problem by imaging land surfaces with 

its four spectral bands (blue, green, red, and near-infrared) at 30 m resolution with a two-day revisit 

cycle [88]. Therefore, when the multi-source parallel model is applied for time series analysis, HJ-1A 

CCD data can be used as preferable data for spectral unmixing. 

5.2. Optimized Endmembers of Urban Land Surface 

Zheng’s model has extracted vegetation, soil and impervious surfaces for urban land surface, 

among which impervious surfaces were considered as a single endmember. This might be not an 

appropriate practice for urban areas as impervious surfaces are often spectrally heterogeneous [30]. 

If the heterogeneity of impervious surfaces was ignored, the accuracy of mixed pixel decomposition 

would be reduced, thus adversely affecting the estimation of component energy flux of urban land 

surfaces. In our modified model, pure impervious surface pixels were therefore divided into high- 

and low-albedo endmembers [30,89]. Impervious surfaces’ fraction in each pixel was the sum of the 

fractions of high- and low-albedo endmembers [30]. 

5.3. Improved Parameterization of 𝑍𝑜𝑚 and 𝑍𝑜ℎ 

For the calculation of 𝑍0𝑚  and 𝑍0ℎ , Zheng [5] used typical land surface roughness for 

vegetation, soil, and impervious surfaces, that is, constant values for each component: 𝑍0𝑚,𝑣𝑒𝑔 =

100𝑍0ℎ,𝑣𝑒𝑔 = 0.1  (vegetation), 𝑍0𝑚,𝑠𝑜𝑖𝑙 = 50𝑍0ℎ,𝑠𝑜𝑖𝑙 = 0.001 (soil), and 𝑍0𝑚,𝑖𝑚𝑝 = 1000𝑍0ℎ,𝑖𝑚𝑝 = 1.5 

(impervious surfaces). Our modified model, however, used spatially specific 𝑍0𝑚 and 𝑍0ℎ values 

for each component through the equations proposed by Kustas et al. [65,64] for 𝑍0𝑚,𝑣𝑒𝑔 and 𝑍0ℎ,𝑣𝑒𝑔, 

the equations proposed by Grimmond et al. [66] and Brutsaert et al. [65,66] for 𝑍0𝑚,𝑠𝑜𝑖𝑙 and 𝑍0ℎ,𝑠𝑜𝑖𝑙, 

the equations proposed by Liu et al. [67] and Stewart et al. [71] for 𝑍0𝑚,𝑖𝑚𝑝 and 𝑍0ℎ,𝑖𝑚𝑝. As these 

equations take the spectral characteristics of different land surfaces into account, the results of would 

consequently be more reliable. 

5.4. Algorithm Improvement of Component Net Radiant Flux 

Regarding Equation (46), Zheng [5] assumed that it was challenging to obtain each component’s 

albedo. Instead, he estimated vegetation net radiant flux 𝑅𝑛,𝑣 and soil net radiant flux 𝑅𝑛,𝑠 through 

the empirical relationships between total net radiant flux 𝑅𝑛, leaf area index (LAI) and day angle 𝜃 

[23], and obtained the net radiant flux of impervious surface 𝑅𝑛,𝑖𝑚𝑝 by 𝑅𝑛 − 𝑅𝑛,𝑣 − 𝑅𝑛,𝑠. As a general 

empirical algorithm, Zheng’s component net radiant flux calculation has not considered the actual 

characteristics of each component in the study area. Therefore, the result might be less accurate. We 

have proposed a new algorithm for calculating component net radiant flux. Thanks to the ease of 

deriving the broad albedo of each pixel, the average albedo of pure pixels of each component can be 

considered as the component albedo, which was consistent with the surface parameter values 

proposed by De Ridder et al. [90]. After obtaining component albedos, we developed an algorithm 

for estimating component net radiant flux (Equations (39)–(42)) based on Equation (38). Compared 

with Zheng’s universal empirical algorithm of component net radiant flux, our improved algorithm, 

which considers the actual surface parameters (e.g., component fraction, component albedo, 

component emissivity, and component temperature), has the potential to result in higher accuracy. 

5.5. Sensitivity Analysis 

As shown in the three flowcharts (Figures 3, 10, and 11), the most important feature of the 

modified multi-source parallel model is introducing surface component fractions into ET estimation. 

Surface component fractions are fundamental model parameters that play an important role in the 

calculations of temperature, sensible heat flux, and net radiant flux. It is therefore necessary to assess 

the model’s sensitivity to the change of surface component fractions. Since only vegetation and soil 

components (𝑓𝑣 and 𝑓𝑠) were directly involved in ET estimation, the effect of variation in vegetation 

and soil fractions on ET estimation are discussed here. 
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We here assumed that all other surface component fractions are stable when the controlled 

variable changes. Although it is inconsistent with the sum-to-unity nature of the fully constrained 

LSMA (i.e., the sum of different component’s fraction is [39]) used in this study, this assumption can 

better help to explore the effect of a single surface component fraction (𝑓𝑣 or 𝑓𝑠) on ET estimation. 

Based on the initial results of linear spectral mixture analysis, a change ranging from -0.3 to 0.3 with 

a 𝑓𝑣 (or 𝑓𝑠) increase of 0.1 has been set, and four types of sample areas with the initial 𝑓𝑣 (or 𝑓𝑠) 

value ranging from 0.3 to 0.4, from 0.4 to 0.5, from 0.5 to 0.6, and from 0.7 to 0.8 were chosen as the 

testing areas for sensitivity analysis. The average value of the corresponding ET of each testing area 

for each change of 𝑓𝑣 (or 𝑓𝑠) is shown in Figure 14. It is revealed that the variation of vegetation 

fraction or soil fraction shows a positive correlation with the corresponding ET (i.e., ET resulted from 

vegetation/soil fraction changes in the sensitivity analysis), and introduced obvious error into the ET 

estimation result. The difference between the initial ET and the corresponding ET for every increase 

of 0.1 in 𝑓𝑣 (or 𝑓𝑠) has been calculated and shown in Table 8. 

 

Figure 14. Sensitivity of ET with the variation of vegetation fraction (a) and soil fraction (b). 

Table 8. ET error between the initial ET and the corresponding ET with the variation of 𝑓𝑣 (or 𝑓𝑠). 

Testing Area 

∆𝒇𝒗 or ∆𝒇𝒔 

ET Error for ∆𝒇𝒗 

(mm·day−1) 

ET Error for ∆𝒇𝒔 

(mm·day−1) 

1 2 3 4 1 2 3 4 

−0.3 −1.088 −1.043 −1.113 −1.156 −0.689 −0.676 −0.624 −0.552 

−0.2 −0.551 −0.523 −0.615 −0.607 −0.496 −0.390 −0.319 −0.286 

−0.1 −0.081 −0.004 −0.207 −0.308 −0.345 −0.339 −0.221 −0.167 

0.1 0.566 0.578 0.568 0.549 0.223 0.326 0.293 0.348 

0.2 1.289 1.145 1.031 0.811 0.345 0.432 0.495 0.554 

0.3 1.717 1.715 1.600 1.570 0.585 0.686 0.854 0.965 

It is observed from Table 8 that the ET error increases with the change of vegetation/soil fraction 

(i.e., ∆𝑓𝑣  and ∆𝑓𝑠 ). The maximal ET error has reached 1.717 mm·day−1 and 0.965 mm·day−1, 

respectively, when 𝑓𝑣 or 𝑓𝑠 has increased by 0.3. It also indicates that: (1) with ∆𝑓𝑣 ranging from 

−0.3 to 0.3, the average ET error rate of all vegetation fraction testing area (testing area 1 to 4) for each 

∆𝑓𝑣 are 45.63%, 23.86%, 6.68%, 23.33%, 43.36% and 67.95%; and (2) with ∆𝑓𝑠 variated from −0.3 to 

0.3, the average ET error rate of all soil fraction testing area (testing area 5 to 8) for each ∆𝑓𝑠 are 

30.62%, 17.71%, 12.64%, 14.65%, 22.60% and 38.34%. Sensitivity analysis has revealed that vegetation 

fraction and soil fraction are two factors sensitive to ET estimation, and that the sensitivity of ET to 

the vegetation fraction is higher than to the soil fraction. 
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5.6. Comparison with Other Models 

On an urban scale, remote sensing-based algorithms are considered most appropriate. Although 

our model is designed for an urban environment, it is interesting, in terms of estimation accuracy, to 

compare it with other remote sensing-based models that are often applied to natural or agricultural 

surfaces, e.g., SEBS, SEBI, SEBAL, S-SEBI, METRIC, and TSM [91]. Su et al. [92] used SEBS modeled 

surface heat fluxes of regional scale by Landsat data and obtained a result with an error of 

approximately 5%. Roerink et al. [19] compared measured evaporative fraction values with the result 

from S-SEBI, and the maximum relative difference between them was 8%. SEBAL is a widely tested 

model whose accuracy has been reported as 85% for 1 day compared to in situ data, and can increase 

to 95% on a seasonal basis [93]. Bastiaanssen et al. [17] indicated the overall error of the result from 

remote sensing-based SEBAL does not exceed 15%. Based on SEBAL, Allen et al. [94] proposed the 

METRIC model, whose error, reported by Gowda et al. [95], was 12.7±8.1% (mean bias error ± RMSE) 

on DOY 178 and −4.7 ± 9.4% on DOY 210. Zheng’s model and our modified model were developed 

from TSM and consider impervious surfaces for urban areas in order to remove the interference 

components from mixed pixels. Long and Singh [29] developed a TSM model (TTME) and concluded 

that TTME is capable of reproducing latent heat flux, the mean absolute percentage difference is 

about 10%. Compared with the abovementioned models, our model’s accuracy is acceptable with 

mean relative errors of 6.08%, 6.12%, and 5.90% for vegetation-, soil-, and impervious surface-

dominated areas respectively. 

5.7. Comparison with Zheng’s Model 

In order to demonstrate the improvement of our model through comparative analysis, we also 

inferred the daily evapotranspiration of the study area on 13 October 2013 using Zheng’s model. The 

ET inferred from Zheng’s model and the ET difference map (i.e., the ET derived by our model minus 

the ET derived by Zheng’ model) are shown in Figure 15. The difference map (Figure 15b) shows the 

difference value are mostly positive, and the ET difference values in vegetated and bare soil areas, 

indicating that the ET distributions inferred from our and Zheng’s models are almost consistent with 

each other in city parks and undeveloped zones in suburbs. However, in the downtown or in 

intensively built areas, the differences between the two ET results are obvious. This suggests that 

there is a more significant difference in the ET estimation of the two models in impervious surface-

dominated areas. 

 

Figure 15. (a) The spatial variability of daily evapotranspiration of Hefei’s urban built-up area on 13 

October 2013, inferred from Zheng’s model; (b) the difference between the results of our model and 

Zheng’s model. 
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The ET result inferred from Zheng’s model is also validated by the China–ASEAN ET product, 

as shown in Figure 16 and Table 9 (based on Figure 16b). Compared with Figure 13a, the distribution 

of the observations is more discrete, and the R2 value for the linear relationship between the ET 

estimated from Zheng’s model and the China–ASEAN ET product is lower in Figure 16a. 

 

Figure 16. (a) Scatter plot of Zheng’s model derived ET against the China–ASEAN ET product, based 

on the entire 552 sampled points; (b) scatter plot of Zheng’s model derived ET against the China–

ASEAN ET product, for each land cover (136 sampled points for vegetation, 117 for soil, and 93 for 

impervious surfaces). 

Table 9. Linear relationship between the ET estimated from Zheng’s model and the China–ASEAN 

ET product for each land cover type (vegetation, soil, and impervious surfaces). 

Accuracy 

Measures 

Land Cover 

Type 

Correlation 

Coefficient (r) 
Regression Equation R2 

Mean Relative 

Error 

(MRE) 

Root Mean 

Square Error 

(RMSE) 

Vegetation 0.8127 𝑦 = 0.4806𝑥 + 1.0848 0.6577 8.63% 0.1751 

Soil 0.7153 𝑦 = 0.4868𝑥 + 0.8283 0.5077 5.97% 0.1522 

Impervious surface 0.6708 𝑦 = 0.3389𝑥 + 1.1274 0.4444 5.73% 0.1477 

Table 9 shows that the accuracy of Zheng’s model for impervious surface-dominated areas is 

obviously lower than that for vegetation-dominated and soil-dominated areas. Tables 7 and 9 suggest 

that the two models both performed best for vegetation-dominated areas. It is also noted that the 

correlation, fitting goodness, and RMSE between our result and the validation data were all improved. 

The Taylor diagram [96] (Figure 17) reveals the accuracy improvement of the modified model. 

In the Taylor diagram, a single point indicates the correlation degree (𝑅𝑑 = 𝑟) and the ratio of the 

standard deviations ( 𝜎 ) between the modelled result ( 𝜎𝑖 ) and the reference (true) data ( 𝜎0 ) 

(𝜎𝑛𝑜𝑟𝑚=𝜎𝑖/𝜎0). An ideal model has a standard deviation ratio of 1.0 and a correlation degree of 1.0, i.e., 

the reference point (REF) on the x-axis [80]. 

Taylor skill (𝑆) [96–98] is defined by Taylor as a single value summary of a Taylor diagram in 

which unity indicates perfect agreement with inversion values. Traditionally, skill scores vary from 

0 (least skillful) to 1 (most skillful) and each point for any arbitrary data group can be scored as 

follows [96]: 

𝑆 =
2(1+𝑅𝑑)

(𝜎𝑛𝑜𝑟𝑚+1/𝜎𝑛𝑜𝑟𝑚)2. (60) 

The calculated Taylor skill values are given in Table 10. The results suggest that our model 

outperforms Zheng’s model. 
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Figure 17. Performance of the inversion values inferred from the modified model and Zheng’s model 

(the statistics in the Taylor diagram); an ideal model would have a standard deviation ratio (𝜎𝑛𝑜𝑟𝑚) 

of 1.0 and a correlation coefficient of 1.0 (REF is the reference point). 

Table 10. Indicators of the Taylor diagram. 

Data Type 

Indicator 

Total Vegetation Soil Impervious Surfaces 

Zheng’s 

Model 

Modified 

Model 

Zheng’s 

Model 

Modifie

d Model 

Zheng’s 

Model 

Modified 

Model 

Zheng’s 

Model 

Modified 

Model 

𝜎𝑛𝑜𝑟𝑚 (𝜎𝑖/𝜎0) 0.7647  0.7921 0.5914 0.7457 0.6805 0.7225 0.5053 0.5856 

𝑅𝑑 (𝑟) 0.6421 0.7625 0.8127 0.8669 0.7153 0.7339 0.6708 0.7253 

Taylor Skill (𝑆) 0.7646 0.8351 0.6960 0.8574 0.7422 0.7814 0.5414 0.6561 

5.8. Applicability of Our Modified Model 

To further explore its applicability and robustness, our modified model is also tested to the urban 

built-up area of Wuhan, the capital city of Hubei Province, central China. The ASTER L1B level data 

and the HJ-1B CCD1 data of Wuhan acquired on 8 August 2013, were used as testing data. Detailed 

information of the satellite images and meteorological data are shown in Appendix Table A2. The 

result of daily evapotranspiration of Wuhan’s urban built-up area on 8 August 2013 is obtained 

through our modified model and given in Figure 18. 

The Wuhan ET estimation is also validated by the China–ASEAN ET product, as illustrated in 

Figure 19 and Table 11. 

Table 11. Linear relationship between our modeled ET and the China -ASEAN ET product for each 

land cover type (vegetation, soil, and impervious surfaces) in Wuhan testing area. 

Accuracy 

Measures 

Land Cover 

Type 

Correlation 

Coefficient (r) 
Regression Equation R2 

Mean 

Relative Error 

(MRE) 

Root Mean 

Square Error 

(RMSE) 

Overall 0.7594 𝑦 = 0.9113𝑥 + 0.2729 0.5764 8.90% 0.3747 

Vegetation 0.8861 𝑦 = 0.6115𝑥 + 1.7617 0.7843 7.80% 0.3398 

Soil 0.7805 𝑦 = 0.4793𝑥 + 1.7698 0.6071 8.87% 0.3446 

Impervious surfaces 0.7462 𝑦 = 0.5695𝑥 + 1.1248 0.5542 8.77% 0.3191 
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Figure 18. (a) The testing area of Wuhan in Hubei province; (b) the spatial variability of daily 

evapotranspiration of Wuhan’s urban built-up area on 8 August 2013, inferred from our modified 

model. 

 

Figure 19. (a) Scatter plot of the modified model derived ET against the China–ASEAN ET product in 

Wuhan testing area, based on the entire 1446 sampled points; (b) scatter plot of the modified model 

derived ET against the China–ASEAN ET product, for each land cover (229 sampled points for 

vegetation, 149 for soil and 160 for impervious surfaces). 

For both the entire testing area and component-dominated areas, the ET estimated by our 

modified model shows a good agreement with the China–ASEAN ET product. In particular, the 

highest accuracy is also obtained in the vegetation-dominated area of Wuhan, which is similar to the 

case study of Hefei. The test on Wuhan has confirmed that our modified model is applicable for 

different urban areas. 

6. Conclusions 

This study has presented a modified multi-source parallel model to improve the accuracy of 

estimating urban land surface evapotranspiration. Key modifications include: 
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 Instead of a single endmember, impervious surfaces are characterized by two different ones 

(high- and low-albedo) in linear spectral mixture analysis. 

 Rather than constant empirical values, the roughness length for each land surface component 

(vegetation, soil, high- and low-albedo impervious surfaces) is calculated specifically to better 

approximate the real conditions of those land surfaces. 

 Our model includes a new algorithm for estimating component net radiant flux by taking the 

fraction and characteristics of each land surface component into account. 

By comparing the evapotranspiration of an urban built-up area, inferred from our modified 

model and from Zheng’s model with the China–ASEAN ET product, it is concluded that both models 

can produce good results for urban land surface, but our modified model outperforms Zheng’s—

which can be explained by the abovementioned modifications. It is also noted that both models can 

result in more accurate evapotranspiration for vegetated areas. 

As fundamental parameters in the ET estimation model, surface component fractions are used 

multiple times in the calculations of other parameters. Therefore, surface component fractions, 

particularly vegetation and soil fractions, are sensitive factors for the final ET result. The accuracy of 

linear spectral unmixing has an important impact on the accuracy of ET estimation. 

Our modified model is practical and easy to apply, as it allows for estimation of daily 

evapotranspiration for urban areas using only freely available optical and thermal image data. This 

has been demonstrated by an additional test of our model in Wuhan’s built-up area. Due to the 

absence of field-based latent heat radiation data from the study area, however, this study had to use 

the China–ASEAN ET product as validation data. Despite having the same acquisition time as the 

image data used in the study, this product has a low spatial resolution, thus making it less accurate 

than field-based measurements. Future work should investigate whether the algorithms of sub-pixel 

ET estimation can improve other remote sensing-based ET models. 
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Appendix A. 

Table A1. List of variables used in the study. 

Abbreviation 

of Variable 
Meaning of Variable 

𝑅𝑛,𝑣 Net radiant flux of vegetation 

𝑅𝑛,𝑠 Net radiant flux of soil 

𝑅𝑛,𝑖 Net radiant flux of impervious surface 

𝐻𝑣 Sensible heat flux of vegetation 

𝐻𝑠 Sensible heat flux of soil 

𝐻𝑖 Sensible heat flux of impervious surface 

𝐿𝐸𝑣 Latent heat flux of vegetation 

𝐿𝐸𝑠 Latent heat flux of soil 

𝐺𝑠 Soil heat flux 

𝐺𝑖𝑚𝑝 Internal heat flux of impervious surface 
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𝑘 
Component type, 𝑘 = 1, 2, 3, 4 separately refer to vegetation, soil, high- and low-albedo 

impervious surface 

𝑓𝑘 Pixel component fraction 

𝑇𝑘 Pixel component temperature 

𝑅𝑏 Reflectance for band 𝑏 in a pixel 

𝑅𝑘,𝑏 Reflectance of endmember 𝑘 for band 𝑏 in a pixel 

𝐿𝜆 Thermal radiation of land surface at wavelength 𝜆 

휀𝜆 Land surface emissivity at wavelength 𝜆 

𝐵𝜆(𝑇𝑠𝑢𝑟) Planck blackbody radiation when the land surface temperature is 𝑇𝑠𝑢𝑟 

𝐵𝜆,𝑠𝑒𝑛𝑠 At-sensor thermal radiation at wavelength 𝜆 

𝜏𝜆 Atmospheric transmittance at wavelength 𝜆 

𝑇𝑎𝑖𝑟 Near-surface average atmospheric temperature 

휀𝜆𝑘 Emissivity of 𝑘 component at wavelength 𝜆 

𝐵𝜆(𝑇𝑘) 
Planck blackbody radiation of 𝑘 component at wavelength 𝜆 when the 𝑘 component 

temperature is 𝑇𝑘 

𝑓𝑣 Fraction of vegetation 

𝑓𝑠 Fraction of soil 

𝑓𝑖𝑚𝑝_ℎ Fraction of high-albedo impervious surface 

𝑓𝑖𝑚𝑝_𝑙 Fraction of low-albedo impervious surface 

𝑅𝑣 The temperature ratio of vegetation 

𝑅𝑠 The temperature ratio of soil 

𝑅𝑚 The temperature ratio of man-made construction 

𝑃𝑣 Vegetation coverage 

𝑊 Atmospheric vapor content 

𝑒 Average atmospheric water vapor 

𝜑 Latitude of the center of the study area 

𝐸0 Average elevation of the study area 

𝐻𝑘 Component sensible heat flux 

𝜌 Air density 
𝐶𝑝 Heat capacity of air at constant pressure 

𝑟𝑎ℎ𝑘 Aerodynamic resistance to heat transfer of component 𝑘 

𝑍 Elevation at which wind speed is observed 

𝑑 Zero displacement height 

𝑍0𝑚 Roughness lengths for momentum 

𝑍0ℎ Roughness lengths for heat 

𝑘𝑐 Von Karman's constant 

𝑢𝑧 Wind speed 

𝜓𝑚 Stability correction functions for momentum 

𝜓ℎ Stability correction functions for heat 

𝐿𝑀 Monin–Obukhov length 

𝑔 Gravitational acceleration 

𝑇∗ Temperature scale with 𝑇∗ = 𝑇𝑠𝑢𝑟 − 𝑇𝑎𝑖𝑟 

𝑢∗ Friction velocity 

ℎ Component average height 

𝑅𝑒∗ Roughness Reynolds number 

𝑣 Kinematic molecular viscosity 

𝑅𝑠 ↓ Solar shortwave radiation 

𝑅𝐿 ↓ Solar longwave radiation 

𝑅𝑠 ↑ Shortwave radiation reflected by the land surface 

𝑅𝐿 ↑ Longwave radiation emitted by the land surface 

𝑎 Albedo of the land surface 

휀𝑎𝑖𝑟 Effective emissivity of the atmosphere 

𝜎 Stefan Boltzmann constant 

𝑄 Incident solar radiation on ground 

𝑅𝑛,𝑣 Component surface net radiant flux of vegetation 

𝑅𝑛,s Component surface net radiant flux of soil 

𝑅𝑛,𝑖𝑚𝑝_ℎ Component surface net radiant flux of high-albedo impervious surface 

𝑅𝑛,𝑖𝑚𝑝_𝑙 Component surface net radiant flux of low-albedo impervious surface 
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𝑃𝑚 Atmospheric transmittance 

𝐴𝑀 Air mass (solar radiation) 

𝑄0 Instantaneous astronomical solar radiation 

𝐼𝑠𝑐 Solar constant 

𝑑𝑚 Correction coefficient of sun-earth distance 

𝛿 Solar declination 

𝜔 Solar hour angle 

𝜃 Day angle 

𝑆𝑇 Real solar time 

𝐷𝑛 Day number of the year 

ℎ𝑏 Beijing time (UTC+8) 

𝜆𝑠
∗ Longitude of local standard time 

𝜆∗ Local longitude 

𝜂 Time lag  

𝑎𝐻𝐽 Broad band albedo of HJ-1A CCD bands 

𝐺𝑖𝑚𝑝_ℎ Internal heat flux of high-albedo impervious surface 
𝐺𝑖𝑚𝑝_𝑙 Internal heat flux of low-albedo impervious surface 

𝐻𝑣 Sensible heat flux of vegetation 

𝐻𝑠 Sensible heat flux of soil 

𝐻𝑖𝑚𝑝_ℎ Sensible heat flux of high-albedo impervious surface 

𝐻𝑖𝑚𝑝_ℎ Sensible heat flux of low-albedo impervious surface 

𝐿 Latent heat of vaporization 

𝐸𝑇 Evapotranspiration 

𝐸𝑇𝑖 Instantaneous evapotranspiration 

𝐸𝑇𝑑 Daily evapotranspiration 

𝑡 Time interval from sunrise to the acquisition time of satellite imagery 

𝑁𝐸 Evapotranspiration duration 

𝑆 Taylor skill 

Table A2. Parameters of satellite image data and meteorological data for Wuhan testing area. 

Sensor 

Acquisition 

Time 

(GMT) 

Average 

Atmospheric 

Temperature 
𝑻𝒂𝒊𝒓 (K) 

Average 

Atmospheric Water 

Vapor Pressure 
𝒆 (hpa) 

Mean Wind 

Speed at 2 m 

Height 

𝒖𝒛 (m/s) 

Sunshine 

Duration 

𝑵𝒔 (h) 

Daily Incident 

Solar Radiation 

on Ground 

(MJ·m−2·d−1) 

ASTER 

(TIR) 

2013-08-08 

03:13:44 

296.24 31.3 1.6 12.4 2698 HJ-1B 

CCD1 

(VNIR) 

2013-08-08 

03:22:21 
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