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Abstract: Land surface phenology is a highly sensitive and simple indicator of vegetation dynamics
and climate change. However, few studies on spatiotemporal distribution patterns and trends in land
surface phenology across different climate and vegetation types in China have been conducted since
2000, a period during which China has experienced remarkably strong El Niño events. In addition,
even fewer studies have focused on changes of the end of season (EOS) and length of season (LOS)
despite their importance. In this study, we used four methods to reconstruct Moderate Resolution
Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) dataset and chose the best
smoothing result to estimate land surface phenology. Then, the phenophase trends were analyzed
via the Mann-Kendall method. We aimed to assess whether trends in land surface phenology have
continued since 2000 in China at both national and regional levels. We also sought to determine
whether trends in land surface phenology in subtropical or high altitude areas are the same as those
observed in high latitude areas and whether those trends are uniform among different vegetation
types. The result indicated that the start of season (SOS) was progressively delayed with increasing
latitude and altitude. In contrast, EOS exhibited an opposite trend in its spatial distribution, and LOS
showed clear spatial patterns over this region that decreased from south to north and from east
to west at a national scale. The trend of SOS was advanced at a national level, while the trend in
Southern China and the Tibetan Plateau was opposite to that in Northern China. The transaction
zone of the SOS within Northern China and Southern China occurred approximately between 31.4◦N
and 35.2◦N. The trend in EOS and LOS were delayed and extended, respectively, at both national and
regional levels except that of LOS in the Tibetan Plateau, which was shortened by delayed SOS onset
more than by delayed EOS onset. The absolute magnitude of SOS was decreased after 2000 compared
with previous studies, and the phenophase trends are species specific.

Keywords: land surface phenology; spatiotemporal analysis; MODIS; remote sensing; Enhanced
Vegetation Index (EVI); temporal trend

1. Introduction

Vegetation phenology and variation in vegetation phenology are highly sensitive indicators of
climate change that can yield important insights into nutrient cycles and energy exchange processes
at different scales [1]. Rapid shifts in vegetation phenology have strong impacts on vegetation
growth, plant competition, ecosystem functions, and carbon balance [2]. The study of vegetation
phenology not only provides an understanding of the ecophysiological processes of ecosystems,
but can also reveal transformations occurring under climate change [2]. Therefore, accurate prediction
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and characterization of vegetation phenology are necessary to understand how the impacts of climate
change vary across space and time.

Vegetation phenology is currently studied mainly via four methods: bioclimatic models [3–5],
visible digital camera imaging [6,7], field observation, and satellite estimates. Field observations
have been widely and successfully conducted, providing detailed information at the species level
based on individual plant observations across many countries [8], and observation networks have
been established to support these ongoing observations [9,10]. A large number of studies have been
conducted to observe vegetation phenology at short- and/or long-term scales across many regions [11],
but these observations have focused mainly on developmental switches within individual species [12]
and cannot reveal integrative phenology patterns on the biome or broader scale, and this research is
often time inefficient and labor intensive [1,13]. Alternatively, satellite-based methods, which rely on
vegetation indexes (e.g., NDVI) provide a powerful, integrative, and objective tool for monitoring
and characterizing key phenological metrics (such as the start of the season (SOS), end of the season
(EOS), and length of the season (LOS)) at regional and global scales across long time-series, serving
as an excellent complement to the shortage of field observations [14]. Since the launch of satellite
sensors such as the Advanced Very High Resolution Radiometer (AVHRR), land surface phenology
has been intensively studied using vegetation indexes at regional and global scales (see [13] for
details). However, this tool’s spatial resolution is too coarse (mostly reported at an 8-km scale) to
accurately estimate land surface phenology in regions with highly heterogeneous vegetation cover
due to averaging or degradation of information [15]. Therefore, deep research based on medium- or
high-resolution satellite data is necessary to precisely extract land surface phenology, especially in areas
with complex landscapes. In contrast to AVHRR data, Moderate Resolution Imaging Spectroradiometer
(MODIS) data has a spatial resolution of 1 km for vegetation indexes with improved atmospheric
corrections and sensor calibration, enhanced geometric and radiometric properties and refined cloud
screening [16]. These features make MODIS vegetation indexes much more appropriate for the
estimation of land surface phenology, and these datasets have been widely used to characterize
phenology trends over the past decades [1,17,18]. Previous research based on satellite data has revealed
SOS occurring progressively earlier over the past decades [12,19]; however, fewer studies [20] have
focused on EOS or LOS trends, despite the importance of changes in EOS and LOS [13]. Additionally,
high-magnitude changes in phenology have occurred in the same regions and over the same time
period [19]; previous research has focused on middle and high latitude. However, few studies [14,18]
have focus on phenological variations in tropical or subtropical forests, which typically have high
biodiversity, complex community structures, and diverse phenological patterns. Furthermore, there has
been less focused on phenological variation among vegetation types [20], which mainly depend on
local environmental factors. Moreover, previously analyzed data that has focused on phenology is
mainly from 1982 to 1999, with limited data availability since 2000 [13,21]. Thus, it is particularly
important to determine whether trends in land surface phenology have continued since 2000 compared
with previous studies, and an urgent need remains for unbiased assessments of phenological variation
in tropical or subtropical areas. More broadly, researchers have yet to determine whether trends in
land surface phenology in subtropical or high altitude areas are identical to those observed in high
latitude areas and whether those trends are uniform among different vegetation types.

China covers an extensive territory characterized by complex topography and ecosystems.
These characteristics make China an ideal focus for the study of land surface phenology variation
across a vast range of latitudes and altitudes. This is especially true since the year 2000, a time
during which China has experienced remarkably strong El Niño events [22]. Moreover, such research
in China has mainly focused on SOS changes in temperate China [17,19,20,23]; to the best of our
knowledge, few studies [20,24] have considered or discussed corresponding EOS or LOS changes.
More importantly, previous studies of SOS within the Tibetan Plateau have reached contradictory
conclusions [23,25] that appear to have depended on datasets or methodology. Furthermore, the current
understanding of phenological variation is limited in Southern China [26–28], which restricts our
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ability to predict and anticipate future phenological changes across the whole country. Therefore,
there is an urgent need for the assessment of spatiotemporal distribution patterns and trends in land
surface phenology across the many regions and vegetation types of China. This study aims to examine
the spatial distribution and temporal trends of phenology metrics at both national and regional levels
as well as phenology trends among vegetation types. We hypothesize that phenological variation is
uniform across different regions under climate change effects on land surface phenology and that the
phenology trends differ among vegetation types due to local micrometeorological conditions.

2. Materials and Methods

2.1. Study Area

China is situated within the world’s largest continental landmass (Eurasia), is adjacent to
the world’s largest body of water (the Pacific Ocean), and encompasses the world’s highest and
largest plateau (the Tibetan Plateau). As such, the location and topography of China is complex,
with climatic zones ranging from the tropical southern regions to cold temperate northern regions and
the frigid Tibetan Plateau. Accordingly, we divided China into three sub-regions (Figure 1a) based on
climatic regionalization [29]: Northern China, with mean annual temperatures ranging from −4 ◦C
to 14 ◦C and total annual precipitation ranging from 200 mm in the northwest to 1000 mm in the
southeast; Southern China, with mean annual temperatures between 14 ◦C and 22 ◦C and total annual
precipitation ranging from 1000 mm to 2000 mm [28]; and the Tibetan Plateau with an average altitude
close to 4000 m a.s.l. (Figure S1) and mean annual temperatures and mean annual precipitation ranging
from −5 ◦C to 12 ◦C and more than 800 mm to less than 200 mm, respectively [25].

Figure 1. Vegetation types (DNF, deciduous needle-leaf forest; ENF, evergreen needle-leaf forest;
EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest; and GM, grassland and meadow)
across the three sub-region divisions (a) and a map showing provinces of China (b).

2.2. Data Source and Data Processing

2.2.1. MODIS EVI Data

The MODIS enhanced vegetation index (EVI; MOD13A2) product incorporates enhanced
atmospheric correction, cloud detection, and improved geo-referencing as well as an enhanced ability
to monitor vegetation [30]. It was developed to: (1) enhance the vegetation signal with improved
sensitivity in high biomass regions; (2) minimize the impacts of canopy background variation while
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retaining sensitivity to small changes in vegetation activities [31]; and (3) reduce the impact of smoke
from biomass burning in tropical areas [32]. This index has been suggested to be more appropriate
for monitoring vegetation dynamics that are covered even by sparse vegetation [31] and has been
applied as an appropriate dataset for studying land surface phenology in both temperate and tropical
zones [18,33]. Furthermore, the data are processed using the maximum value composite (MVC)
method to reduce cloud, atmosphere, sensor, and surface bidirectional reflectance.

Therefore, MODIS EVI data with a spatial resolution of 1 km and 16-day temporal resolution
from 2001 to 2014 were used to estimate land surface phenology in this study. Although the MVC
method was used to reduce atmospheric and sensor impacts, the data still contained considerable
noise. To obtain more effective time series datasets and to extract accurate land surface phenology,
we referenced MODIS quality flag files, replaced ‘VI not produced’ pixels according to the quality
flags by using a mean value of adjacent 16-day EVI. If one of the adjacent 16-day EVI was also
‘VI not produced’, we then replaced these pixels with the mean value of the adjacent two years EVI
value [34], and excluded pixels with EVI values less than 0 for each year, and smoothed data (see below
for details).

2.2.2. Land Cover Data

The Global Land Cover 2000 (GLC-2000) dataset was used in this study to analyze land surface
phenology and its variation across vegetation types. The GLC-2000 land cover dataset was independent
from the MODIS dataset. Since MODIS land cover data was calculated with MODIS EVI, it could
be less independent when analyzing them together. The GLC-2000 dataset created by daily S1 data
acquired from the VEGETATION sensor on board the SPOT-4 satellite. This dataset was generated
using different classification methods, and it takes local expert knowledge into consideration to
improve data accuracy relative to similar datasets [35]. The GLC-2000 land cover classes were further
reclassified into 7 major land cover classes (Figure 1a) in the present study: deciduous needle-leaf forest
(DNF), evergreen needle-leaf forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), grassland and meadow (GM), shrubs, and farmland (Figure 1a). These categories only reflect
the land cover classification and do not consider changes in land cover that occurred during our study
period. While changes in these classifications are likely to have occurred (Table S1), we assumed that
their overall effects on forest ecosystems were negligible in the context and scope of this work during
the study period, because the spatial and temporal patterns of land cover, especially for vegetation,
might be relatively stable over short time periods of approximately 10 years at regional or global
scales [36].

2.2.3. Data Smoothing and Phenology Extraction

The original synthesized EVI time-series data contained singular values that would affect dataset
precision and impose substantial limitations [13]. However, currently there is not a general method
that could be applied universally. Therefore, after preprocessing procedures (i.e., reprojection and
image clipping), four methods, namely the Savitzky-Golay method (S-G), the double logistic function
method (D-L), the asymmetric Gaussian function method (A-G) and the harmonic analysis of time
series method (Hants) were applied to reconstruct EVI time series data (see [37–39] for details of the
algorithms for the four methods). Then, three statistical indicators, namely the root mean square error
(RMSE), Akaike’s Information Criterion (AIC), and Bayesian Information Criterion (BIC) were used
to evaluate the performance of each method mentioned above. The three statistical indicators were
calculated as follows

EMSE =

√
∑N

i=1(EVI∗(t)− EVI(t))2

N
(1)

AIC = 2k + N × ln(RSS) (2)

BIC = N × ln(RSS) + k× ln(N) (3)
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where EVI*(t) is the smoothing result of EVI, EVI(t) is the mean EVI value obtained from the
four methods (assumed to be accurate), N is the number of time points, k is the number of free
parameters (k = 2, 6, 7, and 5 for S-G, D-L, A-G and Hants, respectively), and RSS is the residual sum
of squares between mean EVI and the corresponding smoothing methods. Lower values of RMSE,
AIC, and BIC indicate a preferable method.

Our result (Table S2) indicated that the S-G method was the best of the four. The S-G filter is
computed as follows:

Y∗j =
∑i=m

i=−m Ci ×Yj+1

N
(4)

where Y is the original EVI value, Y∗ is the resultant EVI value, Ci is the coefficient for the ith EVI
of the smoothing window, N is the number of convoluting integers and is equal to the smoothing
window size (2m + 1), j represents the running index of the ordinate data in the original data table,
and m represents the half-width of the smooth window.

Then, we used TIMESAT software, which is widely used for estimating land surface
phenology [18,19,36,40], applying the S-G method to generate smooth time-series EVI data.
We adopted the adaptation strength of 2.0, no spike filtering, seasonal parameter of 0.5, S-G window
size of 2, and amplitude season start and end of 20% to calculate the phenology parameters.
We calculated land surface phenology (SOS and EOS for each year) and obtained LOS as the difference
between SOS and EOS values.

2.3. Data Analyses

2.3.1. Mann-Kendall Trend Analysis

The trend of phenological metrics during 2001–2014 was calculated at a pixel level and regional
level; however, a certain degree of autocorrelation may exist in these inter-annual time series data;
therefore, in this study, a robust non-parametric Mann-Kendall (M-K) trend analysis was applied
because it does not require the independence and normality of the time series data [16]. It has
been reported that the M-K test statistic Z is approximately normally distributed when the sample
size n ≥ 8 [41]. A positive and a negative Z value, respectively, indicate an increasing and a decreasing
trend. It should be noted that the M-K procedure is a test for the presence of a monotonic trend and
not a strictly linear trend [41]. M-K in this study was calculated as follows (see [42] for details):

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(5)

where n is the number of data points, xi and xj are the data values at times i and j (j > i), respectively,
and sgn

(
xj − xi

)
is the sign function

sgn
(

xj − xi
)
=


+1, i f xj − xi > 0
0, i f xj − xi = 0
−1, i f xj − xi < 0

(6)

The variance is calculated as

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(7)

where n is the number of data points, m is the number of tied groups and ti denotes the number of ties
of extent i. A tied group is a set of sample data that have the same value.
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The test statistic Z is calculated using Equation (8). Trends were tested at specific α significance
level, and in this study, α = 0.05 was used.

Z =


S−1√
Var(s)

, i f S > 0

0, i f S = 0
S+1√
Var(s)

, i f S < 0
(8)

2.3.2. Theil–Sen Median Slope Estimator

The Theil–Sen median slope estimator was applied to estimate the rate of change of phenological
metrics, which is more appropriate for assessing the rate of change in short or noisy time series [43].
The Theil–Sen median slope was computed as

βi = Median
( xj − xk

j− k

)
for i = 1, . . . , N (9)

where xj and xk are the data values at times j and k (j > k), respectively.
All the analyses were conducted in ARCGIS 9.3 (ESRI, Redlands, CA, USA), ENVI 5.1

(Exelis Visual Information Solutions, Boulder, CO, USA), and MATLAB R2014a (The Mathworks, Inc.,
Natick, MA, USA).

2.4. SOS and EOS Validation

We evaluated our results (for SOS and EOS) via ground observations (from 56 sites for SOS data
and 52 sites for EOS data) of previously published studies encompassing the time range between 2000
and 2014 (Table S3). Similar to the method used by Liang et al. [44], we utilized MOD09A1 data to
acquire ‘pure’ endmember signatures to apply the linear spectral unmixing method. Then, the SOS
and EOS values were weighted as the corresponding proportion. Finally, the root mean square error
(RMSE) and correlation coefficient (r) between estimated and field-observed SOS and EOS values
were calculated.

3. Results

3.1. Spatial Patterns of Land Surface Phenology

The mean phenological parameter data were calculated on a pixel scale over the study period
(2001–2014). The spatial distribution of phenology exhibited apparent variability across the study area
(Figures 1b and 2). SOS (Figures 1b and 2a) was mainly distributed in the range of days 65–170 of
the year (65–170 DOY) and was progressively delayed with increasing latitude and altitude. An early
SOS before 65 DOY mainly occurred within Hainan province, the North China Plain, and desert
areas. A later SOS, occurring at 125–170 DOY, was mostly distributed within northeastern China
as well as the middle and eastern Tibetan Plateau. Regions with SOS after 170 DOY were found in
east Inner Mongolia as well as the southwestern Tibetan Plateau. For other regions, SOS generally
fell between 65 and 125 DOY. Compared with SOS, EOS exhibited an opposite trend in its spatial
distribution (Figures 1b and 2b); in other words, EOS was delayed with increasing latitude and altitude.
The earliest EOS values mostly occurred around desert areas (earlier than 225 DOY), whereas the
latest EOS values, occurring after 300 DOY, were mainly found below 30◦N. EOS ranging from 255
to 300 DOY were mainly distributed between 30◦N and 40◦N, while some regions did not conform
to this pattern; for instance, EOS in Beijing, Tianjin, and Shanghai occurred at 315–330 DOY. EOS in
the northwest Tibetan Plateau, north Anhui Province, and east Henan province mainly occurred
before 300 DOY. Other regions, for instance, northeastern China, east Inner Mongolia, and the western
Xinjiang province, exhibited EOS generally within the range of 285–300 days. LOS mostly varied from
135 to 240 days and showed clear spatial patterns over this region that decreased from south to north
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and from east to west (Figure 2c). The longest LOS, of more than 210 days, occurred in Southern China.
In contrast, the shortest LOS, of less than 150 days, was mainly distributed in the Tibetan Plateau
and the northeast China Plain. LOS ranged from 150 to 195 days most often in the western Xinjiang
Province and Inner Mongolia.
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To validate our findings, we compared our results with ground observations (Figure 3).
Significant correlations were identified between ground observed phenology and satellite based data,
with significant correlation coefficients of 0.65 and 0.45 (both p < 0.001) for SOS and EOS, respectively.
The corresponding RMSEs were 18.5 and 23.7 days, respectively.
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3.2. Trends in Phenology

3.2.1. Spatial Patterns of Phenological Trends

Figure 4 shows the spatial patterns and trends in SOS, EOS, and LOS across China. Over 14 years
(2001–2014) in the whole study region, 15.44% of total pixels displayed either significantly early onset
or delayed trends (Figure 4d; p < 0.05). Pixels with a negative (i.e., early onset) trend in SOS accounted
for 53.64% of the total pixels and 10.09% of the total pixels exhibited a significantly negative trend
(Figure 3g; p < 0.05). Negative SOS trends mainly occurred in northeastern China and Inner Mongolia,
whereas pixels with positive (i.e., delayed) trends mainly occurred below 35◦N and in the western
Xinjiang province (Figure 4a). The absolute values of negative and positive trends in SOS were mainly
between 0.2 and 0.6 days/year (Figure 4g).

Figure 4. Trends in start of season (SOS; (a)), end of season (EOS; (b)), and length of season (LOS; (c))
within China between 2001 and 2014. A positive trend indicates that SOS and EOS were delayed while
LOS was extended; in contrast, negative trend indicates that SOS and EOS occurred earlier, while LOS
was shortened; individual pixels are shown with significant (p < 0.05) and very significant (p < 0.01)
trends for SOS (d), EOS (e), and LOS (f). (DVS, delayed very significantly; DS, delayed significantly;
AVS, advanced very significantly; AS, advanced significantly). The count distributions of phenology
trends for SOS (g), EOS (h), and LOS (i) are also shown.

In contrast to SOS, 22.37% of pixels over the entire study area exhibited EOS values with
significant changes (Figure 4e; p < 0.05). Pixels with a delayed EOS trend accounted for 74.76% of the
total, and 20.18% of the total pixels exhibited a significant positive (i.e., delayed) trend (Figure 4e,h;
p < 0.05). Delayed EOS mainly occurred in Southern China, the North China Plain, and in Xinjiang
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province, while the EOS exhibited an early onset trend mainly distributed across the middle of
the Tibetan Plateau, north of 50◦N, and in eastern Inner Mongolia (Figure 4b). The magnitude of
delayed and early onset trends for EOS was mainly between 0.2 and 1.5 days/year, and no more than
−0.8 days/year, respectively.

Over the entire study area, 19.18% of the pixels exhibited significant changes in LOS (Figure 4f;
p < 0.05). Extended LOS occurred within 69.63% of all pixels (Figure 4i), with 16.81% pixels exhibiting
significant extensions of LOS (Figure 4f; p < 0.05), mostly distributed across northern China and
southeast China (Figure 4c). In contrast, decreasing LOS trends occurred in 30.37% of pixels, which were
mainly distributed across the central Tibetan Plateau (Figure 4c,i).

3.2.2. Temporal Patterns of Phenological Trends

To clarify the characteristics of phenological trends, averaged trends of phenological metrics
at national level and regional level (in Northern China, Southern China, and the Tibetan Plateau)
were calculated over the past 14 years (Table 1). No statistically significant early onset trend for
SOS in China was observed through the entire study period (slope = −0.09, p = 0.22); however,
EOS and LOS were all significantly delayed or extended by 0.29 days/year and 0.36 days/year
(all p < 0.01), respectively. Northern China exhibited similar trends as those occurring at the national
scale; SOS significantly advanced by 0.34 days/year (p < 0.01), EOS and LOS were significantly delayed
and/or extended by 0.20 days/year and by 0.46 days/year (all p < 0.05), respectively. In contrast,
SOS in the Tibetan Plateau and Southern China exhibited marginally significant (p < 0.1) trends of
0.34 days/year and 0.25 days/year, respectively. In addition, LOS exhibited contrary trends between
the Tibetan Plateau and Southern China with a non-significant shortening of 0.20 days/year (p = 0.16)
and a significant extension of 0.66 days/year (p < 0.01), respectively. The EOS trend within the Tibetan
Plateau and Southern China were the same as those exhibited across the entire study area, with delays
of 0.20 days/year (p = 0.22) and 0.79 days/year (p < 0.01), respectively.

Table 1. Inter-annual variation of area-averaged start of season (SOS), end of season (EOS), and length
of season (LOS) between 2001 and 2014.

Area Phenology Metrics Z Test Statistic p Value Slope

China
SOS −0.7664 0.2217 −0.0892
EOS 2.6278 0.0043 0.2878
LOS 2.5183 0.0059 0.3604

Northern China
SOS −2.4088 0.0080 −0.3434
EOS 1.8613 0.0314 0.1986
LOS 2.1898 0.0143 0.4595

Tibetan Plateau
SOS 1.5329 0.0627 0.3354
EOS 0.7664 0.2217 0.2023
LOS −0.9854 0.1622 −0.1950

Southern China
SOS 1.6423 0.0503 0.2475
EOS 3.0657 0.0011 0.7852
LOS 2.7372 0.0031 0.6630

Yearly mean phenology values were calculated using all pixels for the above four study areas.

3.2.3. Phenological Trends for Vegetation Types

The trend in phenophases for the period between 2001 and 2014 was calculated for the different
vegetation types over the entire study area (Table 2). During that period, the trends in SOS, EOS,
and LOS showed substantially different characteristics according to each vegetation type. For DBF,
EBF, and ENF vegetation types, SOS exhibited significantly early onset or delays over the past
14 years, and the early onset or delay of SOS in DBF, EBF, and ENF were −0.30 days/year (p < 0.05),
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0.27 days/year (p < 0.05), and 0.27 days/year (p < 0.01), respectively. No significant trend in SOS was
observed for other vegetation types at a 95% confidence level.

All vegetation types exhibited a delayed EOS trend over the 14 years except the DNF vegetation
type, which showed a non-significant early onset of −0.18 days/year (p = 0.22). Among all delayed
EOS vegetation types, significance at a 95% confidence level was observed except for DBF and GM
vegetation types (p = 0.05 and p = 0.14, respectively). The strongest trend occurred in EBF and ENF
vegetation types, the magnitudes of these trends were 0.72 days/year (p < 0.01), and 0.70 days/year
(p < 0.001), respectively.

Different vegetation types displayed extended LOS to varying degrees over the past 14 years
(Table 2). The trend in extended LOS was very significant (p < 0.01) for all vegetation types except
DNF and GM (all p = 0.29). For DBF, EBF, ENF, farmland, and shrubs, LOS was extended by about
0.57, 0.59, 0.58, 0.49, and 0.50 days/year, respectively (all p < 0.01).

Table 2. Inter-annual variation in phenological metrics [start of season (SOS), end of season (EOS), and
length of season (LOS)] for each of the different vegetation types from 2001 to 2014 in China.

DBF DNF EBF ENF Farmland Shrub Grassland

SOS
Z −2.1898 −1.4234 1.9708 2.5183 −1.4234 0.8759 0.0000

p value 0.0143 0.0773 0.0244 0.0059 0.0773 0.1905 0.5000
slope −0.2954 −0.4313 0.2662 0.2662 −0.1587 0.1217 0.0159

EOS
Z 1.6423 −0.7664 2.6278 3.3942 2.9562 2.6278 1.0949

p value 0.0503 0.2217 0.0043 0.0003 0.0016 0.0043 0.1368
slope 0.3115 −0.1836 0.7194 0.7017 0.4776 0.7003 0.1839

LOS
Z 2.6278 0.5474 2.6278 2.9562 3.1752 2.9562 0.5474

p value 0.0043 0.2921 0.0043 0.0016 0.0007 0.0016 0.2921
slope 0.5721 0.1953 0.5887 0.5817 0.4853 0.4987 0.1503

DBF, deciduous broadleaf forests; DNF, deciduous needle leaf forests; EBF, evergreen broadleaf forests;
ENF, evergreen needle leaf forests; GM, grassland and meadow.

4. Discussion

4.1. Spatial Distribution in Phenology Parameters

An examination of the variability in land surface phenology of China over the last 14 years reveals
substantial spatial variation in SOS, EOS and LOS. Generally, the average SOS was delayed with
latitude or altitude. Interestingly, SOS in Yunnan province was later than in surrounding regions due
to its relatively high altitude (an average altitude of 2000 m a.s.l.), which typically results in lower
temperatures. A similar situation was observed in northeastern China as a result of its vegetation type
(soybean and spring wheat), which may be mostly affected by sowing date, irrigation, and fertilizer
application; an early SOS date occurring in the middle to lower delta of the Yangtze River supports
this point of view (Figures 1b and 2a). In addition, we found SOS in east Guangxi, Guangdong,
and Fujian mainly occurring in April, which was in line with the findings of Qiu et al. [27]; this is
likely a result of plant leaves in those areas falling from January to March and new leaves emerging in
late March and April. In contrast to SOS, EOS displayed early onset trends associated with latitude
or altitude increases. In addition, EOS of cropland was earlier than in surrounding areas with other
plant types due to human activities such as harvest date. LOS shortened with latitude or altitude
increases. Our results are supported by previous studies [12,17,20,45,46]. Although our findings
regarding Southern China were supported by Qiu et al. [27], there are few recent studies that discuss
the concrete dates of phenology parameters within that region to the best of our knowledge. This is
likely due to the indistinguishable seasonality and/or complex ecosystems of the region, which makes
it difficult to conduct these studies except on a hemispheric or global scale [13,47].

We validated our results with ground-based measurements, and it is noteworthy that the SOS
estimates obtained from remote sensing tended to be somewhat later than those from field observation,
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concurring with Suepa et al. [18], while EOS exhibited the opposite bias. This is because remote
sensing captures vegetation canopy ‘greenness’ unlike field observations, which are directly based
on individual plants that using specific and somewhat subjective measures like 50% leaf emergence
thresholds. Similarly, EOS extracted from remote sensing may therefore be more related to leaf
coloration than to actual leaf fall [33]. In addition, field observations are usually tracked through
seasonal development milestones (i.e., budburst, leaf-out, leaf coloration changes, and leaf fall).
In contrast, remote sensing methods capture land surface phenology and primarily track correlates of
leaf chlorophyll content and structure [48] at a scale affected by composite factors (e.g., complex surface
reflectance). Thus, remote-sensing methods describe of vegetation canopy greenness (spatially and
species-aggregated) that integrates complex signals (i.e., vegetation greenness, vegetation cover, related
reflectance, and land surface processes; [49]). Therefore, remote-sensing methods offer estimates of
qualitatively different traits that cannot precisely correspond with ground-based measurements [9].

Although there are some mismatches between remote sensing dates and field-observed dates,
field observations appear to be the best available data for validating remote sensing data currently
and phenology parameters obtained from remote sensing remain useful for large spatial and longer
temporal studies for which field observational date are currently meager or lacking, especially in
Southern China and the Tibetan Plateau. This is important both in terms of spatial coverage and
temporal coverage. Accordingly, it is better to compare satellite measures with ground-based data
at commensurate spatial scales and continuously. This should be conducted along with a substantial
upscaling of intensive and broad ground measurements over continuous geographic coverages in
order to bridge the gap between ground observations and satellite-derived measurements. This may
help remedy inaccuracies in interpreting satellite-derived measurements.

Unlike many other studies, we included analyses of cropland, which was usually excluded by past
studies [12,20,21,50] due to the obvious influence of human activities. Lu et al. [51] found that the SOS of
winter wheat in North China mainly occurred at 60–150 DOY. Wu et al. [48] showed that SOS occurred
in early March to late April in most croplands, such as the North China Plain and the plain within
the middle delta of the Yangtze River, while SOS in northeast China normally occurs from early May
to late June. EOS of most single-crop farmland often occurred from September to October. Although
our results were consistent with those studies, our results could not fully capture cropland phenology,
which is characterized by a second growing season in some areas of China. However, when we
compared our results with those of Xiao et al. [52], who based their conclusions on field observations,
the trends in both SOS and EOS determined by the present study were the same as those identified
by Xiao et al. [52] for most stations. This suggests that even though some errors might be associated
with remote-sensing data, the trend we inferred in crop phenology is still reliable. Indeed, there is no
definite relationship between field observations and corresponding remote-sensing data for cropland
due to the different observation contents, scales, and criteria. Therefore, to improve the reliability
of remote-sensing data, it is appropriate to compare trends over time or time ranges rather than
comparing specific dates obtained with these methods. In addition, the validation based on extensive
field observations and high spatial resolution images in the future would enable excellent results when
the method provided by Liang et al. [44] is taken into account, particularly for mixed pixels.

4.2. Temporal Changes in Phenology at the Regional Scale

The phenological trends at a national scale were in accordance with previous findings [26,47].
Interestingly, we found that the magnitude of changes in SOS over the last two decades of the
twentieth century (as shown in previous studies) exceeded those inferred with data generated after 2000
(i.e., in this study); this finding appears to support the main result of previous studies [9,13,47,53,54]
that the change rate of SOS has decreased due to a deceleration of strong warming in recent decades [55],
or changes in winter chilling or fire regimes at a regional scale [47,54].

The trends were heterogeneous in both direction and magnitude at the regional scale across the
study period. The magnitude of SOS in Northern China was less than that estimated by Chen et al. [56],
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Gong et al. [17], and Piao et al. [45], but slightly higher than the estimate obtained by Cong et al. [19]
and Ge et al. [10]. Relative to SOS, the magnitude of EOS was similar to that of Ge et al. [10], but slightly
higher than that of Yang et al [50].

The discrepancy in phenological trends and corresponding magnitudes across studies may be
caused by differences in study area, study period, and/or study methods. For example, Gong et al. [17]
only assessed Inner Mongolia and Cong et al. [19] studied temperate China, including most of the
Tibetan Plateau. These large-scale study areas have different vegetation types, water availability,
heat conditions, and climatic zones, thus impacting overall trend magnitude estimates. In addition,
study periods can also affect results [36] because land surface phenology changes with climatic
factors (i.e., temperature and precipitation) and land use (i.e., vegetation type and land management).
For instance, Yang et al. [50] and Liu et al. [33] illustrated that the EOS trend in temperate
China was a delay of 0.13 days/year from 1982 to 2010 and 0.12 days/year from 1982 to 2011,
which was much less than the estimate by Piao et al. (0.37 days/year from 1982 to 1998 in
temperate China) [44]. Zhu et al. [36] illustrated that the SOS trends in North America were −0.273,
−0.349, and −0.132 days/year, while EOS trends were 0.782, 0.420 and 0.551 days/year from 1982
to 1991, 1982 to 1999, and 1982 to 2006, respectively. Moreover, the magnitude of satellite-derived
phenological trends differed among methods [9], providing complementary but qualitatively different
information [49]. For instance, the SOS in North America was estimated to exhibit delaying trends
of 0.03 and 0.13 days/year using the TIMESAT method [34] and Piecewise logistic method [36],
respectively. Estimates in temperate China ranged from −0.01 to −0.19 days/year across five different
methods [19]. This confirms that there are relatively large uncertainties consistent with the noise in
vegetation index (VI) time-series data as well as a substantial influence in setting critical thresholds for
onset data [19,21]. Hence, it is critical to choose an appropriate method for a specific region, especially
for vast areas with diverse vegetation types and/or harsh environments [21]. Moreover, the merits and
defects of smoothing processes in the context of different methods require more in-depth discussion.

The trends in EOS and LOS in the Tibetan Plateau were consistent with previous results [23].
Relative to EOS and LOS, Ding et al. [53] demonstrated that SOS in the Tibetan Plateau showed a
non-significant delayed trend from 1999 to 2006 and from 1999 to 2012 using four different methods;
the present study was consistent with their results and was also supported by previous studies [23,46].
The delayed trend may be the product of increasingly severe aridity, unmet chilling or photoperiod
requirements for plants [57], and a cooling trend in spring air temperatures [23]. Some studies have
reported that SOS has continuously occurred earlier in the Tibetan Plateau [58]; the discrepancies
among results may be the product of differences in vegetation index responses to vegetation growth
between sensors [59] and/or measurements for estimating phenology. Furthermore, SOS trends in
the Tibetan Plateau may vary with longitude [16] and elevation [23] due to variation in vegetation
types and climate conditions; thus, the considerable spatial heterogeneity of the Tibetan Plateau
may offset the positive and negative change trends observed among pixels [13], and the trend may
not be significant or even distinguishable over the entire study area. These results indicate that
the SOS trend inferred from remote sensing data across the whole area should be considered with
some caution [34]. In addition, ecoregions, climate conditions, elevations, contaminations, grassland
degradation, variability in the thawing–freezing process, snow or ice cover, anthropogenic factors,
and their combined effects [60,61] should also be taken into consideration when inferring phenological
parameters in the Tibetan Plateau in future.

In Southern China, we inferred a delayed or extended temporal trend in SOS, EOS, and LOS.
Our results were in accordance with those of Suepa et al. [18] and Zhang et al. [62], both of whom
demonstrated that SOS and EOS were delayed in Southeast Asia from 2001 to 2010 and SOS was
delayed in tropical climate, regions of Asia from 2000 to 2010, respectively. Similarly, Dash et al. [35]
suggested a delayed trend in SOS for evergreen and semi-evergreen forests of India. However,
Ma and Zhou [26] showed that SOS occurred 0.40 days/year earlier in tropical and subtropical forests
from 1982 to 2006 in China. The discrepancy with the results of Ma and Zhou [26] may have been a
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product of their relatively long study period that may include a potential turning point that offsets
the entire trend over the whole study period [12]. Interestingly, SOS in Northern China and Southern
China exhibited contrary trends and were separated by a transition zone between approximately 31◦N
and 35◦N (Figure 4a). To precisely characterize the transition zone, we acquired mean change rates of
3-pixel wide regions along 10 buffer lines (with a buffer radius of 1 km) in longitudinal dimension
(Figure 5) with the Tibetan Plateau excluded and found that the switch occurs between approximately
31.4◦N and 35.2◦N (Figure 6). This result agrees with findings by Chen et al. [56] and Zhang et al. [63].
The result may be caused mainly by a winter chilling requirement of the flora in Northern China
that is far exceeded for vegetation dormancy release due to its high latitude and warming winters
having little impact on thermal time requirements. In contrast, the vegetation in Southern China is
unable to break its dormancy in the shorted and insufficient cold winter period; thus, the thermal
time requirement for SOS has gradually increased in southern regions [64] because of the increasing
winter temperature [28]. Alternatively, the flora of Southern China may require a higher threshold
temperature to start growth in a warmer environment [46]. Additionally, a delayed SOS trend may
result from other factors such as shorter day lengths during an ‘earlier spring’ that counterbalances
the effects of higher temperatures [57]. This apparent contrast may be explained by plants in different
climatic zones having different responses to chilling and forcing temperature requirements as well
as the timing of chilling and forcing periods caused by climate warming [65]. Although few studies
have focused on the phenology of evergreen species in tropical and subtropical areas due to their less
obvious seasonal variation, changes in ‘greenness’ or ‘senescence’ exhibited by foliage can also be
identified by remote sensing from visible changes in canopy biochemistry and the production of new
foliage varies seasonally according to canopy species [18]. Therefore, future studies should focus more
on variation exhibited by those species.
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Notably, land cover that directly affects phenology may be changed by multiple forces such as
urbanization and social-economic development; thus, some errors will inevitably be introduced at the
pixel or local scale with respect to inferred land surface phenology shifts. However, the spatial and
temporal patterns of land cover, especially for vegetation, might be relatively stable over a short time
period of approximately 10 years at regional or global scales [36]. Therefore, the spatial and temporal
patterns of land surface phenology inferred in our study may still be reasonable during 2001–2014
in China.

4.3. Temporal Changes in Phenology among Vegetation Types

Analyzing the changes in phenology for different vegetation types can reveal the hydrothermal
effects acting in different areas. Previous studies have shown that the trends and magnitude of SOS
were non-significant despite considerable differences among vegetation types [13]. Consistent with
previous studies, we found that trends in SOS among different vegetation types without marked
or consistent early onset or delays during the study period (ranging from −0.43 to 0.27 days/year;
Table 2). Although the absolute magnitudes of SOS for woody vegetation were higher than those
estimated for herbaceous vegetation, the magnitudes were less than those inferred by Piao et al. [45].
The EOS (except for DNF) and LOS showed consistent delayed and/or extended trends among
vegetation types (Table 2). Previous studies have shown that changes in land surface phenology among
vegetation types have a wide range of effects on vegetation growth, productivity, competition, and the
terrestrial carbon cycle [49]; therefore, it is unclear how much of those functions have changed for an
ecosystem regulated by inconsistent trends and magnitude in phenology among different vegetation
types. For instance, vegetation productivity and carbon storage may be diminished by delayed SOS;
however, it is undetermined if it can be offset by delayed EOS or extend LOS, ultimately resulting in
little or no effect on ecosystem function and vice versa. These matters require further research.

Notably, our results showed that the trends in phenological parameters are regionally diverse
and species specific, negating our first hypothesis and affirming our second. The discrepancies
among phenophases may contribute to the diverse responses and adaptations to climatic factors and
spatially uneven changes in climatic variables [20,26]; however, may also result from calculation errors
(e.g., from VI smoothing) to some extent.

5. Conclusions

Variation in land surface phenology in China was estimated at national and regional levels during
2001–2014 using MODIS EVI data. Our analyses reveal the following:

(1) Mean SOS was mainly distributed in the range of 65–170 DOY and was delayed as altitude
or latitude increases. The mean EOS was mainly between 230 and 310 DOY and exhibited a trend
opposite to that of SOS. LOS mostly varied from 135 to 240 days and showed clear spatial patterns
over this region, with decreases from south to north and from east to west.

(2) SOS occurred 0.09 days/year earlier at the national level while these trends at the regional
level were not uniform. Specifically, SOS in Northern China occurred 0.34 days/year earlier, while the
Tibetan Plateau and Southern China exhibited delays in SOS by 0.34 and 0.25 days/year, respectively.
In contrast to SOS, EOS exhibited a delayed trend over the study period at both national and regional
levels. LOS was extended both at national and regional levels except in the Tibetan Plateau, for which
LOS was shortened by 0.20 days/year. In addition, the absolute magnitude of SOS was decreased after
2000 compared with estimates from previous studies.

(3) The trend and magnitude among vegetation types are regionally diverse and species specific.
Specifically, SOS did not advance markedly or consistently during the study period, and the
magnitudes of SOS changes for woody vegetation were higher than those of herbaceous vegetation.
The EOS trends for all vegetation types (except DNF) and LOS trends for all vegetation types showed
consistent delays or extensions.
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(4) Different SOS trends occurred within Northern China and Southern China, and the transition
zone was observed approximately between 31.5◦N and 35◦N.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/1/65/s1. Table S1
Unchanged percentage of different vegetation types in China during 2001–2009. Table S2 RMSE, AIC and BIC
values for the four methods of analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced
vegetation index (EVI) time-series data from 2001 to 2014 in China. Table S3 Site characteristics of field observations
that validate remote sensing estimation. Figure S1: The map of altitude for the Tibetan Plateau.
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