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Abstract: Processing of land surface temperature from long time series of AVHRR (Advanced Very
High Resolution Radiometer) requires stable algorithms, which are well characterized in terms of
accuracy, precision and sensitivity. This assessment presents a comparison of four mono-window
(Price 1983, Qin et al., 2001, Jiménez-Muñoz and Sobrino 2003, linear approach) and six split-window
algorithms (Price 1984, Becker and Li 1990, Ulivieri et al., 1994, Wan and Dozier 1996, Yu 2008,
Jiménez-Muñoz and Sobrino 2008) to estimate LST from top of atmosphere brightness temperatures,
emissivity and columnar water vapour. Where possible, new coefficients were estimated matching the
spectral response curves of the different AVHRR sensors of the past and present. The consideration
of unique spectral response curves is necessary to avoid artificial anomalies and wrong trends
when processing time series data. Using simulated data on the base of a large atmospheric profile
database covering many different states of the atmosphere, biomes and geographical regions, it was
assessed (a) to what accuracy and precision LST can be estimated using before mentioned algorithms
and (b) how sensitive the algorithms are to errors in their input variables. It was found, that the
split-window algorithms performed almost equally well, differences were found mainly in their
sensitivity to input bands, resulting in the Becker and Li 1990 and Price 1984 split-window algorithm
to perform best. Amongst the mono-window algorithms, larger deviations occurred in terms of
accuracy, precision and sensitivity. The Qin et al., 2001 algorithm was found to be the best performing
mono-window algorithm. A short comparison of the application of the Becker and Li 1990 coefficients
to AVHRR with the MODIS LST product confirmed the approach to be physically sound.
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1. Introduction

The estimation of land surface temperature (LST) from acquisitions of medium-resolution sensors
has a long tradition. Data from the AVHRR (Advanced Very High Resolution Radiometer) sensors
flown on NOAA-satellites is operationally available since the early 80s with 1 km spatial resolution at
nadir. Given that the data has been archived, the generation of long time series is possible. This paper
focuses on a comparison of different mono- and split-window algorithms to derive LST from AVHRR
top of atmosphere (TOA) data under clear sky conditions. The comparison is performed against the
background of future generation of long time series and their analysis. Included is not only a careful
selection of algorithms based on their suitability for time series generation, but also a straightforward
specification of related errors and sensitivities.

One way to estimate LST is to remove the attenuation effects of the atmosphere from TOA
brightness temperatures. These effects are thereby determined quantitatively using radiative transfer
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models (RTMs) and assumptions of the composition of the atmosphere. Given that the atmosphere is
well characterized, this method can be very accurate. However, main constraint of such approaches is
the high CPU usage of the RTMs, which makes them unsuitable for the processing of extensive time
series with pixel-based approaches. More straightforward is the application of methods, which are
based on pre-computed functions and coefficients. These allow an effective data processing. A selection
of such methods is described in this article specifically for the case of AVHRR bands. A more complete
overview of methods is given for example in [1]. Another fast option to retrieve LST are neural
networks as described for example in [2].

The estimation of LST from AVHRR/2, AVHRR/3 (13 sensors on the NOAA satellites and now
AVHRR/3 on Metop-A and Metop-B), as well as AVHRR-heritage sensors, can be accomplished
taking advantage of the splitting of the thermal domain into two channels. The two channels
are in wavelength ranges with different absorption features of mainly water vapour. As such,
the difference of the two channels can be used to eliminate these atmospheric effects in the data.
The two channels are usually located around 11 and 12 µm. Measured brightness temperatures
of these two channels can be directly used with the respective surface emissivities to deduct LST.
The split-window technique is simple and robust [3] and therefore favoured by many researchers and
also operational providers of LST (e.g., Land Surface Analysis Satellite Applications Facility (LSA
SAF) [4], Copernicus Land [5], NASA MODIS LST [6]). AVHRR/1 however carries only one band in
the thermal domain, only mono-window algorithms are applicable here. These algorithms are missing
any measured information about atmospheric absorption; correction procedures are fully dependent
on external data. Due to reduction to one band the accuracy of mono-band algorithms is expected to
be lower than split-window algorithms [7]. Nevertheless, [8] reported accuracies for mono-window
algorithms which are comparable to what was found for split-window algorithms.

Early developments of mono-window algorithms were undertaken by [9], also [10] suggests
in his review paper a single channel algorithm. Further work was presented by [11,12]. A more
recent overview is given by [1] who address the mono-window algorithms as single-channel methods.
The work of [8] complements the overview with an additional statistical mono-window algorithm.
All these methods are based on precomputed coefficients and functions, which can vary for different
states of the atmosphere.

In the literature, numerous split-window algorithms have been published, starting as early as 1970,
when first studies were published about the estimation of Sea Surface Temperatures [13]. The studies
were based on modelled and on measured data. A good overview is given in [1]. The authors divide the
split-window algorithms into linear and non-linear split-window algorithms. Both these algorithms use
the information of one of the two brightness temperatures as a general offset, as well as the difference
between the two brightness temperatures to express the magnitude of absorption in the atmosphere.
All algorithms come with a range of coefficients, which are determined empirically and reflect the
influence of the emissivity, the difference of the emissivities of the two bands, the water vapour in
the atmosphere and the sensor view angle. As such, expressions have been developed to empirically
deduct the coefficients from these variables in a linear or also non-linear way (e.g., [9,14–18]). Another
way of incorporating the influence of water vapour, the longer atmospheric path determined by the
view angle, and also temperature itself to the expression, is to use different sets of coefficients for
subranges of each variable. This approach was followed for example by [16,19], who simulated band
brightness temperatures using a radiative transfer model for a variety of atmospheric conditions
and a range of sensor view angles. The atmospheric conditions thereby covered given ranges of
atmospheric water vapour, and initial guess LST or Tair broad enough, to reflect the most possible
atmospheric conditions. The coefficients are then derived for subranges of atmospheric water vapour
and initial guess LST or Tair from the modelled brightness temperatures and the input LST into
the radiative transfer runs. As the band brightness temperatures usually are modelled using the
sensors spectral response, the resulting coefficients are sensor-specific and cannot be transferred
from one to another sensor without loss of accuracy. There have been studies comparing different



Remote Sens. 2017, 9, 72 3 of 24

split-window algorithms ([3,20–22]), highlighting the advances and drawbacks of single algorithms
and their implementation at that time. As pointed out by [8], the approach of creating sets of coefficients
does also apply for mono-window algorithms.

Nowadays, the availability of long term time series of medium resolution data of sensors
such as AVHRR enables researchers to investigate climate relevant trends in this multi-decadal Earth
Observation data. This study therefore investigates the suitability of a variety of selected algorithms to
long time series processing in the framework of the TIMELINE project at the Earth Observation Center
(EOC) of the German Aerospace Center (DLR). The project aims in creating long and homogeneous
time series from AVHRR/1, AVHRR/2 and AVHRR/3 starting in the early 80s. Most of the proposed
split-window algorithms have been developed a few years back. This is why the accompanying
coefficient sets are usually given only for one or more of the older AVHRR sensors. These coefficient
sets might match perfectly to the one AVHRR sensor or to the set of sensors, but fail to give similar
accuracies using the coefficients on all available AVHRR data, as each sensor features its unique spectral
response curve. As such, the generation of a longer time series with coefficients from literature are
prone to larger errors, which might introduce artificial anomalies like sudden steps in the time series.
It is, therefore, of utmost importance to use updated coefficients. Nowadays, the focus of satellite
product analysis is more and more shifted towards time series analysis. As such, LST products should
be consistent and fit to the concept of climate data records (CDR) [3]. This work therefore includes
the generation of new coefficient sets for each of the AVHRR sensor, to enable analyses that focus
on time series applications. The generation of the coefficients follows the development of e.g., [16],
by generating different coefficient sets for different ranges of columnar water vapour, temperature,
mean band emissivity and—if applicable—the difference of the two band emissivities.

The focus of our analysis not only emphasises on the performance, as expressed by accuracy
and precision measures, of the split-window algorithms themselves, but also on the sensitivity of the
split-window algorithms to their input data (e.g., columnar water vapour). Performance assessments
provide information on the magnitude of variation that can be expected from using one or the other
split-window approach. The sensitivity analysis highlights the influence of the input variables into the
split-window algorithms. This is important mainly in cases where the quality of an input variable is of
varying quality. In such cases, reduced quality of input data caused by systematic and/or random
effects is propagated to the LST generation—depending on its sensitivity. Both, the performance and
the sensitivity measures can be further used for uncertainty and quality estimation of a final LST
AVHRR time series product which relate product quality to state of the art user requirements (accuracy
better than 1 K as given for example by GCOS ([23]). Current data providers of LST, which aim for
long time series with high accuracy, are for example the LSA SAF, which will soon provide consistent
Meteosat LST in a joint effort with CM SAF [24]. In addition, the Copernicus Land Programme
provides LST from MeteoSat data ([4,5]). Furthermore, the GlobTemperature Project using (Advanced)
Along-Track Scanning Radiometer (A)ATSR data ([25]), and NASA’s MODIS LST product [26] provide
LST time series. The latter product was used in the study for a comparison with one of the proposed
algorithms to confirm the soundness and validity of the approach.

2. Data

This assessment was specifically designed for AVHRR. The AVHRR sensors (AVHRR/1, 2, and 3)
are mounted on the NOAA-series of satellites, since 2006 AVHRR/3 is also onboard of the MetOp
series. AVHRRs carries one band in the red (band 1), one in the near infrared (band 2), and one in the
shortwave infrared (band 3) domain. Since AVHRR/3, band 3 can also contain acquired radiation in
the mid infrared wavelength. Main bands for LST estimation are however the bands in the thermal
infrared. AVHRR/2 and 3 contain two channels in the thermal infrared, while AVHRR/1 features only
one band in this domain (Table 1).
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Table 1. Spectral bands of the AVHRR sensors.

Channel AVHRR/1
(NOAA-6,8,10) (µm)

AVHRR/2
(NOAA-7,9,11,12,14) (µm)

AVHRR/3
(NOAA-15,16,17,18,19 MetOp A and B) (µm)

1 0.58–0.68 0.58–0.68 0.58–0.68
2 0.725–1.1 0.725–1.1 0.725–1.0

3A - - 1.58–1.64
3B 3.550–3.93 3.550–3.93 3.55–3.93
4 10.5–11.5 10.3–11.3 10.3–11.3
5 10.5–11.5 11.5–12.5 11.5–12.5

Although the different AVHRR sensors measure in the same bands, their spectral responses are
not identical, as each sensor is a unique instrument, which is subject to some form of degradation.
The degradation of a sensor and therewith possible overall changes in the spectral responses are
accounted for by calibration. However, no information about possible changes in the spectral form is
available after lunch [27]. Figure 1 shows the spectral response curves of band 4 and band 5 of the
different sensors. The response curves may differ substantially not only between the different models,
but also within one model (especially AVHRR/3).
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Figure 1. Spectral response curves of band 4 and 5 of the different AVHRR/1, 2, and 3 sensors onboard
the NOAA and the MetOp satellite series. AVHRR/1 curves are given in red tones, AVHRR/2 curves
in green tones, and AVHRR/3 curves in blue tones and black.

For the method development of this assessment, it was necessary to compile a dataset of
atmospheric profiles. For this, a selection of a training database of global profiles (called SeeBor
Version 5.0) was used [28]. This database consists of 15.704 global profiles of temperature, moisture
and ozone at 101 pressure levels—all for clear sky conditions. The profiles were all quality checked and
a surface temperature was assigned to each profile based on a physically based scheme. The profiles
of the database are compiled from five different existing databases (NOAA-88, ECMWF 60L training
set, TIGR-3, ozone sondes from 8 NOAA Climate Monitoring and Diagnostics Laboratory sites,
and radiosondes from 2004 in the Sahara Desert) [28]. From this database a selection was made for
this assessment, which ensured having profiles in all ranges of surface temperature and columnar
water vapour (see Table 2), as well as from as many land cover types (referring to the International
Geosphere-Biosphere Programme (IGBP)) as possible. Due to the uneven distribution of land cover
classes in the profile database, the number of profiles for each land cover class differs. A total of
2662 profiles were selected, featuring the following characteristics: 811 profiles are taken from TIGR-3,
317 profiles from Radiosondes, 479 profiles from Ozonesondes, and 1055 profiles are taken from
ECMWF. The profiles were taken in a range of different land cover classes as defined in Table 3.
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Table 2. Minimum, maximum and mean atmospheric values from selected profiles.

Minimum Maximum Mean

Surface temperature (K) 209.2 327.7 285.9
Wind speed (m·s−1) 0.0 20.1 6.6

Mean atmospheric temperature (K) 209.4 252.2 240.1
Mean columnar water vapour (kg/m2) 0.1 87.4 31.1

Table 3. Assigned land cover classes to selected profiles.

Land Cover Classes Number of Profiles

Evergreen Needleleaf Forest 414
Evergreen Broadleaf Forest 299

Deciduous Needleleaf and Broadleaf Forest 67
Mixed Forest 169

Open and closed Shrubland 504
Woody Savanna 146

Savannas 96
Grassland 203
Cropland 369

Cropland/Natural Vegetation Mosaic 276
Barren or Sparsely Vegetated 425

Urban 10
Snow and Ice 231

IGBP Water Bodies 772
Unknown 37

Total profiles 4031

Further, a land use classification [29] was used to retrieve emissivity values for the application of
the algorithm on real AVHRR data. The emissivity estimation was done using the Vegetation Cover
Method (VCM) from [30].

For the comparison with MODIS data, the MOD11A1 V6 Land Surface Temperature and
Emissivity product (MOD11A1) was used. The data was retrieved from the USGS HTTP-Server [26].
The MODIS data, as well as the AVHRR data, were projected to a common 1 km lat/lon grid.
The MODIS LST product is already cloud screened. FOR AVHRR we used the APOLLO (AVHRR
Processing scheme over cLouds, Land and Ocean) tests. APOLLO is an algorithm that was designed
in the late 1980s and continuously improved and extended afterwards [31,32]. Additionally, a buffer
was laid around all clouds, as some border pixels were not detected by the algorithm.

3. Methods

Ten mono- and split-window approaches were tested to their suitability of long-term processing
of LST from AVHRR data. Table 4 presents all the approaches tested and compared during this study.
General to all algorithms is that new coefficients were generated for each of them. As such, only the
approach was tested, but not the original published expression.
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Table 4. Formulations of the tested mono- and split-window methods.

Mono-Window Algorithms

Method Formula Notes

Price 1983 [9] LST =
p0+ε4

p1
(p2t4 + p3) (1) Developed for AVHRR/1

Qin et al.,
2001 [11]

LST = 1
c (p2(1− c− d) + t3(p1(1− c− d) + c + d)− dTatm) (2)

Developed for LANDSAT TM
c = ε4τ (3)

d = (1− τ)(1 + τ(1− ε4)) (4)

τ = p0 − p1cwv (5)

Jiménez-Muñoz
and Sobrino

2003 [12]
LST = γ

(
1
ε (ψ1L4 + ψ2) + ψ3

)
∆ (6)

Developed for LANDSAT TM.
∆ and γ are coefficients derived
from an initial guess LST,
ψ1,2,3 are atmospheric functions,
which are calculated on the basis
of the wavelength and the
columnar water vapour

Linear LST =
p0t4+p1

ε4
4 (7) Linear expression, developed for

this assessment

Split-Window Algorithms

Method Formula Notes

Price 1984 (as
given in Pozo
Vázquez et al.,

1997 [21])

LST = (t4 + p0(t4− t5))
(

p1−ε
p2

+ p3t5dε
)

(8) Developed for AVHRR/2

Becker and Li
1990 [14]

α = 1 + p1
1−ε

ε + p2
dε
ε2 (9)

Developed for AVHRR/2β = p3 + p4
1−ε

ε + p5
dε
ε2 (10)

LST = p0 + α
(

t4+t5
2

)
+ β

(
t4−t5

2

)
(11)

Ulivieri et al.,
1994 [17] LST = t4 + p0(t4− t5) + p1(1− ε)− p2dε (12) Developed for AVHRR/2

Wan and Dozier
1996 [16]

LST =
(

p0 + p1
1−ε

ε + p2
dε
ε2

)
t4+t5

2

+
(

p3 + p4
1−ε

ε + p5
dε
ε2

t4−t5
2

)
+ p6

(13) Developed for MODIS

Yu et al., 2008 [3]
(extension to [17])

LST = t4 + p0(t4− t5) + p1(1− ε)− p2dε
+p3(t4− t5)(cos(VA)− 1)

(14) Developed for AVHRR/2
and AVHRR/3

Jiménez-Muñoz
and Sobrino

2008 [33]

LST = t4 + p1(t4− t5) + p2(t4− t5)2 + p0
+(p3 + p4CWV)(1− ε)
+(p5 + p6CWV)dε

(15)
Developed for ATSR2, AATSR,
MODIS, AVHRR/3,
IMAGER, SEVIRI

t4 = Brightness temperature of AVHRR band 4 (K); t5 = Brightness temperature of AVHRR band 5 (K);
ε4 = Emissivity of band 4; ε = Mean emissivity of band 4 and band 5; dε = Difference of band 4 and
band 5 emissivity (band 4 − band 5); VA = View angle (◦); CWV = Columnar water vapour (kg·m−2);
p1−6 = Ccoefficients, as described in Section 3.1. The coefficients are different for each equation.

3.1. Coefficients Generation

The coefficients for the mono- and the split-window algorithms were all retrieved in the same
manner. The first step consists of the selection of profiles from the SeeBor V5 database, as described
Section 2. MODTRAN 5.3 was then run using the selected profiles. Thereby, each profile was used
multiple times with varying surface characteristics. First of all, the already existing LST values of
each profile [28] were tripled as [LST – 5 K, LST, LST + 5 K] to increase the simulated LST variability.
Then, the sensor view angle was set to the values [0, 20, 40, 60], the mean band emissivity to values
of [0.89, 0.92, 0.96, 0.99] and the difference of the band emissivities to [−0.02, −0.01, 0.00, 0.015].
MODTRAN 5.3 was run for each combination of these values and for each band. Resulting radiances
were saved in a database. In a subsequent step, the radiances were convolved over the spectral response
of each of the AVHRR sensors and converted to brightness temperatures using Planck’s radiation
equation as described in the NOAA Polar Orbiter Data [34] User’s Guide for AVHRR/1 and AVHRR/2
and NOAA KLM User’s Guide for AVHRR/3 [35]. One half of the brightness temperatures were then
used together with the associated input LST values for the coefficient estimation of the six split-window
equations using least squares minimization. The other half was reserved for accuracy analysis.



Remote Sens. 2017, 9, 72 7 of 24

The coefficient estimation was done for three different kinds of input cases, whenever possible:

• Case A: The coefficients were retrieved for each class of sensor view angle (VA).
• Case B: The coefficients were retrieved for each class of sensor view angle, as well as for 8 ranges

of columnar water vapor (VA/CWV).
• Case C: The coefficients were retrieved for each class of sensor view angle, for 8 ranges of columnar

water vapor and for 4 classes of surface temperature (VA/CWV/LST). Using the Jiménez-Muñoz
and Sobrino 2008 algorithm and Qin et al., 2001 algorithm, the coefficients were retrieved for
sensor view angle and surface temperature (VA/LST). The Yu et al., 2008 algorithm uses ranges of
columnar water vapour and surface temperature only (CWV/LST). Case C has for each algorithm
the maximal surface ranges necessary.

The hypotesis is that Case C will give the highest accuracies, while Case A shows the highest
errors. Due to the large range of columnar water vapor and LST, not all possible combinations in
Case C could be filled using the data from the selected profiles. In operational processing of LST
therefore, also Case B and Case A might be of interest. Therefore Case A, B, and C were analysed.

According to [3,36], the temperature lapse rate influences the accuracy and precision of the
split-window retrieval. They found, that the final accuracy decreases with increasing lapse rate and
brightness temperature difference. As a consequence, the different set of coefficients were retrieved
for daytime (LST − Tair > −2 K) and night-time (LST − Tair < 2 K) conditions, selecting only the
appropriate profiles. As the conditions have an overlap of 4 K, the profiles also have a proper subset.
It should be noted that the criteria for day and night discrimination are violated for example in case
of advection of air masses. The discrimination between day and night conditions could have been
expanded to the definition of different LST − Tair subranges. However, the present profile database
does not provide enough samples to add this extra dimension. Additionally, accurate information
about the skin temperature-Tair relation must be available before application of the algorithm to real
data, which might be critial—especially for the past decades.

Figure 2 shows a schematic overview over the coefficient retrieval.
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3.2. Performance and Sensitivity Assessment

Performance, as expressed by accuracy and precision, was measured using the reserved second
half of the modelled brightness temperature values from the coefficient retrieval. Thereby, for each
profile and view angle, LST was calculated using the algorithms on the basis of the brightness
temperature, and the atmospheric information from the profiles for parameter class selection (columnar
water vapour and initial guess LST). Statistics was summarized for each class of view angle, initial guess
LST, and columnar water vapour by comparing the initial LST and the output LST from the
split-window algorithms. Such, the difference between the initial LST and the output LST from
the split-window algorithms for each class was calculated. From these differences then statistical
values were derived. The comparison was performed in form of mean absolute difference (MAD),
root mean square (RMS), standard deviation (STDEV), and correlation coefficient (r2).

The sensitivity analysis was undertaken by artificially altering the input parameters columnar
water vapour, initial guess LST, mean band emissivity, and difference of band emissivity. In case of
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the columnar water vapour and the initial guess LST, the wrong input values affect the choice of the
parameter class and led therefore to a lower accuracy of LST. In case of wrong mean emissivity and
wrong differences of band emissivity, the correct parameter classes are chosen, but the algorithm does
not foresee such wrong values and therefore renders incorrect LST values. The magnitude of the over-
or underestimation of LST is expressed in boxplot figures. Furthermore, total sensitivity is given for
each algorithm.

3.3. Emissivity Estimation

To estimate LST using mono- or split-window algorithms, emissivity must be known a priori.
For the comparison with MODIS data, the emissivity was estimated using the Vegetation cover method
(VCM) from [30]. The VCM method was proposed for AATSR data. Due to the spectral similarity of
the thermal bands of AVHRR and AATSR, the method could be employed for this study.

εk = εkvFVC + εkg(1− FVC) + 4〈dεk〉FVC (1− FVC) (16)

εk with k = 4, 5 is the emissivity of band 4 resp. 5, εkv is the emissivity of vegetation, εkg is the
emissivity of the ground below the vegetation, 〈dεk〉 is the maximum cavity term, and FVC is the
fractional vegetation cover. The coefficients εkg, εkv and 〈dεk〉 are dependent on land surface cover
and the spectral band. Additionally, to the estimation of band emissivity, the method of [30] offers the
possibility to estimate the related uncertainty of the emissivity. It should be noted that this expression
does not account for the anisotropy of emissivity. As pointed out by [37] on the example of inorganic
soils, this can lead to systematic errors in LST ranging between 0.4 K and 1.3 K for dry atmospheres.

4. Results

4.1. Performance

The different performance measures of Case A, B, and C are shown on the example of the revised
Qin et al., 2001 and the Becker and Li 1990 algorithm only. The relation of the performances of the
different cases is very similar for all algorithms; therefore the following detailed presentation of
the results from the two revised algorithms is sufficient. Figure 7 will later give an overview over
all algorithms. The left-hand side of Figures 3–6 show the r2, the MAD, the RMS, and the STDEV
separately for each view angle, columnar water vapour class and daytime coefficient sets. Thereby,
case C shows the best agreement in all columnar water vapour classes. r2 values are very high except
for extremely humid conditions, and MAD values stay below 0.5 K (Becker and Li 1990) and around
1 K (Qin et al., 2001) except for very humid conditions and extreme view angles. Case B does show
only slightly lower accuracies, except in the case of very low temperatures. There, this coefficient set is
not sufficient. Case A shows the lowest accuracies in all cases, MAD values do hardly fall below 1 K.
There is a general decrease with higher view angles and with higher columnar water vapour, a result
that was expected from other studies [38]. The right-hand side of Figures 3–6 show the same data but
this time split up by ranges of initial guess LST. The relations between cases A, B, and C as well as the
influence of the view angle are the same. Furthermore, all algorithms work better in case of very low
temperatures, which is due to the usually very low water content in the atmosphere in such conditions.
Interestingly, the case B and case C give slightly better performance in high temperature conditions
(310–320 K) than in moderate temperature conditions (270–290 K).
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Figure 3. Performance measures (a) r2; (b) MAD; (c) RMS; (d) STDEV for the revised Qin et al., 2001
algorithm for different CWV ranges (daytime coefficients).
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Figure 5. Performance measures (a) r2; (b) MAD; (c) RMS; (d) STDEV for the revised Becker and Li 1990
algorithm for different CWV and LST ranges (daytime coefficients).
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The performance measures of the night-time coefficients are very similar to the daytime values
both in magnitude and in tendency. Figure 7 shows overviews over all methods, plotted for the
different ranges of columnar water vapour, a sensor view angle of 0◦, an initial guess LST range from
270 to 310 K, and separated for the day and the night coefficient sets. Where possible, the coefficient sets
from case C are taken, as these were identified as the best performing coefficient sets. Most methods
show the same relation with columnar water vapour classes. The methods work well in low humidity
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atmospheres, but decrease in accuracy when using more humid profiles. For the split-window
algorithms, the MAD stays below 0.4 K, however the mono-window algorithms have partly higher
MAD values. The Qin et al., 2001 and the linear method stay below 1 K, but the Price 1983 algorithm
reaches almost 2 K, while the Jiménez-Muñoz and Sobrino 2003 is even higher. The Jiménez-Muñoz
and Sobrino 2003 algorithm shows low accuracies in humid conditions (mostly out of the range in
Figure 7). Especially the night coefficients give lowest accuracies in very humid conditions. This is in
line with the findings described in [1].
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Figure 7. Performance measures (a) r2; (b) MAD; (c) RMS; (d) STDEV of all revised algorithms,
separated for different classes of CWV and an initial guess LST range from 270 to 310K. Results are
retrieved from the case C coefficient set, a sensor view angle of 0◦, and daytime (given by symbol #)
and nighttime (given by symbol ×) conditions.

Figure 8 shows an extract of the statistical data for a columnar water vapour range of 0–35 kg·m−2,
a sensor view angle of 0◦, and separated for the initial LST classes. In addition, here, accuracy is
slightly higher in very cool conditions, MAD stays below 1 K for the linear, the Qin et al., 2001 and the
daytime Jiménez-Muñoz and Sobrino 2003 methods and 0.4 K all the split-window methods, except the
nighttime coefficients of Jiménez-Muñoz and Sobrino 2008. At moderate temperatures, the accuracies
get slightly lower again, while for higher temperature ranges, accuracies get better. These slight shifts
are a result of available input data for the different ranges of columnar water vapour and initial guess
LST. By narrowing the range of columnar water vapour to 0–25 kg·m−2, this effect would not show
in the figure anymore. Jiménez-Muñoz and Sobrino 2008 night time performs least well at very low
temperatures with columnar water vapour higher than 15 kg·m−2, therefore a peak value is shown in
Figure 8. The Jiménez-Muñoz and Sobrino 2003 algorithm is mostly out of axis range in Figure 8.

In case of the split-window algorithms, the differences between the single methods are low;
MAD and RMS differences stay below 0.2 K. Under normal atmospheric conditions the choice of
algorithm does not seem to be crucial. The method of Yu et al. 2008 incorporates the cosine of the
view angle. However, obviously, this expression does not have an advantage over the other methods,
when using the view angle optimized coefficients (Figures 7 and 8). In case of very high view angles
(60◦) the performance of this method is even worse (data not show). In its original version (Yu et al.,
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2008) the algorithm was used with coefficients regressed using all angles, the results are therefore not
directly comparable.
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Figure 8. Performance measures (a) r2; (b) MAD; (c) RMS; (d) STDEV of all revised algorithms,
separated for different classes of initial guess LST and a columnar water vapour range of 0–35 kg·m−2.
Results are retrieved from the case C coefficient set, a sensor view angle of 0◦, and daytime (#) and
nighttime (×) conditions.

For both the mono-window and the split-window algorithms accuracy differences were found
between the sensors due to their different spectral response. For most split-window equations the
differences were found to be constant (difference between maximum and minimum MAD) mostly
below 0.6 K), with decreasing differences in more humid conditions. The mono-window algorithms
showed a higher spread with maximum differences between the sensors reaching 2 K for humid
conditions. Jiménez-Muñoz and Sobrino 2003 has exceptional high deviations in humid conditions,
as this algorithm is not suitable for such conditions. Table 5 shows the mean of all maximal deviations
between sensors for given CWVs.

Table 5. Mean of maximal deviation of accuracy (MAD) between different sensors.

Method CWV = 0 CWV = 10 CWV = 20 CWV = 30 CWV = 40

Mono-Window

Price 1983 0.62 0.73 0.76 0.88 1.12
Qin et al., 2001 0.52 0.37 0.30 0.63 1.19

Jiménez-Muñoz and Sobrino 2003 0.34 1.45 7.14 19.72 36.66
Linear 0.26 0.10 0.46 1.16 1.80

Split-Window

Price 1984 0.70 0.66 0.52 0.31 0.21
Becker and Li 1990 0.71 0.67 0.52 0.32 0.20
Ulivieri et al., 1994 0.61 0.66 0.52 0.32 0.19

Wan and Dozier 1996 0.72 0.66 0.53 0.32 0.19
Jiménez-Muñoz and Sobrino 2008 0.64 0.64 0.46 0.28 0.29

Yu et al., 2008 0.60 0.64 0.50 0.32 0.23
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4.2. Sensitivity

The final accuracy of a product does not only depend on the model performance, but also on
the quality of its input data. Considering the fact, that input data to LST estimation is never perfectly
accurate, it is straightforward to analyse the sensitivity of each method to its input bands. In this study,
sensitivity was evaluated by simple deterministic analysis. The results of an LST algorithm with first
a reference input value and second with deviating input values was compared. The differences of
the resulting LST from the first reference run and the other (deviating) runs show the sensitivity of
an algorithm to that input variable. For this analysis, it is assumed that the deviations have a discrete
uniform distribution. Figures 9–11 show the sensitivity of the Qin et al., 2001 method to columnar
water vapour, emissivity of band 4 and mean atmospheric temperature in form of boxplots for daytime
conditions. In case of all input variables, the error increases with increasing deviation of the input
variable from its ‘true’ value.

Remote Sens. 2017, 9, 72  13 of 23 

 

4.2. Sensitivity 

The final accuracy of a product does not only depend on the model performance, but also on the 
quality of its input data. Considering the fact, that input data to LST estimation is never perfectly 
accurate, it is straightforward to analyse the sensitivity of each method to its input bands. In this 
study, sensitivity was evaluated by simple deterministic analysis. The results of an LST algorithm 
with first a reference input value and second with deviating input values was compared. The 
differences of the resulting LST from the first reference run and the other (deviating) runs show the 
sensitivity of an algorithm to that input variable. For this analysis, it is assumed that the deviations 
have a discrete uniform distribution. Figures 9–11 show the sensitivity of the Qin et al. 2001 method 
to columnar water vapour, emissivity of band 4 and mean atmospheric temperature in form of 
boxplots for daytime conditions. In case of all input variables, the error increases with increasing 
deviation of the input variable from its ‘true’ value.  

 
Figure 9. Sensitivity of the Qin et al. 2001 method to columnar water vapour for daytime conditions. 

 
Figure 10. Sensitivity of the Qin et al. 2001 method to band emissivity for daytime conditions. 

The sensitivities for columnar water vapour, emissivity, and mean atmospheric temperature 
show larger scattering range with higher deviations. In single cases the error occurring in the LST 
due to a specific error in an input dataset might be considerably higher than the average error. In case 
of columnar water vapour for example, the maximum error occurring at 28 kg/m2 for columnar water 
vapour is 11.1 K. In case of an emissivity input error of 0.0475 a maximal error of 3.3 K would occur. 
However, at lower ranges of input error, which might be the majority, the resulting errors in LST are 

Sensitivity of LST from CWV

5 10 15 20 25 30 35
CWV deviation

−5

0

5

10

E
ffe

ct
 o

n 
LS

T
 e

st
im

at
io

n 
[K

]

Sensitivity of LST from emissivity

0.00 0.01 0.02 0.03 0.04 0.05
Emissivity deviation

0

1

2

3

4

E
ffe

ct
 o

n 
LS

T
 e

st
im

at
io

n 
[K

]

Figure 9. Sensitivity of the Qin et al., 2001 method to columnar water vapour for daytime conditions.
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Figure 10. Sensitivity of the Qin et al., 2001 method to band emissivity for daytime conditions.

The sensitivities for columnar water vapour, emissivity, and mean atmospheric temperature show
larger scattering range with higher deviations. In single cases the error occurring in the LST due to
a specific error in an input dataset might be considerably higher than the average error. In case of
columnar water vapour for example, the maximum error occurring at 28 kg/m2 for columnar water
vapour is 11.1 K. In case of an emissivity input error of 0.0475 a maximal error of 3.3 K would occur.
However, at lower ranges of input error, which might be the majority, the resulting errors in LST are
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much lower. The MAD at an input error of 8 kg/m2 for columnar water vapour is 0.53 K and the
MAD at an input error of 0.02 for emissivity is 0.65 K only. In nighttime conditions, the sensitivity is
generally lower, but especially for the columnar water vapour. The MAD at an input error of 8 kg/m2

for columnar water vapour is then 0.24 K.
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Figure 11. Sensitivity of the Qin et al., 2001 method to mean atmospheric temperature for
daytime conditions.

Figures 12–14 show the sensitivity of the Becker and Li 1990 method to total columnar water
vapour, mean emissivity and emissivity difference. In addition, here, the error increases with larger
deviation of the input variable.
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Figure 12. Sensitivity of the Becker and Li 1990 method to columnar water vapour for
daytime conditions.
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Figure 13. Sensitivity of the Becker and Li 1990 method to mean emissivity for daytime conditions.
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Figure 14. Sensitivity of the Becker and Li 1990 method to emissivity difference for daytime conditions.

Similar to the mono-window algorithm, the sensitivities for columnar water vapour, emissivity
and emissivity difference show larger scattering ranges with higher deviations for the split-window
algorithm Becker and Li 1990. The maximum absolute error occurring at 28 kg/m2 for columnar water
vapour is 4.1 K. In case of an emissivity input error of 0.0475 also a maximal error of 3.3 K would
occur. The MAD at an input error of 8 kg/m2 for columnar water vapour is 0.81 K and the MAD at
an input error of 0.02 for emissivity is 0.61 K. In nighttime conditions, the sensitivity is also lower for
the columnar water vapour. The MAD at an input error of 8 kg/m2 is then 0.26 K.

In case all variables are incorrect the errors sum up to a total sensitivity. This is shown at the
example of an input error of total water vapour of 8 kg/m2, an emissivity error of 0.02, and—where
applicable—an error of mean atmospheric temperature of 5 K and emissivity difference of 0.02. In case
of the mono-window algorithms, the algorithms of Price 1983 and Qin et al. 2001 show the lowest
total sensitivities. Price 1983 has an almost neglectable sensitivity to emissivity, which is mainly due to
the magnitude of the first constant in the formula. Qin et al. 2001 has an extra dependence on mean
atmospheric temperature, which increases the total sensitivity between 0.25 K and 0.5 K. In case of
the split-window algorithms, all algorithms are in a similar range, except the Jiménez-Muñoz and
Sobrino 2008 which shows a higher total sensitivity due to its sensitivity to emissivity and emissivity
difference. Figure 15 shows the comparison of the sensitivities of all mono-window and split-window
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algorithms. Thereby, the error of columnar water vapour was set to 8 kg/m2, the error of mean
emissivity, respective band 4 emissivity to 0.02, the error of emissivity difference to 0.02, and finally
the error of mean atmospheric temperature to 5 K.

The estimation of emissivity using the VCM method requires a land use classification, which itself
is prone to errors (a) due to different definitions of classes by different authors; (b) due to different
classification approaches; (c) due to limited classification accuracy; and (d) due to changing surface
cover over time [39]. These errors are passed to the emissivity estimation. To estimate the resulting
error from misclassification, the absolute difference between the emissivity of one ‘true’ class and the
emissivity from other ‘wrong’ classes was calculated for all possible values of FVC (ranging from 0
to 1). The error of a certain misclassification would then be expressed as the MAD. If, for example,
a pixel has in reality the class ‘woodland’, but it was misclassified as ‘urban area’, then the MAD would
be calculated as the mean of all absolute differences between the ‘true’ woodland emissivities and the
‘wrong’ urban area emissivities for the given range of FVC. Figure 16 shows the errors in emissivity for
all classes for band 4 and band 5. Misclassification errors from one vegetated to another vegetated
class are generally low (blue color). In addition, the misclassification from a vegetated to an urban
class does not substantially change the emissivity. However, the misclassification of the classes ‘bare
rock/ground’ do change the emissivity up to 0.06 in band 4 and 0.04 in band 5 (Figure 16 limits the
plotted errors to 0.03, to enhance the low error differences). In addition, the class ‘snow and ice’ shows
higher values up to 0.02 in band 5.
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Figure 15. Overview over all (a) mono and (b) split-window methods. Circles (o) depict the MAD,
× stays for the MAD ± the standard deviation (left values: daytime, right values: night time).
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5. Comparison with MODIS Data

To check the validity of the approach, AVHRR LST calculated with the Becker and Li 1990
algorithm combined with the Vegetation Cover Method (VCM) from [30] was compared with the
MODIS V005 LST product (MOD11A1/MYD11A1) and the results of using the original Becker and
Li 1990 coefficients and the NDVI approach of [40]. The comparison was done for the year 2001
and NOAA-16. For the calculation of the new AVHRR LST, preferably Case C (consideration of
ranges for view angle, columnar water vapour and first guess LST) coefficients were used. In case
where no coefficients were available due to missing coefficients in the database, case B or even case
A might have been used. This could happen in rare extreme situations (e.g., very cold and humid),
where the database would not provide enough profiles to calculate coefficients. The direct application
of the coefficients provided for discrete ranges leads to discontinuities in the resulting LST images.
To counteract this, actual LST values are weighted means from different parameter classes using
trilinear interpolation.

For the comparison, the data was filtered in several ways. Firstly, all pixels which were marked
as cloud cover in either the AVHRR or the MODIS product were removed. Second, each cloud-free
pixel was checked for its spatial homogeneity. If the standard deviation in a window of 3 × 3 pixels
would exceed 0.5 K, the middle pixel would be removed. This resulted in a 55% reduction of the data.
This filtering was necessary to reduce noise effects due to inaccurate geometric alignment. The view
angle difference between AVHRR and MODIS was allowed to be maximal 20◦; the difference between
acquisition times was set to maximal 10 min. The minimum number of pixel per tile was set to 50.
Statistical measures were then calculated for different geographical subsets as defined by the MODIS
tiles. Such, overall MAD between these filtered AVHRR and MODIS is 1.8 K, overall standard deviation
is 1.4 K. Using the same collection of pixels, the MAD between AVHRR and MODIS using the original
approach [40] is 3.3 K.

Figure 17 shows the MAD per MODIS tile and date in relation to mean total column water vapour,
mean emissivity, and mean zenith view angle. The MAD values are given for the original (grey)
and the newly calculated (black) coefficients. The figures do not reveal a relation between the MAD
magnitudes with any of the other variables; the error seems to be distributed randomly.

Figure 18 shows the same MADs as in Figure 17, but this time in relation to the difference of
mean emissivities, mean absolute zenith angle and time difference, each between AVHRR and MODIS.
To each MAD value its associated standard deviation is plotted. The MAD increase slightly with
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increasing MADs of emissivity and view zenith angle. Time differences (acquisition times around
noon) hardly show an influence.
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Figure 17. MAD per MODIS tile and date in relation to the (a) mean total column water vapour;
(b) mean absolute emissivity difference; and (c) mean absolute zenith view angle difference between
AVHRR and MODIS. The figures show the MAD resulting from applying the new coefficients
(black circles) and the original approach (grey crosses).

Table 6 shows more statistical values in tabular form together with the number of available
pixels per tile. In 13 out of 17 tiles, the MAD is below 2 K. In many cases, the AVHRR LST shows
negative offset compared to the MODIS LST resulting in negative mean differences. It should
be noted that the magnitude of the dataset should be enlarged for a more thorough validation.
Nevertheless, the statistical values of this chapter may serve as indication of the validity the LST
approach. Unfortunately, the data is, despite of application of the cloud masks and an additional cloud
border buffer, not fully cleared of cloud contaminated pixels, which leads to higher MADs in some
cases (e.g., Tile Nr. 16 in Table 6—data not shown).
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Figure 18. MAD per MODIS tile and date in relation to the (a) mean absolute emissivity difference;
(b) mean absolute zenith view angle difference; and (c) mean absolute time difference between AVHRR
and MODIS. To each MAD value (circle) the MAD ± the standard deviation is drawn.
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Table 6. Statistical measures of the difference between AVHRR and MODIS of selected dates resulting
from the filtering. LST AVHRR was calculated using the Becker and Li (1990) algorithm with the newly
derived coefficients (LSTnew) and the original approach (LSTorig).

Tile Nr. Nr. of
Pixels

MAD
LSTnew

(K)

MEAN
LSTnew

(K)

STDEV
LSTnew

(K)

MAD
LSTorig

(K)

MAD Mean
Emissivity (%)

MAD
VZA (◦)

Mean
TCWV
(kg/m2)

1 1544 0.97 0.21 1.22 3.59 0.009 0.64 10.66
2 144 2.94 2.09 2.16 3.81 0.010 16.76 9.79
3 132 1.02 −0.89 1.31 3.40 0.009 12.89 7.79
4 3421 1.17 −0.39 1.53 3.19 0.005 10.68 6.59
5 157 1.40 −0.69 1.96 3.16 0.007 11.26 9.10
6 120 1.42 −0.05 1.87 2.99 0.006 16.12 16.64
7 3086 2.05 −1.76 1.71 3.07 0.009 0.55 28.56
8 122 1.76 1.76 0.66 4.04 0.008 8.68 21.40
9 98 0.99 −0.87 1.14 3.26 0.008 15.69 13.75

10 23,927 1.15 0.76 1.17 3.40 0.008 4.07 14.16
11 460 1.21 −0.95 1.29 2.98 0.008 17.43 24.21
12 11,541 3.25 −3.24 2.01 2.17 0.010 17.26 19.02
13 2123 1.92 1.91 0.61 4.22 0.009 10.94 11.56
14 115 1.27 −1.01 1.45 2.99 0.009 11.79 10.56
15 5136 1.70 1.69 0.58 4.32 0.007 4.99 11.65
16 313 3.84 −3.84 1.56 2.10 0.012 12.34 13.76
17 1256 1.52 1.52 0.54 4.38 0.006 1.68 13.12

6. Discussion

In this work, four mono-window and six split-window algorithms were analysed in terms of
their suitability for long time series processing of AVHRR data. To make the algorithms comparable,
new coefficients were calculated for all algorithms in the same simulated data framework. It was
found that the performance of the split-window algorithms were very similar in all cases. The MAD
stays below 0.4 K in non-humid atmospheres. From the analysis of performance all six split-window
algorithms could be recommended. The performance of the mono-window algorithms differed
considerably amongst the algorithms. The Qin et al. 2001 and the linear method thereby showed the
best performance, while the Price 1983 and the Jiménez-Muñoz and Sobrino 2003 algorithm performed
less accurate. Due to its best performance, the Qin et al. 2001 algorithm is suggested for long time
series processing aiming at climate relevant trends.

Even though the coefficients were calculated for different ranges of columnar water vapour,
the accuracy of the algorithms decreases with increasing columnar water vapour. Nevertheless,
it is suggested to use humidity dependent coefficients, as the error rises especially in less humid
atmospheres in case of coefficients that do not consider humidity dependent ranges (case A).
The additional splitting of the coefficients to separate temperature ranges improved the accuracy
mainly in very humid conditions. In such cases, the splitting might lower the MAD a few tenth
degree. In less-humid conditions, the splitting did not improve the accuracy. The sensor view angle is
considered in all cases (A, B, and C), nevertheless, accuracy is still lower in case of higher view angles.
As such, view angle, humidity, and first guess LST could serve as proxy for the data quality.

Due to differing spectral response curves, it was assumed that the stability of a long time series of
LST from AVHRR data would suffer in case of nonconsideration of the different sensors characteristics.
It was shown that the neglecting of the influence of the spectral response curves would produce
maximum differences ranging from 0.19 K to 0.71 K in case of the split-window algorithms. Maximum
differences ranging from 0.10 K to 1.8 K (36.7 K for Jiménez-Muñoz and Sobrino 2003) in case of the
mono-window algorithms would occur. Even if neglecting the case of Jiménez-Muñoz and Sobrino
2003, the numbers suggest using sensor dependent coefficients, as significant additional noise would
be introduced to a long time series in case of nonconsideration.

For the processing of long time series data not only the performance of an algorithm is important,
but also its sensitivity to its input data. The uncertainty inherent to all input data is an additional
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source of noise, lowering the overall accuracy of a final LST product. As the availability of input data
is non ideal and even poor in case of the early years when AVHRR was flown, algorithms with lower
sensitivity to their input data are to be preferred to algorithms with a high sensitivity. It is not always
straightforward to know about the associated error in an input dataset. However, some studies might
indicate about the magnitude of the error of a certain variable. Ref. [41] for example compared three
land surface broadband emissivity datasets. They found land cover dependent differences and RMSEs
between 0.009 and 0.011. If just the error in band emissivity as input to the Qin et al., 2001 or the Becker
and Li 1990 would be comparable to the findings of this study, this lead to errors between 0.1 and 0.8 K.
Relating this to the GCOS requirement of accuracy better than 1 K [23], it becomes clear that errors in
surface emissivity may substantially lower the quality of a product.

This study has shown that the different sensitivities amongst the split-window algorithms are
more similar than the sensitivities of the different mono-window algorithms. In the presented case of
Figure 15 lowest sensitivity is found for the Becker and Li 1990 and the Price 1984 algorithms with
a total mean sensitivity of 1.9 K for daytime and nighttime conditions. Highest total sensitivity is found
for the Jiménez-Muñoz and Sobrino 2008 algorithm with 3.1 K for same conditions. Lowest sensitivity
of the mono-window algorithms is found for the Price 1983 and the Qin et al., 2001 algorithms with
a total mean sensitivity of 1.3 K for daytime and nighttime conditions. Highest total sensitivity is found
for the Jiménez-Muñoz and Sobrino 2003 algorithm with a total sensitivity of 4.6 K for same conditions.
Against the background of long time series and the situation of imperfect input data, the Becker
and Li 1990 and the Price 1984 split-window algorithms and the Price 1983 and the Qin et al., 2001
algorithms are best suited for.

The simulation of the impact of misclassification errors to estimated LST showed that mainly
misclassification of bare rock and ground has a significant impact, as well as the class snow and ice in
case of band 5. Any misclassification from one to another vegetation class resulted in emissivity errors
of less than 0.01, which would result in LST errors of generally less than 0.3 K. To avoid large errors
in LST due to misclassification it is suggested to perform an additional check for pixels, which are
assigned to the classes bare rock/ground and snow based on classification maps or other procedures.

Regarding the selection of suitable algorithms for time series processing, the synopsis of the
performance and the sensitivity analysis following algorithm we suggest: For the mono-window
algorithm the Qin et al., 2001 is preferred due to its good performance and low sensitivity results.
For the split-window algorithm the Becker and Li 1990 and the Price 1984 algorithm can be suggested
showing also good performance and low sensitivity values.

A first comparison with MODIS data using the Becker and Li 1990 approach combined with the
Vegetation Cover Method (VCM) from [30] showed despite of some cloud contaminated pixels a good
agreement with an overall MAD between AVHRR and MODIS of 1.8 K [K], and an overall standard
deviation of 1.4 [K]. This showed a clear improvement over the original AVHRR LST approach assessed
in [40], which had an overall MAD of 3.3 K.

The processing has been performed by a preference of coefficients of case C (consideration of
ranges for view angle, columnar water vapour and first guess LST). In case where no coefficients were
available due to missing coefficients in the database, case B or even case A might have been used.
This could happen in extreme situations (e.g., very cold and humid), where the database would not
provide enough profiles to calculate coefficients. A selection of pixels, where case C is applied only,
might improve further the comparison.

Besides the selection of suitable algorithms, the quantitative results are relevant for the assessment
of global warming. The IPCC report from 2014 [42] concludes an average global surface warming of
0.85 K over the period 1880 to 2012, while the period from 1983 to 2012 was likely to be the warmest
period of the last 1400 years in the Northern Hemisphere. Warming per decade varied from almost 0 K
to more than 0.2 K since 1951. The assessment of performance and sensitivity of AVHRR LST shows that
LST derived from AVHRR is feasible under certain conditions only as input to global warming studies.
Firstly, the chosen algorithm should be applied using coefficients considering at least various levels of
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columnar water vapour and view angles. Performance differences between using coefficient set Case A
(only view angle considered) and Case C (view angle, total columnar water vapour, and first guess
LST considered) could exceed 1 K in case of the Becker and Li 1990 algorithm—which is a multiple
of the before mentioned warming per decade. Second, the algorithms should generally show good
performance and low sensitivity, as presented in this study. Maximum differences between algorithms
in presented total sensitivity was found to be 3.7 K for the mono-window algorithms and 1.6 K for the
split-window algorithms. The general level of presented total sensitivities (except Jiménez-Muñoz and
Sobrino 2003) of about 2 K is not representative of general LST retrieval, but still points, third, to the
importance of the quality of the input data to the LST algorithms. Forth, only LST values carrying a low
uncertainty can be used—this would exclude surfaces under very humid atmospheres or surfaces
acquired by a large sensor view angle. The performance of even the best ranking algorithms in this
study approaches 1 K (RMSD) in case of very humid atmospheres—in case of large view angles even
2 K.

Besides the considerations on performance and sensitivity, data from the AVHRR instruments
are influenced by several other factors which complicate direct use of the data [40]. The orbital drift
and the differentiation of the NOAA satellites into morning and afternoon passes for example lead
to different acquisition times over the lifespan of a single sensor and the whole AVHRR time series.
It follows that AVHRR LST data cannot be directly be used for climate change studies, but should
be further processed to match temporal requirements of such analyses. AVHRR LST further forms
valuable input as an additional source of information to studies using a multitude of sensors.

7. Conclusions

LST can be retrieved with increasing accuracy and precision, making it a suitable candidate for
regional and global assessments of climate variability and change. There are attempts to use LST as
a substitute for surface air temperature in areas where in situ measurements are scarce, however, it can
also be used directly for change studies. AVHRR has been flown since the early 80ies on a series of
platforms. The resulting long time series—35 years—is unique. Although there are some constraints to
the direct use of the data (e.g., orbital drift), the resulting time series can be used to generate additional
value by extending existing time series of newer sensors with AVHRR back in time or fill gaps of these
time series in areas where cloud cover is predominant. As such, AVHRR LST plays an important part
in improving climatological databases.

As the number of bands of the AVHRR instrument was not consistent, AVHRR/1 had
only one band in the thermal domain, whereas AHVRR/2 and /3 have 2 bands, four different
mono-window algorithms and six different split-window algorithms were assessed. For the
comparison, new coefficients were generated in the form of a small look up table, accounting for
different ranges of columnar water vapour, emissivity, emissivity difference (AVHRR/2 and /3
only) and first guess LST. Such sensor—specific parameters prevent producing artificial anomalies
or wrong trends in the data, when processing long time series from AVHRR. For the generation of
the coefficients, a radiative transfer model (MODTRAN V5) was used to model top-of-atmosphere
brightness temperatures to given LST and the previously mentioned ranges. The least squares method
was then used to generate the coefficients and corresponding statistical measures from the database.
The statistical measures were used for the performance assessment of the different algorithms. Further,
the sensitivity of the single algorithms to their input data was assessed, by simulating ranges of
input values. The synopsis of the performance, as expressed by accuracy and precision measures,
and sensitivity analysis revealed that the Qin et al., 2001 algorithm is to be preferred amongst the
mono-window algorithms due to its good performance and low sensitivity results. Amongst the
split-window algorithms the Becker and Li 1990 and the Price 1984 algorithm can be suggested, as both
show good performance and low sensitivity values.
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A comparison of the application of the Becker and Li 1990 coefficients and the Vegetation Cover
Method (VCM) [30] to AVHRR with the MODIS LST product revealed a good agreement and confirmed
the approach to be valid and physically sound.
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