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Abstract: This paper presents a hierarchical classification approach for Synthetic Aperture Radar
(SAR) images. The Conditional Random Field (CRF) and Bayesian Network (BN) are employed
to incorporate prior knowledge into this approach for facilitating SAR image classification.
(1) A multilayer region pyramid is constructed based on multiscale oversegmentation, and then, CRF
is used to model the spatial relationships among those extracted regions within each layer of the
region pyramid; the boundary prior knowledge is exploited and integrated into the CRF model as a
strengthened constraint to improve classification performance near the boundaries. (2) Multilayer
BN is applied to establish the causal connections between adjacent layers of the constructed region
pyramid, where the classification probabilities of those sub-regions in the lower layer, conditioned on
their parents’ regions in the upper layer, are used as adjacent links. More contextual information is
taken into account in this framework, which is a benefit to the performance improvement. Several
experiments are conducted on real ESAR and TerraSAR data, and the results show that the proposed
method achieves better classification accuracy.

Keywords: Synthetic Aperture Radar (SAR); image classification; semantic pyramid; Conditional
Random Field (CRF); Bayesian Network (BN)

1. Introduction

1.1. SAR Images Classification

Synthetic Aperture Radar (SAR) provides two-dimensional images independent from weather,
daylight and cloud coverage conditions and has various applications, such as mapping, urban planning,
disaster prevention [1], etc. Among these applications, terrain classification is one of the extremely
active research interests. SAR images classification is a task to recognize objects by computing similarity
and discrimination between them relying on the extracted features. An increasing number of papers
specific to this topic have appeared over the last three decades; these proposed methods can be roughly
cast into three categories: polarimetric target decomposition, feature extraction and model construction.

The polarimetric target decomposition method has been widely used in SAR image classification;
the general idea behind this method is to represent the average backscattering as the sum of
independent components. Two theories can be distinguished, namely coherent and incoherent
decomposition. For the coherent decomposition, it aims to describe the scattering matrix as a
combination of scattering responses. Since the polarization information is usually partially polarized,
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alternatively, the incoherent decomposition is used to express the target average matrix as the sum of
the single scattering matrix; this approach provides a simplified way to extract geographical features.
Over the years, a large number of associated methods have been proposed. The concept of target
decomposition was first put forward by Huynen [2] for the analysis of scattering distribution in 1970.
Pauli decomposition [3] was introduced by Cloude to decompose the polarization scattering matrix
into four components. In 1990, Krogager [4] decomposed the complex symmetric scattering matrix
into three components. In 1997, Cloude et al. proposed the H/α decomposition. After that, the
target decomposition combining model was put forward, e.g., the three-component scattering model
proposed by Freeman et al. [5]. In 2005, Yamaguchi [6] presented the four-component scattering model
based on single reflection, secondary reflection and skew scattering. In 2007, Touzi [7] put forward
incoherent decomposition, which is rotation invariant and is based on the coherent scattering model.
In recent years, several new methods have been developed, such as three-component decomposition
based on models [8] and the four-component decomposition model with extended scatterers [9].

Feature extraction has also received much attention. The most straightforward approach is to
regard the scattering coefficient or the coherence/incoherence matrix as the underlying image features.
Besides polarimetric features, texture has been proven as an efficient feature for image classification [10],
such as the gray-level co-occurrence matrix [11], the wavelet with statistic textures [12], discrete wavelet
transform [13], the semi-variance graph [14], etc. In 2011, Dai [15] put forward a multi-level local
histogram descriptor, which is robust to speckle noise. It captures both local and global information
and has been proven superior to the gray-level co-occurrence matrix and Gabor wavelet. In recent
years, colorization for the SAR image has been developed. For instance, Deng et al. [16] proposed
a method to visualize the SAR image based on the scattering mechanism. Tumer et al. [17] used
the elliptic icon to express the data and to integrate the polarization characteristics into contextual
information. Uhlmann et al. [18] employ various visible color descriptors to represent SAR images and
then perform supervised classification. In [19,20], Golparvar and Balali present the texton-based and
non-parameter feature extraction methods for image segmentation, which are innovative and can also
be considered for SAR images.

Though much progress has been developed in SAR images classification, there are still some
problems waiting to be resoled, especially for those images with complex structure information. For
example, the extracted pixel-level features are often sensitive to the clutter. In this case, the information,
provided by the image itself, fails to perform robust and effective classification. To overcome this
limitation, several models have been proposed to incorporate additional prior knowledge to facilitate
classification. For example, the Markov Random Field (MRF) [21], Conditional Random Field
(CRF) [22] and Bayesian Network (BN) [23] are used to model prior knowledge for performance
enhancement. MRF is widely used in SAR images’ interpretation; it captures the spatial interactions
among neighborhoods as prior knowledge to guide classification. For instance, Elia [24] proposed a
MRF model based on the regional and statistic texture; Voisin [25] put forward a multilayer MRF model
based on texture information. However, with only local potential relationships considered in MRF, the
connections among all observation data are ignored. As an extension of MRF, CRF is a discriminative
model; it directly models the posterior probability of the sample labels. For example, Su et al. [26]
construct a regional connected model to classify SAR images. Zhang et al. [27] integrate the class
margin constraints into the CRF model to classify the spectral-based images. Ding [28] designs the
unary potential, regional context potential and pairwise potential to improve the classification accuracy.
As for the BN, which is a directed graphical model, it captures the causal relations among random
variables. With the latent conditional independence, the joint probability can be factorized into several
products of local conditional probabilities, which is a benefit to simplify the constructed model.

1.2. Motivation and Contributions

Although the multi-level CRF and BN model are adopted by those methods described above,
it mainly focused on modeling either the spatial relationships or the causal dependencies alone.
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The hierarchical connections, namely the causal links between adjacent layers and the spatial relations
within a sub-layer, are not combined together. The combination of a priori knowledge and image data
itself plays an important role in performing robust and effective SAR image classification. To exploit this
potential contextual information to improve classification accuracy, this paper presents a hierarchical
classification framework based on the multilayer Bayesian network [29] and conditional random field.

The main contribution of this paper is that those causal dependencies between adjacent layers
are incorporated into the proposed approach; what this means is that additional prior knowledge
is exploited to improve classification accuracy. In SAR image classification, farmland, for example,
is often far from urban areas, and therefore, the probability of a sub-region to be labeled as farmland,
conditioned on its parents’ region, which is the urban area, is often small. Consequently, those existing
dependencies between adjacent layers can be thought of as a priori information; the objective of the
proposed method is to exploit this prior knowledge to improve the classification accuracy. Figure 1
illustrates a comparison between the proposed and the traditional methods. Compared with the
traditional approach, the causalities between adjacent layers, as well as the spatial relationships within
each layer are modeled by multilayer BN and CRF, respectively.

(a) Single layer model

(b) Multi-layer model

(c) Proposed method

Figure 1. Comparison between the traditional and the proposed approaches. (a) Traditional single-layer
model; (b) traditional multilayer model; CRF models the spatial relationships among those regions
within each layer; (c) the proposed method combines CRF with BN into a unified framework, where BN
captures the causal dependencies between adjacent layers, and therefore, more prior knowledge is
exploited to guide classification.

The rest of this paper is organized as follows. Section 2 presents an overview of the proposed
approach. Section 3 introduces the construction of a region pyramid by means of multiscale
oversegmentation. Section 4 details how to build a semantic region pyramid by CRF and BN. Section 5
provides experimental results and the analysis. Finally, the conclusions are given in Section 7.

2. Overview of the Framework

The framework of the proposed classification method is illustrated in Figure 2. It mainly consists
of three parts, i.e., the multiscale segmentation, the CRF and BN modeling.
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Multiscale segmentation: Given an input image, the multiscale segmentation is performed by
adjusting an adaptive threshold, where the input image is partitioned into coarser and finer regions,
namely superpixels. Then, a region pyramid is constructed by arranging the coarser oversegmentation
on the top layer, whereas the finer one at the bottom layer. In this paper, a region pyramid with three
layers is formed.

Figure 2. Framework of the proposed method. (a) Input SAR image; (b) feature extraction, including
intensity, polarization and texture features; (c) edge detection; (d) region pyramid construction based
on multiscale segmentation; (e) conditional random field with boundary prior knowledge; (f) the
region pyramid modeled by CRF; the spatial relationships are formed by CRF; (g) causal connections
between adjacent layers are captured by the Bayesian network; (h) semantic pyramid based on the CRF
and BN model; (i) classification output.

CRF modeling with boundary prior knowledge: With the above constructed region pyramid,
the CRF is used to capture the spatial relationships among regions within each layer of the region
pyramid. Moreover, the boundary prior knowledge is exploited and incorporated into the CRF model.
With this additional prior information, it is equivalent to setting constraints to improve the classification
accuracy near the boundaries.

Semantic pyramid construction by BN: Though the spatial relations among those regions within
each layer can be effectively captured by the CRF model, the connections between adjacent layers are
not explored and utilized. In order to establish these connections, BN is used to model the contextual
information between adjacent layers of the region pyramid, and therefore, a semantic pyramid can be
formed. Here, the BN models the causal relationships between those regions in the upper layer and
its sub-regions in the lower layer. The causalities are referred to as the classification probabilities of
those sub-regions conditioned on their parents’ regions, where the causalities are obtained from the
statistical results of CRF labeling. In addition, the natural existing relationships among the regions,
edges and vertices are also modeled in BN, where the edge is formed by two regions with different
classes, and the vertex corresponds to the intersection of edges. In other words, more prior knowledge
is integrated into the proposed classifying framework to enhance classification performance.
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3. Multiscale Segmentation

In this paper, we construct a region pyramid with three layers, where each layer contains the
oversegmented regions of the input image. To construct such a region pyramid, edge detection is first
performed, and then, those extracted edges are combined to form several closed regions. The last step
is multiscale segmentation; the finer and coarser regions can be obtained by adjusting a threshold.

3.1. Edge Detection

Given an image I, in order to predict an edge with orientation θ at location (x, y), the image
is first transformed into three feature channels, including intensity, polarization and texture, then
the gradients for these feature channels are calculated. Finally, an improved detector gDet (x, y, θ) is
designed by combining those gradients for edge detection.

Intensity, polarization and texture gradients: An edge corresponds to the change between
neighboring areas in an image, and the gradient describes this characteristic. In order to extract
the gradient, a circular disc with radius σ is placed at location (x, y); this disc splits the local region
into two sub-regions g and h, and the orientation is defined by a diameter at angle θ. The magnitude
of gradient G (x, y, θ) at (x, y) is defined as the histograms’ chi-square distance between the two
sub-regions, which is given by:

‖G (x, y, θ)‖ = 1
2 ∑

i

(g (i)− h (i))2

g (i) + h (i)
(1)

where g(i) and h(i) denote the i-th element in the histograms of the sub-regions g and h, respectively.
Here, three types of feature are extracted, i.e., multi-channel intensity, polarization and texture, and
then, the gradient is calculated in each feature channel independently.

Multiscale linear combination: To detect the desired fine and coarse structure information,
the gradient of each feature channel is computed at three scales: [σ/2, σ, 2σ]. For the intensity,
σ = 5 pixels; as for polarization and texture, σ = 10 pixels. Then, these extracted gradients are linearly
combined together to form mDet (x, y, θ), which is defined as:

mDet (x, y, θ) = ∑
s

∑
i

αi,sGi,σ(i,s) (x, y, θ) (2)

where s and i denote the scale and feature channel; Gi,σ(i,s) (x, y, θ) is the gradient at location (x, y) in
channel i with a radius σ(i, s) and orientation θ; ai,s represents the weight for each gradient. In this
paper, eight orientations are sampled in interval [0, π) with equal space, and the maximum mDet (x, y)
over orientations is defined as the boundary response at location (x, y), which is given by:

mDet (x, y) = max
θ
{mDet (x, y, θ)} (3)

Curve and edge detection: Spectral clustering [30] is applied to image segmentation. A sparse
symmetric incidence matrix W is constructed by the maximum of mDet; the elements of W measure
the similarity between pixels. The normalized cuts algorithm is used to solve the standard feature
vector; a descriptor with n-dimensions is extracted for each pixel, and the clustering algorithm, such as
k-means, is employed to segment the image. In order to obtain the correct partition, a convolution step
is concluded, where Gaussian-oriented derivative filters are used at multiple orientations. Therefore,
the spectral boundary detector sDet (x, y, θ) is defined as:

sDet (x, y, θ) =
n

∑
k=1

λ
− 1

2
k ∇θvk (x, y) (4)
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where ∇θvk (x, y) denotes the oriental signal and λk is the k-th eigenvalue. Notice that mDet carries
edge information, while sDet conveys the curve information in an image. In order to extract both
the edge and curve information, a linear combination of mDet and sDet is constructed, and then, an
improved detector gDet is given by:

gDet (x, y, θ) = ∑
s

∑
i

βi,sGi,σ(i,s) (x, y, θ) + ω · sDet (x, y, θ) (5)

where βi,s and ω can be learned during the training procedure. For more details, please refer to the
original paper [30].

3.2. Region Pyramid Construction

Here, the region pyramid contains three layers, where these layers, from top to bottom, correspond
to the undersegmentations and oversegmentations of the initial image, respectively. In order to
construct such a region pyramid, a multiscale segmentation process is required; the initial image
is partitioned recursively by adjusting a threshold; and a set of fine and coarse segmentations,
namely regions, can be produced and used to form the region pyramid.

The Oriented Watershed Transformation (OWT) [30] is first used to construct an initial
segmentation; the output of OWT is the finest partition for the region pyramid. Then, a sequence
of the Ultrametric Contour Map (UCM) [31] can be produced by adjusting the threshold, where the
UCM describes the strength of the curve boundary, namely the probability of being a true contour.
Consequently, the oversegmentations and undersegmentations can be obtained; Figure 3 shows an
example of multiscale segmentation. Finally, the region pyramid can be constructed by arranging the
coarsest UCM at the top layer, whereas the finest UCM at the bottom layer.

(a) Input (b) k = 0.2 (c) k = 0.08 (d) k = 0.05

Figure 3. Multiscale segmentation under three different thresholds. (a) The input SAR image; (b–d) the
segmentation results by adjusting the threshold k. The lower the threshold is set, the more sub-regions
are detected.

4. Semantic Pyramid Construction by CRF and BN

With the region pyramid constructed above, prior knowledge is exploited to form a semantic
pyramid. The prior knowledge consists of the spatial relationships among those regions within
each sub-layers and the causal connections between adjacent layers, which are modeled by CRF and
BN, respectively.

4.1. CRF with Boundary Prior Knowledge

CRF is a discriminative model, and it can effectively capture the spatial relationships among
random variables. In this paper, the boundary prior knowledge is also considered and integrated into
the CRF model to improve the classification accuracy of such regions near the boundary.

Standard CRF: As shown in Figure 4, the image is oversegmented into several regions, and CRF
is used to model the spatial relationships among those regions; here, the regions correspond to the
nodes in CRF. Given an image I, let x denote the observation data, namely the pixel, and y is the label
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to be assigned. Then, let I = {x1, x2, · · · , xM} represent image segmentation, where xi denotes the
i-th oversegmentation, namely a superpixel (a collection of some pixels), i ∈ S = {1, 2, · · · , M}. The
posterior probability P (y|φ (x)) is given by:

P (y|φ (x)) =
1

Z (x)
exp

{
∑
i∈S

Ai (yi, φi (x)) + ∑
i∈S

∑
j∈Ni

Iij
(
yi, yj, µ

(
φi (x) , φj (x)

))}
(6)

where j is a superpixel in the spatial neighborhood Ni of i and Ai and Iij denote the unary potential
and pairwise potential, respectively. The feature function φi (x) maps the i-th oversegmentation data
xi to the feature space, and µ(φi(x), φj(x)) is the feature vector of pairwise block (i, j). Z (x) is the
partition function, which is defined as:

Z (x) = ∑
yi

exp

{
∑
i∈S

Ai (yi, φi (x)) + ∑
i∈S

∑
j∈Ni

Iij
(
yi, yj, µ

(
φi (x) , φj (x)

))}
(7)

Figure 4. The spatial relationships are modeled by the conditional random field. The image is first
partitioned into several regions, then the CRF is used to model the spatial relationships among those
regions, where the node y represents a region, while x denotes the whole image.

CRF with boundary prior knowledge: During CRF inference, the pixels within a region are
assigned to the same label since such a region is considered as a homogeneous block, and the adjacent
regions are often labeled as different categories. However, those adjacent regions may be of the same
label. To overcome this limitation, the boundary prior knowledge is incorporated into the CRF model
as a constraint to improve the classification accuracy near the boundaries.

The boundary prior knowledge refers to the distance between the boundary and pixel or
superpixel. If the label of the current pixel is the same as its neighborhoods, the greater the distance
between the pixel and boundary, the weaker the relationship between them. Otherwise, this boundary
prior information can be ignored. Here, the boundary is the strong response of the watershed transform
algorithm. Given a curve Ω, the distance between pixel p and Ω is defined as the minimum Euclidean
distance between p and the points on Ω, which is given by:

d = dist(p, Ω) = dist(p, p′) =
√
(xp − xp′)

2 + (yp − yp′)
2 (8)

where p′ is the nearest point to p and xp, yp and x′p, y′p are the associated coordinates, respectively.
Based on the above definition, the boundary prior knowledge can be obtained from the labeled

image, where the labeling procedure is implemented by CRF. In order to define the conditional
probability with the boundary prior knowledge, let Ω = {Ω1, · · · , ΩH} denote the H nearest lines to
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pixel pi; Rh represents the h-th region; and Rh contains the line Ωh, where h = 1, 2, · · · , H. Then, the
conditional probability with boundary prior knowledge of pi labeled as c can be given by:

PBP
(
c|pi, Ω, c′

)
= exp

(
H

∑
h=1

γ·t (c, pi, Rh)·F (dis (pi, Ωh))

)
(9)

where γ is the parameter for boundary prior knowledge and can be learned by the training process,
c′ denotes the original label by CRF and t

(
c, pi, Rj

)
and F

(
dis
(

pi, Ωj
))

are defined as:
F
(
dis
(

pi, Ωj
))

= 1
1+exp{dist(pi ,Ωj)−λ}

t
(
c, pi, Rj

)
=

{
1, if pi ∈ Rh and c = max (c′, Rh)

0, otherwise

(10)

where F
(
dis
(

pi, Ωj
))

is the potential function, threshold λ is used to normalize the distance dis
(

pi, Ωj
)

within interval (0, 1) and t
(
c, pi, Rj

)
ensures pi to be labeled the same as its neighborhoods.

With the above definition, the Equation (6) can be re-written as:

P(yi|φ(xi), Ω, c′) ∝ PPi(yi) · PLi(φ(xi)|yi) · PBP(yi|φ(xi), Ω, c′) (11)

where PPi and PLi denote the prior and likelihood terms in Equation (6), respectively. The
PBP(yi|φ(xi), Ω, c′) is given by:

PBP
(
yi|φ(xi), Ω, c′

)
= ∑

pi∈xi

PBP
(
yi|pi, Ω, c′

)
(12)

where xi denotes a superpixel and pi is a pixel within xi.

4.2. Multi-Layer Bayesian Network

The causal connections between adjacent layers are modeled by BN; these connections are referred
to as the classification probabilities of the sub-regions in the lower layer conditioned on their parents’
regions in the upper layer. In addition, the causal dependencies among regions, edges and vertices are
also taken into account and modeled by BN.

Causal connections between adjacent layers: As described in Section 2, the regions in the top
layer can be further divided into several sub-regions in the lower layer by means of multiscale
oversegmentation. Note that the labels to be assigned to those sub-regions do have some dependencies
on their parents’ regions in the top layer. In terrain classification from SAR images, for example, the
roads often intersect within the buildings and are far from the forests; the farmland is often far from
the urban areas, and so on. These dependencies can be thought of as additional contextual knowledge
to link the adjacent layers and can be exploited to improve classification accuracy.

The labeled probability of a sub-region conditioned on its parent region can be defined as the
following conditional probability:

P
(

yd = ci|yu = cj

)
= ϕij (13)

where yd and yu denote the labels of the sub-region in the lower layer and its parent region in the
upper layer, and the corresponding assigned labels are ci and cj, respectively; ϕij is the conditional
probability. This conditional probability can be obtained from the statistical results of the CRF labeling.
For SAR image classification, if there are N classes, a Conditional Probability Table (CPT) with N × N
dimensions can be used to describe those causalities. Figure 5 illustrates the causal connections
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between adjacent layers, where the causalities are constructed by those classification probabilities of
sub-regions in the lower layer conditioned on their parents’ regions in the upper layer.

Figure 5. The causal connections between adjacent layers are modeled by the Bayesian network. The
input image x is first coarsely classified into labels yu

1 , yu
2 , yu

3 in the upper layer, and then, those regions
in the upper layer are finely labeled into yd

1, yd
2, yd

3, yd
4, yd

5 in the lower layer, where the classification
probabilities of the sub-regions in the lower layer, conditioned on their parents’ regions in the upper
layer, are denoted by black squares.

Regions’, edges’ and vertices’ relationships: The relationships among regions, edges and vertices
refers to such contextual knowledge, which has been extensively exploited by humans. The edge
is formed by the intersection of regions with different labels; the vertex is from the intersections of
edges. Figure 6 illustrates the causalities among regions, edges and vertices; edge e2, for example, is
formed by regions y3 and y4, and therefore, y3 and y4 are the parents nodes of e2. These contexts can
be modeled by conditional probabilities in BN.

Figure 6. The causalities among regions, edges and vertices. An edge is formed by the intersection
of the regions with different labels, and these regions are the parent nodes of the edge. The vertex is
formed by edges, and these associated edges are the parent nodes of the vertex.

The BN model constructed here is based on the oversegmentation edge graph; the edge graph
consists of edges

{
ej
}m

j=1 and vertices {vt}l
t=1, where m and l denote the numbers of edges and vertices.

There are two states to be assigned to the edges and vertices, namely true or f alse represented by
one and zero, respectively. BN models the causal relationships among the oversegmentation regions
{yi}n

i=1, the edges
{

ej
}m

j=1 and vertices {vt}l
t=1.

For an edge, it is formed by the intersection of two regions, which are defined as the edge’s
parent nodes. Consequently, if the labels of the parent nodes are different, it is likely that there is a
true boundary existing between the two regions, namely ej = 1. The conditional probability can be
defined as:

P
(
ej = 1|pa

(
ej
))

=

{
0.8 labels of parent nodes are different,

0.2 others.
(14)
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where pa
(
ej
)

denotes the parent node of edge ej.
As for the vertex, its parent nodes are those intersecting edges. In this paper, a vertex is formed

by at least three edges. Therefore, the conditional probability between the vertex and its parent nodes
can be defined as:

P (vt = 1|pa (vt)) =

{
0.7 more than two edge nodes are true,

0.3 others.
(15)

where pa (vt) is the parent node of vertex vt.
Let y, e and v represent all of the regions {yi}n

i , edges
{

ej
}m

j and {vt}l
t, respectively, then the

image classification can be performed by inferring the optimal states y∗, e∗ and v∗:

y∗, e∗, v∗ = arg max
y,e,v

P (y, e, v) (16)

where P (y, e, v) is the joint probability. With the assumption of conditional independence in BN,
the joint probability can be expressed as the product of local conditional probabilities, which is
given by:

P (y, e, v) =
n

∏
i=1

P (yi)
m

∏
j=1

P
(
ej|pa

(
ej
)) l

∏
t=1

P (vt|pa (vt)) (17)

where P (yi) is the prior probability of regions. With the consideration of insufficient training samples in
practice, here uniform distribution is used to model the prior probability. With the causal relationships
of the adjacent layers modeled by multilayer BN, a semantic pyramid is built from the region pyramid
constructed in Section 3. The joint probability of the multilayer BN is given by:

P (y, e, v, x) = ∏
<u,d>∈Υ

n

∏
i=1

P (yu
i )

m

∏
j=1

P
(

eu
j |pa

(
eu

j

)) l

∏
t=1

P (vu
t |pa (vu

t ))·

n′

∏
i′=1

P
(

yd
i

) m′

∏
j′=1

P
(

ed
j |pa

(
ed

j

)) l′

∏
t′=1

P
(

vd
t |pa

(
vd

t

))
·P
(

yd = c|yu = c′
) (18)

where < u, d >∈ Υ denotes the combination of the adjacent layers; the numbers of classes, edges and
vertices in the second layer of BN are represented by n

′
, m

′
and l

′
, respectively.

4.3. Unified Inference Model for CRF and BN

Since both CRF and BN are included to model prior knowledge, to perform a global inference, the
Factor Graph (FG) is used to represent the CRF and BN in a unified framework. In FG, the global joint
probability is described by a set of factorization, where the random variable node is represented by
a circle and the factor node by a solid square; if and only if two variables are relevant, there exits a
connection between them.

With the assumption of the global Markov property in FG, the joint probability of each layer in
semantic pyramid P (y, e, v, x) can be factorized by:

P (y, e, v, x) = P (e, v|y, x) P (y, x) = P (v|e) P (e|y) P (y|x) P (x) (19)

where P (v|e) and P (e|y) denote the causalities among edges, vertices and labels in BN, namely
Equations (14) and (15), respectively; P (y|x) represents Equation (6), and P (x) is constant because x
is observed.



Remote Sens. 2017, 9, 96 11 of 18

Note that the constructed semantic pyramid consists of a multilayer, where the causal connections
between adjacent layers are modeled by BN, and therefore, the global joint probability P (y, e, v, x) can
be expressed by:

P (y, e, v, x) = ∏
<u,d>∈Υ

Pu (y, e, v, x) Pd (y, e, v, x) P
(

yd = c|yu = c′
)

(20)

where Pu (y, e, v, x) and Pd (y, e, v, x) denote the probabilities of the upper and lower layer, respectively,
and these two probabilities can be factorized like Equation (19). With the above joint probability,
several methods can be used to implement the maximum probabilistic inference. In this paper,
Stochastic Local Search (SLS) [32] is employed to perform Most Probable Explanation (MPE) reasoning,
and the result can be given by:

y∗, e∗, v∗ = arg max
y,e,v

P (y, e, v, x) (21)

5. Experiment

5.1. Experiment Data

To evaluate the performance of the proposed classification method, several experiments are
conducted on ESAR and TerraSAR-X images. (1) As shown in Figure 7a, the ESAR image, acquired
in Germany, has a dimension of 1300× 1200 pixels and a spatial resolution of 3 m × 2.2 m. (2) The
second data, shown in Figure 7b, are acquired by TerraSAR from Wuhan, Hubei province, China;
the dimension and spatial resolution are 1500× 1500 pixels and 1.25 m × 1.25 m, respectively. We
use ArcGIS to label the experiment images into five categories, i.e., building, forest, farmland, road
and others.

5.2. Experiment Settings

As shown in Table 1, three types of features are extracted, i.e., intensity, polarization and texture
features. For the intensity, the Haar and Grey histogram are included; the polarization feature consists
of Pauli, SDHand Huynen; as for the texture, a filter bank consisting of 17 Gaussian filters is used
to capture the texture feature. Notice that the TerraSAR image, used in our experiment, is of single
polarization, and the extracted features only contain the intensity and texture.

Table 1. Three types of features are extracted for the experiment.

Attribute Feature Type Dimension

Intensity Haar 7
Grey 16

Polarization
Pauli 3
SDH 9

Huynen 3

Texture Gaussian filters 17

Five experiments are designed for performance comparison, and the settings are described
as follows.
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(a) The ESAR image acquired in Germany

(b) The TerraSAR image acquired in China

Figure 7. Experiment data.

Experiment 1: classification based on the CRF model alone: Firstly, 3 different thresholds are
selected to construct a region pyramid. For the ESAR image, 0.2, 0.08 and 0.05 are set, and the
corresponding region blocks are 1468, 3016 and 6134, respectively. For the TerraSAR image, the
thresholds are set as 0.11, 0.08 and 0.06, and the segmentation blocks are 1898, 3629 and 7034,
respectively. Secondly, half of those regions are used as training data and the others for testing.
Thirdly, the spatial relationships of regions within each sub-layer of the region pyramid are model
by the CRF. L-BFGS [33] is applied to estimate the parameters of the CRF model during the training
process, and the min-sum algorithm is used for inference.

Experiment 2: classification based on CRF and boundary prior knowledge: The contour lines
are detected by the method gDet-OWT-UCM, described in Section 3. To obtain the boundary prior
knowledge, here those strong responses in UCM are retained, as shown in Figure 8. The boundary
prior knowledge is calculated by Equation (8), and the corresponding linear weighted parameters are
learned by training process.

Experiment 3: classification combining CRF with the BN model: The CPT is shown in Table 2;
Classes 1 to 5 correspond to the buildings, forests, farmland, roads and others. These conditional
probabilities are set according to the results in Experiments 1 and 2. For ESAR data, for example, the
probability 0.15, in Row 2 Column 3, represents the classification probability of farmland in the lower
layer, conditioned on the forests in the upper layer.
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(a) ESAR image (b) TerraSAR image

Figure 8. Contour lines for boundary prior knowledge.

Table 2. Conditional probability table.

ESAR Data TerraSAR Data
Classes

1 2 3 4 5 1 2 3 4 5

1 0.71 0.12 0.04 0.05 0.08 0.7 0.08 0.07 0.05 0.1
2 0.1 0.7 0.15 0.02 0.03 0.07 0.7 0.15 0.02 0.06
3 0.02 0.15 0.7 0.04 0.09 0.03 0.1 0.75 0.04 0.08
4 0.05 0.02 0.03 0.82 0.08 0.1 0.04 0.03 0.8 0.03
5 0.08 0.06 0.06 0.1 0.7 0.1 0.08 0.04 0.1 0.68

Experiment 4: classification by SVM: For comparison purposes, Support Vector Machine
(SVM) [34] is used to classify the oversegmentation regions; the settings for the feature extraction are
the same as Experiment 1. Half of the obtained regions are randomly selected for testing data and the
others for testing.

Experiment 5: CRF model with mean shift and Potts prior: To verify the segmentation efficiency
of gDet-OWT-UCM, the CRF model is built based on the mean shift segmentation and Potts’ prior [35].
The minimum block size is 200× 200, and the obtained regions are 3370 and 3955 for ESAR and
TerraSAR data, respectively. Other settings for CRF are the same as Experiment 1.

5.3. Results and Analysis

Figures 9 and 10 qualitatively illustrate the classification results of each experiment on ESAR and
TerraSAR images. To further quantitatively compare the performance, Tables 3 and 4 list the confusion
matrices of the classification results.

(1) For the ESAR data, the average classification accuracy of CRF model alone [36] is about 70.7%,
as shown in Figure 9b. When the boundary prior knowledge is incorporated into CRF model,
the average accuracy is up to 72.8%, the classification performance is improved about 2%,
especially those areas around the boundary, as shown in Figure 9c. The performance of the
proposed method is more promising, as shown in Figure 9d. Compared with the CRF model
alone and CRF with boundary prior approaches, the accuracy is improved about 6% and
3.8%, respectively. This is because of the additional contextual knowledge, namely the causal
dependencies between adjacent layers are integrated into the proposed classification framework.
Figure 9e,f presents the results of SVM [34] and the CRF model based on mean shift [35]; the
comparable performance demonstrates the effectiveness of the segmentation algorithm used in
this paper.
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(a) Ground truth (b) CRF alone (c) CRF with BP

(d) CRF and BN model (e) SVM (f) CRF with mean shift

Figure 9. Classification results of ESAR image. (a) The ground truth; (b–d) the results by the CRF
model alone, CRF with boundary prior knowledge, CRF and the BN model, respectively; (e,f) the
results by SVM and CRF with mean shift.

(a) Ground truth (b) CRF alone (c) CRF with BP

(d) CRF and BN model (e) SVM (f) CRF with mean shift

Figure 10. Classification results of TerraSAR image. (a) The ground truth; (b–d) the results by the CRF
model alone, CRF with boundary prior knowledge, CRF and the BN model, respectively; (e,f) the
results by SVM and CRF with mean shift.
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Table 3. Confusion matrix for the classification results of ESAR data.

Method Category Building Forest Farmland Road Others Average

Building 0.7305 0.1505 0.0034 0.0296 0.086
Forest 0.1374 0.7203 0.0732 0.041 0.0282

Experiment 1 Farmland 0.0118 0.1966 0.581 0.0146 0.196 0.7066
Road 0.0887 0.0706 0.0034 0.6302 0.2071

Others 0.0487 0.0341 0.0649 0.1193 0.733

Building 0.8164 0.1083 0.0047 0.0214 0.0493
Forest 0.1007 0.802 0.0419 0.0182 0.0372

Experiment 3 Farmland 0.0136 0.2423 0.5156 0.014 0.2145 0.7284
Road 0.0964 0.0578 0.0084 0.6258 0.2116

Others 0.0623 0.0428 0.0544 0.1125 0.728

Building 0.6613 0.1522 0.0076 0.1025 0.0763
Forest 0.0274 0.8329 0.0468 0.033 0.0598

Experiment 5 Farmland 0.0028 0.1201 0.6069 0.0092 0.261 0.7669
Road 0.0197 0.0495 0.0031 0.7602 0.1675

Others 0.0165 0.0266 0.0299 0.1251 0.802

Building 0.7728 0.0666 0.0255 0.0166 0.1185
Forest 0.0693 0.7109 0.0179 0.0043 0.1975

Experiment 4 Farmland 0.0461 0.1376 0.4655 0.0057 0.3451 0.7127
Road 0.063 0.049 0.0286 0.4049 0.4545

Others 0.0664 0.0379 0.037 0.0429 0.8158

Building 0.7884 0.0356 0.0294 0.0321 0.1246
Forest 0.0841 0.6325 0.0296 0.0455 0.2083

Experiment 2 Farmland 0.0329 0.1685 0.4345 0.0362 0.3297 0.7218
Road 0.0698 0.0463 0.0255 0.5104 0.3479

Others 0.0458 0.0201 0.0268 0.0624 0.8449

Table 4. Confusion matrix for the classification results of TerraSAR data.

Method Category Building Forest Farmland Road Others Average

Building 0.673 0.0513 0.0369 0.0436 0.1952
Forest 0.0927 0.6679 0.0321 0.0355 0.1718

Experiment 1 Farmland 0.0725 0.011 0.6573 0.0494 0.2099 0.7295
Road 0.1005 0.053 0.0419 0.6891 0.1155

Others 0.0497 0.0471 0.0394 0.0359 0.8278

Building 0.7706 0.0363 0.0419 0.0316 0.1196
Forest 0.088 0.665 0.043 0.0377 0.1663

Experiment 3 Farmland 0.0623 0.0372 0.7486 0.0284 0.1235 0.7607
Road 0.0945 0.0373 0.0317 0.7699 0.0666

Others 0.0595 0.0481 0.0423 0.0422 0.8079

Building 0.8005 0.0454 0.0371 0.0145 0.1025
Forest 0.0315 0.7984 0.0413 0.0241 0.1047

Experiment 5 Farmland 0.0328 0.0309 0.8383 0.0433 0.0546 0.8117
Road 0.0554 0.02 0.0347 0.7905 0.0993

Others 0.0517 0.0434 0.0309 0.0284 0.8455

Building 0.7069 0.0649 0.0403 0.039 0.1489
Forest 0.0546 0.714 0.04 0.0326 0.1587

Experiment 4 Farmland 0.0151 0.0621 0.7112 0.0965 0.1151 0.7422
Road 0.0729 0.0663 0.0529 0.6292 0.1787

Others 0.0573 0.0553 0.0323 0.0421 0.813

Building 0.764 0.0381 0.0391 0.0316 0.1272
Forest 0.0697 0.7035 0.0794 0.0236 0.1238

Experiment 2 Farmland 0.0911 0.0567 0.7054 0.0746 0.0722 0.7403
Road 0.0617 0.0323 0.0365 0.6317 0.2379

Others 0.0766 0.0392 0.0912 0.0204 0.7726
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(2) Figure 10 displays the results on the TerraSAR image. The average classification accuracy of the
proposed method is about 81.2%, which is better than the CRF model alone, 73.0%, and CRF
with boundary prior, 76.1%. These experimental results also demonstrate that the incorporation
of additional prior knowledge, namely the causal connections modeled by BN, is a benefit to
the enhancement of classification performance. Moreover, note that the accuracy of CRF with
boundary prior knowledge is improved about 3% compared with the CRF model alone, and the
recognition ability on those sub-regions, e.g., forest, buildings, is improved effectively, which
verifies the effectiveness of the incorporation of the boundary prior knowledge.

(3) Since the causal relationships between adjacent layers, as well as the boundary prior knowledge
are integrated into the proposed method, the computational cost of our method is relatively
higher than those methods used for comparison purposes.

6. Discussion

To achieve a finer classification result, we incorporate more prior knowledge into our classification
framework by constructing a multilayer region pyramid, where CRF and BN are used to model the
spatial relationships and adjacent causal connections. To further improve the accuracy and to apply
the proposed method in practical applications, the following aspects should be taken into account.

(1) The number of layers for constructing a region pyramid plays an important role in performance
enhancement, and how to select the optimal number of layers is an issue that should be further
studied. In theory, the more layers we select, the higher the accuracy that will be achieved.
However, an optimum selection is intractable because we should ensure the existence of the
classification probabilities of those sub-regions conditioned on their parents’ regions in the upper
layer. Therefore, this issue should be further studied for the enhancement of the performance.

(2) There are several hyperparameters in the process of oversegmentation, e.g., the scale for the
extraction of local edges, etc. These hyperparameters, which like the concept of receptive field
in the deep learning community, have some impact on the classification performance. However,
how to select an optimum setting still needs to be addressed.

(3) Since there are several parameters that should be learned in our proposed method, a higher
computational cost should be paid. Consequently, we should make a tradeoff between the
computational cost and classification accuracy, especially for the selection of the number of layers
in forming a region pyramid.

(4) Combining more prior knowledge with the image data itself is a benefit to the accuracy
improvement. Therefore, more prior knowledge is encouraged to be incorporated into this
classification framework to further performance enhancement.

(5) The overfitting problem should also be considered in the case of insufficient training samples.
In this paper, a uniform distribution is used to model the prior probability. To further improve
the generalization, other strategies, like the solution in [37], should be taken into account.

7. Conclusions

This paper has presented a hierarchical classification method for SAR images. In contrast to
existing multiscale approaches, which concentrate on the development of contextual information
within a sub-layer, the proposed classifying framework explores the causal connections between
adjacent layers as prior knowledge to facilitate robust and effective classification. To integrate the
causalities, a multilayer region pyramid is first constructed by multiscale oversegmentation, and
then, both the Bayesian Network (BN) and Conditional Random Field (CRF) are used to model prior
knowledge, where CRF models the spatial relationships among regions within sub-layers and BN
captures the causal connections between adjacent layers. Experiments conducted on real SAR images
demonstrate the superiority of the proposed method, and the accuracy is improved by about 3%.
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Abbreviations

The following abbreviations are used in this manuscript:

BN Bayesian Network
CPT Conditional Probability Table
CRF Conditional Random Field
FG Factor Graph
MRF Markov Random Field
MPE Most Probable Explanation
OWT Oriented Watershed Transformation
SAR Synthetic Aperture Radar
SLS Stochastic Local Search
SVM Support Vector Machine
UCM Ultrametric Contour Map
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