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Abstract: Aerodynamic roughness length is an important parameter for surface fluxes estimates.
This paper developed an innovative method for estimation of aerodynamic roughness length
(z0m) over farmland with a new vegetation index, the Hot-darkspot Vegetation Index (HDVI).
To obtain this new index, the normalized-difference hot-darkspot index (NDHD) is introduced
using a semi-empirical, kernel-driven bidirectional reflectance model with multi-temporal Proba-V
300-m top-of-canopy (TOC) reflectance products. A linear relationship between HDVI and z0m

was found during the crop growth period. Wind profiles data from two field automatic weather
station (AWS) were used to calibrate the model: one site is in Guantao County in Hai Basin, in which
double-cropping systems and crop rotations with summer maize and winter wheat are implemented;
the other is in the middle reach of the Heihe River Basin from the Heihe Watershed Allied Telemetry
Experimental Research (HiWATER) project, with the main crop of spring maize. The iterative
algorithm based on Monin–Obukhov similarity theory is employed to calculate the field z0m from
time series. Results show that the relationship between HDVI and z0m is more pronounced than that
between NDVI and z0m for spring maize at Yingke site, with an R2 value that improved from 0.636 to
0.772. At Guantao site, HDVI also exhibits better performance than NDVI, with R2 increasing from
0.630 to 0.793 for summer maize and from 0.764 to 0.790 for winter wheat. HDVI can capture the
impacts of crop residue on z0m, whereas NDVI cannot.
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1. Introduction

The aerodynamic roughness length (z0m) is defined as the height at which the wind speed
becomes zero under neutral conditions [1]. Most currently used land surface models require estimates
of aerodynamic roughness length to characterize the momentum transfer between surface and
atmosphere [2–4].

The traditional method used to calculate z0m is based on measurements of wind profiles at
different levels over the ground under neutral atmospheric conditions, by applying the profile equation
derived on the basis of Monin–Obukhov similarity theory [3,5,6]. Typically, according to many
long-term observations, modelers have assumed that the momentum roughness is identical at all
locations that have similar type of surface coverage [7] and have constructed look-up tables of z0m

values over different surfaces [8]. However, these look-up approaches ignore the inherent temporal
and spatial variability of a certain land use type and its concomitant effects on momentum transfer [9].
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Aerodynamic roughness mainly depends on the geometric features and distributions of the
roughness elements [10]. For vegetated surfaces in particular, the mean canopy height, the canopy
structure and the plant density are key variables [11]. In the past two decades, remote sensing has
emerged as an effective way to retrieve surface information and parameterize aerodynamic roughness
on the global or regional scale [12–14], and several models have been developed for z0m as a function
of vegetation physical structural parameters, such as leaf area index (LAI) [15,16], canopy area index
(CAI) and frontal area index (FAI) [17,18]. Besides, optical parameters such as normalized difference
vegetation index (NDVI) estimated by remote sensing have been widely used for z0m estimation [18–21].
For cropland, NDVI is closely correlated with z0m during crop growing period [18,19], Gupta et al. and
Moran et al. described the relationship between z0m and NDVI as z0m = exp(a + b NDVI) [20,22].

Nevertheless, the vegetation indexes calculated from single observed angle have limited capacity
to retrieve three-dimensional vegetation structures that are closely related to z0m. One potential
solution is to bring in multi-angular optical remote sensing [23–26]. Sunlight hitting the vegetation
canopy is scattered unevenly because of surface roughness, which is related to the canopy's shape
and height. Multi-angular observations can capture the uneven scattering of sunlight by vegetation,
which can be described by the bidirectional reflectance distribution function (BRDF) related to the
biophysical structural information [24,26–28]. The hotspot-darkspot index (HDS) calculated from
multi-angular optical remote-sensing data is capable of representing the geometric structures of
vegetation [29]. A high HDS index results from a strong contrast between the hotspot and darkspot
reflectances, which is a manifestation of the roughness of the canopy surface [26].

Moreover, the annual variability of crop phenology and daily variability of crop development
are major sources of uncertainty for z0m assessments over vegetation. The newly launched Proba-V
satellite collects daily reflectance data in the visible and near-infrared (NIR) ranges. The optical design
of Proba-V consists of three cameras, providing wide-view angles of ±51◦ from nadir that measure
abundant directional effects in the surface reflectance. Thus, the BRDF of each pixel can be derived
within a few days of observation [30]. Accordingly, this paper aims to develop a new method for
estimation of aerodynamic roughness length based on NDVI and BRDF parameters over farmland.
The calibration of the new model is done using field-based measurements of wind profiles data from
different climate systems.

2. Data and Study Area

2.1. Site Description

In this paper, two sites with typical climates and crop types are selected: the middle reach of
the Heihe River Basin with arid climate system in northwestern China and Guantao County with
semi-moisture climate system on the North China Plain, Hai basin.

(1) The middle reach of the Heihe River Basin (98◦57′–100◦52′E, 38◦39′–39◦59′N) is located in the
western part of Gansu Province near Zhangye City, which is the main irrigation agriculture economic
zone and main water consumption area in the Heihe River Basin. Figure 1a displays the land-cover
classification results in this area determined by Zhong et al. in 2014 using multiple classifiers and
multi-source remotely sensed data [31,32]. In recent years, many research projects have addressed
land-surface processes, hydrology and water resources, such as HEIFE [33], WATER project [34],
and Hi-WATER [35]. Large quantities of ground observation data from meteorological, hydrological
and energy flux stations and associated study results have been accumulated, including data from
the Yingke automatic weather station (AWS), which were used in this paper (Figure 1b). The Yingke
AWS is located in a typical oasis in the middle reach of the Heihe River Basin on very flat terrain and is
surrounded by the Gobi Desert. The observational equipment includes a 40-m high tower with the
instruments facing north to measure the wind speed, wind direction, atmosphere temperature and
temperature humidity at different heights [36]. The main crop near the site is irrigated spring maize,
which has a maximum height of approximately 1.8 m [37].
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(2) Guantao County is located in the south of Hebei Province in the Hai Basin (115◦06′–115◦40′ E,
36◦27′–36◦47′ N) and has a warm temperate, semi-humid, continental monsoon climate. Guantao is a
major agricultural county, and the main cultivated crops are winter wheat, maize and cotton. Arable
land accounts for 63% of the whole county’s area. We created the land-cover map of Guantao County
using multi-temporal and high-resolution remote sensing images (GF-1, HJ-1A/1B CCD and TM
images), Support vector machine (SVM) was selected for classification with guidance regarding the
local crop phonology [38,39] (Figure 2a). The AWS in Guantao was installed with support from the
Global Environmental Facility (GEF) Hai Basin project in 2014 (Figure 2b), similar with Yingke site, the
equipment on AWS tower includes meteorological sensors installed on different layers. This site is
dominated by double crops with the rotation of winter wheat and summer maize (Figure 3).
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Figure 3. Crop calendars for the Yingke and Guantao Experimental Areas.

2.2. Data

2.2.1. In Situ Data

The AWS systems at these two sites collected data on wind speed, wind direction, air temperature
and air humidity at 10-min intervals (Table 1). To guarantee the reliability of the wind profile results,
the raw datasets were selected to obtain highly accurate aerodynamic roughness values based on the
following criteria: (1) the wind speed is greater than 1 m/s; (2) the wind friction velocity u∗ exceeds
0.2 m/s; and (3) data obtained on rainy days are discarded. For further information about the operating
principles of the instruments and the data processing, refer to Liu and coworkers’ study [35,36].

Table 1. Details about the observation sites.

Location Coordinates Land Use Sensor Height (m) Period Data Logger

Yingke 38◦51′20′ ′ N,
100◦22′20′ ′ E Spring maize 3, 5, 10, 15, 20, 30, 40 19 May–26 October 2014 CR800

Guantao 36◦30′54′ ′ N,
115◦7′39′ ′ E

Winter wheat
Summer maize 4, 5, 8, 10, 15 15 November 2014–29 May 2015

15 June–15 September 2015 CR1000

2.2.2. Satellite Data

The Proba-V satellite was launched on 6 May 2013 and was designed to bridge the gap
in space-borne vegetation measurements between the SPOT-VGT and the upcoming Sentinel-3
satellites. The technical specifications of the on-board sensors on the Proba-V satellite are listed
in Tables 2 and 3 [40]. In this study, 300 m daily top-of-canopy (TOC) reflectance products were
downloaded from the web page of VITO’s Product Distribution Portal (PDP) in HDF5 file format
(http://www.vito-eodata.be/).

Table 2. Proba-V 300 m main characteristics.

Local Over Pass Time 10:45

Altitude 820 km
Field of view 102◦
Swath width 2295 km

Table 3. Characteristics of Proba-V spectral bands.

Band Name Spectral Range (µm) Centre Wavelength (µm) Geolocation Mean Accuracy (m)

BLUE 0.440–0.487 0.464 60.69
RED 0.614–0.696 0.655 60.46
NIR 0.772–0.902 0.837 61.30

SWIR 1.570–1.635 1.603 61.86

The Proba-V 300 m TOC products were acquired for 2014 in the middle reach of the Heihe River
Basin and for 2015 in Guantao based on the crop phenology (Figure 3). Two images (Titles: X27Y03 and
X28Y03) were needed to cover the middle reach of the Heihe River Basin, whereas one was sufficient

http://www.vito-eodata.be/
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for Guantao (Titles: X29Y03). The required data groups including the solar zenith angles (SZA),
solar azimuth angles (SAA), viewing zenith angles of the visible and NIR (VNIR) detector (VZA),
viewing azimuth angles of the VNIR detector (VAA), quality control, and the TOC reflectances of
RED and NIR were extracted and converted to image files from the original HDF5 files by Spirits
software [41]. The images were mosaicked and clipped to the study area, projected to Albers conical
equal area projections, and resampled using the bilinear interpolation method.

3. Methods

3.1. Ground Aerodynamic Roughness Length

The aerodynamic surface roughness length can be determined iteratively based on wind profile
data. Using Monin–Obukhov similarity, roughness length and zero-plane displacement can be related
via the logarithmic wind profile equation [42]:

u =
u∗
k

[
ln
(

z− d
z0m

)
−Ψm

(
z− d

L

)]
, (1)

θ =
θ∗
k

[
ln
(

z− d
z0h

)
−Ψh

(
z− d

L

)]
+ θ0, (2)

where u and θ are the wind speed and potential air temperature, respectively, at height z above ground
level; u∗ is the friction velocity; θ∗ is the friction temperature; k is von Karman’s constant (k = 0.4);
d is the zero-plane displacement; z0m is the aerodynamic roughness length; z0h is the thermal roughness
length; θ0 is the potential temperature near the surface; L is a function of the friction velocity, friction
temperature and temperature (called the Monin–Obukhov length); and Ψm and Ψh are the stability
functions. The expressions of the stability functions Ψm and Ψh depend on the stability conditions in
the surface layer, which are described by the stability parameter Z/L [43].

For Z/L < 0 (unstable conditions) [44],

Ψm = ln
1 + x2

2
+ 2 ln

1 + x
2
− 2arctgx +

π

2
, (3)

Ψh = 2 ln
1 + y

2
, (4)

x =

(
1− 15

z− d
L

) 1
4

, y =

(
1− 16

z− d
L

) 1
2

, (5)

For Z/L > 0 (stable conditions) [45],

Ψm = Ψh = −5
z− d

L
, (6)

In this study, we use least-square method to determine z0m [46, 47]. Equation (1) can be written as
the following simplified form:

u = ax + b , (7)

where a = u∗/k, x = ln(z− d) − Ψm and b = −lnz0m·a. Commonly, d has a relationship with
the vegetation height (h) that d equals to 0.67 h over surfaces covered by dense and homogeneous
vegetation [48], therefore, d is determined through iterative algorithm which increases from 0.1 m
to 3 m at intervals of 0.1 m. For each given d, there is a correlation coefficient for the fitting
Equation (7), and d is chosen as the optimum value when the correlation coefficient reaches maximum,
then, z0m can be calculated according to d value.
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3.2. BRDF Parameters with Ross-Li Model

The semi-empirical, kernel-driven BRDF model is generally used to correct BRDF effects and
retrieve surface albedo from multi-angle datasets [30,49,50]. This model relies on the weighted sum of
an isotropic parameter and two kernels of viewing and the illumination geometry to determine the
reflectance of certain observed angles [27]. The Ross–Li–Maignan model is formulated as follows.

R(θi, θr,ϕ) = fiso(λ) + fvol(λ) Kvol(θi, θr,ϕ) + fgeo(λ) Kgeo(θi, θr,ϕ), (8)

In Equation (8), the surface reflectance (R) is expressed as a function of three components.
The relative azimuth is ϕ = ϕi − ϕr. fiso is the reflectance acquired by nadir observation when
the solar zenith angle is zero. Kvol describes the volume scattering kernel, and Kgeo describes the
surface scattering kernel. Volume scattering is caused by a horizontal layer of randomly distributed
leaves, and surface scattering is caused by the shadows of natural objects. These two kernels are
functions of only the solar and sensor geometries, including the solar zenith angle (θi), view zenith
angle (θr) and relative azimuth angle (ϕ). fvol(λ) and fgeo(λ) are the spectrally dependent BRDF kernel
coefficients. In this study, Kvol and Kgeo were calculated using the Li-Sparse model and the Ross Thick
model, as described by Equations (9) and (11), respectively [28], and ξ is the phase angle calculated by
Equation (12).

Kgeo(θi, θr,ϕ) =
1
π
(t− sin tcost)(sec θi + sec θr), (9)

cos t =
2
√

tan2 θi + tan2 θr − 2 tan θi tan θr cosϕ+ (tan θi tan θr sinϕ)2

sec θi + sec θr
, (10)

Kvol(θi, θr,ϕ) =
(π2 − ξ) cos ξ+ sin ξ

cos θi + cos θr
− π

4
, (11)

cos ξ = cos θi cos θr + sin θi sin θr cosϕ , (12)

To calculate the kernel coefficients, a multiple linear regression fit was applied with 21-day
series of reflectance and angle data. Because the model is relatively insensitive to noisy data [49],
here, we use Proba-V’s quality control file to determine each pixel’s quality flag and, thereby, discard
the cloudy and invalid pixels. For a specific pixel, if at least five cloud-free observations of the surface
are available during a 21-day period, the kernel coefficients are calculated; otherwise, it is assigned an
invalid value. Then, reflectance at any angle can be acquired in the hemisphere.

3.3. NDHD, NDVI and HDVI

In the principal plane, the reflectance exhibits large variations at different scattering angles.
This information is very useful for measuring the canopy structure. The largest reflectance in the
principal plane is chosen as the hot spot, and the smallest defined as the dark spot where shadows
created by the vegetation canopy are maximally observed [24]. In practice, usually we cannot
obtain both hotspot and darkspot directly on the simulated curve as shown in Figure 4, so the
darkspot (hotspot) is defined at the same view zenith angle with the hotspot (darkspot) but in the
forward-scattering (back-scattering) direction, in order to extract the hotspot reflectance (ρHS) and
the darkspot reflectance (ρDS). As Leblanc et al. proposed in 2001 [51], the normalized-difference
hotspot-darkspot index (NDHD) is the normalized difference between ρHS and the ρDS:

NDHD =
ρHS − ρDS
ρHS + ρDS

, (13)

The normalized index selected for this research is to reduce the influence of canopy optical
properties and enhance the importance of canopy structure. Analogously, the HDS index
((ρHS − ρDS)/ρDS), which was proposed by Lacaze et al. [29], has been widely used in recent research.
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For HDS, the problem of mixed pixels becomes prominent at Proba-V’s 300 m resolution: Some pixels
containing mixed cropland and bare land demonstrate low ρDS values, resulting in abnormal HDS
values. Therefore, NDHD was applied here.

Daily NDVI images are generated from Proba-V’s RED and NIR bands. Based on the quality
control file, time series of 5-day composite NDVI at 300 m resolution are acquired to reduce the
disturbance of cloudy pixels. Unlike the reflectance, the use of NDVI partially avoids the impact of
BRDF signatures because the directional effects are similar in the visible and NIR bands, and therefore,
the effect on the individual reflectances can be reduced by taking the ratio of the two bands [52].
However, BRDF signatures, such as the NDHD, can express z0m according to the point on the canopy
structure, whereas NDVI cannot. Because both NDVI and NDHD are positively correlated with z0m

but their correlations rely on different aspects, a new vegetation index, the Hot-darkspot Vegetation
Index (HDVI), which combines NDVI and NDHD is proposed and defined by Equation (14).

HDVI = NDVI × (1 + NDHD), (14)

A linear relationship between HDVI and z0m was attempted to map z0m as follows.

z0m = a × HDVI + b, (15)

4. Results

4.1. Simulated Reflectance in Red and NIR Band

As shown in Figure 4, the pixel at which the Yingke station is located is taken as an example to
demonstrate the simulated changes in the reflectances of the red and NIR bands in Proba-V’s field of
view. The solar zenith angle is fixed at 35 degrees in the principal plane. Based on the calendar of
Yingke’s maize, the first day of each crop-growing month is selected for this example.
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Figure 4. Simulated: (a) near-infrared (NIR); and (b) RED reflectances at Yingke station according to
changes in the view zenith angle on the first day of the month, for five months.

This figure shows that the reflectances of the two channels exhibit a decreasing trend from the
back-scattering region to the forward-scattering region. The lowest point, which is known as the
darkspot, can be identified on most curves as the point at which the view zenith angle is the same as
the solar zenith angle. The hotspot did not appear in the simulated range of the view zenith angle,
and the darkspot did not appear on the red-reflectance curves on 1 August and 1 September.

The NDHD of the NIR reflectance varies regularly with the crop growth period, with high values
during the initial and terminal stages of crop growth and low values during the vigorous growth stage,
in response to the variation of the crop-canopy structures. In contrast, the NDHD of RED reflectance
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exhibits less variation (the nearly identical inclination of the five curves in Figure 4b) during the crop
growth period, and thus, we calculate the NDHD by applying the NIR band.

4.2. Relationship between NDVI/HDVI and z0m

As shown in Figure 3, the growing season of spring maize in the Yingke Site is from May to
October. In this paper, daily averaged aerodynamic roughness values are calculated from AWS raw
data with 10-min intervals. To match the NDVI data, the mean value of z0m is obtained over five days
with the assumption that z0m changed little during that period.

For the Yingke site, the temporal variations of the aerodynamic roughness, as deduced from the
values for each five-day period, reflect the process of crop growth, which exhibits a characteristic rise
and fall according to the crop growth cycle (Figure 5). The NDVI values are low at the beginning
of crop emergence and increase rapidly over the course of the subsequent month. The peak growth
stage lasts 184–244 days. Then, the NDVI values decrease as the spring maize approaches maturity.
Clearly, the variations of NDVI are in good agreement with those of z0m, suggesting that NDVI is
a reasonable predictor of z0m. Compared with the NDVI profile during the maize growth period,
the changing trend of NDHD generally exhibited almost opposite directions, initially increasing rapidly
and maintaining a high level from Days 264 to 299.
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Figure 5. Time series profiles of NDVI, HDVI, NDHD and field observed z0m during the spring
maize growing season at Yingke site in 2014. z0m is presented as a five-day average,
and NDVI is shown as the maximum value over five days. NDHD and HDVI were calculated with
Equations (15) and (16), respectively.

Figure 6 reports the field-observed aerodynamic roughness (z0m), plotted as linear functions of
NDVI and HDVI in the Yingke Site. This figure clearly demonstrates that the NDVI of arable land is
correlated with z0m (R2 = 0.636, n = 33). In contrast, the data are less dispersed and the correlation is
higher (R2 = 0.793, n = 33) when z0m is plotted as a function of HDVI (Figure 6b). In addition, the NDVI
and HDVI values in October (points from A~F in Figure 6) exhibit obviously different correlations
with z0m: For the same value of z0m, NDVI showed much greater deviation from the fitted curve,
while HDVI was distributed around the fitted curve for the six marked points. This finding indicates
that NDVI decreased quickly with z0m during the crop harvesting stage when the leaf cells of spring
maize senesce, and the leaves become yellow and withered, resulting in z0m less evaluated if only
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the changes of NDVI were taken into concern. In contrast, HDVI, which contains information on the
crop-planting structure, has advantages for retrieving z0m in the late growth period.

The same method was used to determine the differences between NDVI and HDVI for winter
wheat and summer maize at the Guantao site. The linear fitting equations based on the crop calendar
of Guantao are shown in Figure 7. The R2 values of the four fitted equations also indicate that HDVI
is more significantly correlated with z0m than NDVI. Comparable results are also obtained for the
relationships of z0m of Guantao’s summer maize and NDVI/HDVI, with the correlation coefficient
improving from 0.670 to 0.793. The HDVI-based model produces a slightly better fitting result than the
NDVI-based model (the R2 value ranges from 0.764 to 0.790) for winter wheat in Guantao.
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Coefficients a and b of Equation (14) are acquired for different crop types from the linear fitting
results shown in Figures 6 and 7 at the Yingke site and the Guantao site, respectively. The results
are shown in Table 4, along with the coefficients of determination (R2). The robustness of z0m model
performance is evaluated using the root mean square error (RMSE) and the mean absolute error
(MAE), which can measure the accuracy of the established model. The RMSE and MAE values
between the observed z0m and estimated z0m for different crops range from 0.024 to 0.035 and from
0.020 to 0.028, respectively, which are lower than 0.1, indicating consistency between the observed z0m

and HDVI-based estimated z0m. In particular, Durbin–Watson statistics are generally lower than 2,
indicating that the error terms are positively auto-correlated. Results of the F-test suggest that the
fitted models with p-values lower than 0.01, indicating a significant relationship between HDVI/NDVI
data and field observed z0m at the 99% confidence level for all crops, confirming the strong capability
of the model.

Table 4. The coefficients used to calculate z0m for different crop types and statistical results.

Location Yingke Guantao

Crop Type Spring Maize Winter Wheat Summer Maize

Number of points 33 40 26

Correlation with z0m HDVI NDVI HDVI NDVI HDVI NDVI

a 0.2236 0.2255 0.2113 0.2476 0.2695 0.2858
b −0.0279 0.0087 0.0391 0.0615 0.0688 0.1017

R2 0.772 0.636 0.790 0.764 0.793 0.670
RMSE 0.034 0.042 0.024 0.025 0.035 0.045
MAE 0.027 0.031 0.020 0.018 0.028 0.033

Durbin-Watson statistic 1.338 0.927 1.821 1.778 1.611 1.250
F-statistics 15.435 12.734 17.827 12.550 11.034 8.370

p-value 4.39 × 10−12 6.48 × 10−11 8.22 × 10−16 3.97 × 10−13 3.31 × 10−8 5.74 × 10−7

4.3. Regional-Scale z0m

We use the relationship between HDVI and the aerodynamic roughness length z0m to derive
maps of the roughness length. To explore the seasonal and spatial variability of the aerodynamic
roughness, we focus on the middle reach of the Heihe River Basin and estimate z0m over the spring
maize mask [31,32] of certain days from May to October, as shown in Figure 8. The value of z0m

ranges between 0 and 0.25 throughout the spring maize growing season in this area, reaches a peak
in July and then declines beginning in August when the height of the maize plants reaches a plateau.
The largest standard deviation value of all maize pixels occurred in June, indicating that z0m

exhibited more significant spatial differentiation during this period. This is most likely attributable
to spatial differences in the sowing time, planting density and fertilization method of spring maize.
The differences are also amplified by the rapid growth that occurs during this stage.

Figure 8. Cont.
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Figure 8. Estimated aerodynamic roughness lengths of spring maize in the middle reach of the Heihe
River Basin on: (a) 19 May; (b) 18 June; (c) 18 July; (d) 17 August; (e) 16 September; and (f) 16 October.

5. Discussion

With the development of remote-sensing technology, satellite-based algorithms are now routinely
applied to retrieve terrestrial parameters, such as aerodynamic roughness. Because vegetation height
is essential in most aerodynamic roughness models, usually field investigation or indirect methods
are needed to acquire the spatial distribution of the vegetation height. Here, we try to wean the
vegetation height observation off by developing a purely remote-sensing-based model for aerodynamic
roughness estimation over arable land, improving the timeliness put forward for aerodynamic
roughness. The introduction of BRDF signatures improves the accuracy and persuasiveness of the
model because the multi-angle remote-sensing data have incomparable advantages for describing the
crop canopy structure.

Because crops growing on farmland are flat and uniformly distributed, the topographic changes
can be ignored, and the aerodynamic roughness can be separated into two parts: vertical roughness
associated with crop growth conditions and horizontal roughness associated with crop planting
structures. NDVI still plays the leading role in reflecting crop growth conditions, and NDHD expresses
the variations in the vegetation spatial structure. Satisfactory results for aerodynamic roughness length
estimation were obtained. According to our results, HDVI clearly exhibits better performance for
aerodynamic roughness estimation than NDVI. Compared with NDVI, HDVI’s range is wider, and it
can exceed 1. The exponential algorithm describing z0m [21,23] can be improved with linear model
after the introduction of NDHD.

According to the results shown in Figures 6 and 7, this method is more efficient for maize than
wheat. This finding can be explained by two reasons: (1) Wheat plants grow to approximately the
same height and are usually closely spaced. Thus, the canopy of wheat is more flat and homogeneous
than that of maize, and the spatial heterogeneity of wheat land, which affects the NDHD, changes
less during the crop growth period. (2) The differences in the crop ripening stage and harvest period
for the two crops may affect the results. Typically, maize stalk residues remain quite tall and are
sparsely distributed over farmland after harvest (Figure 9a), as reflected by higher NDHD values.
However, NDVI is difficult to interpret at this stage. For wheat, the approximate height of the residue is
only 30 cm (Figure 9b). Therefore, the canopy structure is similar to that of bare land, and few BRDF
signatures are captured by the NDHD. Thus, the plant structures and growth characteristics of different
crops should be considered when modeling z0m.

The method discussed here only applies to two crops (wheat and maize), because the aerodynamic
roughness of different land use types differ significantly (by as much as orders of magnitude) [53,54].
Results are based on limited datasets under particular meteorological conditions. Further research
is needed to determine the model’s applicability to other crop and vegetation types. This study was
limited by inadequate AWS data for different underlying surface types. Although eddy covariance
(EC) and large-aperture scintillometer (LAS) measurements have been used to acquire local roughness
length values in previous studies [55,56], the estimation of z0m using different instruments may
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introduce deviations in the same region because of the differences among AWS, EC and LAS footprints.
The consistency and precision of ground data constitute the foundation of modeling based on
remote sensing data. In our study, the two AWS sites were located in homogeneous and flat arable
land; thus, the observed z0m values are representative of the corresponding remote-sensing pixels,
and the impact of topographic fluctuation is avoided. Actually, the surface condition of the vegetation
cover is not the only factor that must be considered. The near-ground wind speed, wind direction
and stability conditions also strongly influence the aerodynamic roughness [55,57]. In our study,
meteorological conditions were not accounted for, which may have affected the fitting results for
the field-observed z0m and HDVI. The effects of wind speed and wind direction on z0m should be
studied further, moreover, boundary layer conditions also play a role in surface-atmosphere exchanges
parameterized through z0m. It should be noted, however, that high-resolution surface meteorological
data acquisition is also a key problem in determining the spatial distribution of z0m.
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Proba-V was designed to offer global coverage at spatial resolutions of 100 m, 300 m and 1 km [40].
The 300 m TOC reflectance products used here can facilitate the observation of a certain terrestrial
target on a daily basis in most locations on Earth. Similar to the angular observations collected
by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument [49], multi-temporal
data are extracted from a series of Proba-V passes. The BRDF model parameters were derived from
the observed time series. Regression of the semi-empirical kernel-driven BRDF model should be
performed over sub-periods that are short enough that the surface can be considered time invariant
and long enough to contain sufficient sensor data for the regression [27]. Obtaining sufficient cloud-free
surface reflectance data is challenging over certain regions. The main limitation of this method is
the assumption that the target is stable during the synthesis period. This assumption is obviously
invalid for vegetation-covered land. Thus, we must assume that the variations in the BRDF shape are
limited, so the period of 21 days was set for regression with multi-temporal Proba-V images to ensure
the accuracy of the BRDF signatures. Consequently, multi-angular optical remote-sensing platforms
with high spatial resolution and short revisit periods are still needed to further advance this research.
Additionally, in the future, attempts to acquire multi-angular data from multi-source remote sensing
data should be made.

6. Conclusions

This paper proposed a new model for estimating z0m over arable land with a new vegetation
index, the Hot-darkspot Vegetation Index (HDVI) with multi-temporal Proba-V 300-m TOC reflectance
products. The linear relationship between HDVI and z0m was found for the crop growth period.
The results show that the relationship between HDVI and z0m is more pronounced than that between
NDVI and z0m for spring maize at the Yingke site, with an R2 value that improved from 0.636 to 0.772.
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At the Guantao site, in which double-cropping systems and crop rotations with summer maize and
winter wheat are implemented, HDVI also exhibits better performance than NDVI, with R2 increasing
from 0.630 to 0.793 for summer maize and from 0.764 to 0.790 for winter wheat. The differences probably
originate from the crop ripening stage and harvest period, indicating crop residue’s impacts on z0m

captured by NDHD, when NDVI makes little sense to crop at that stage. NDHD from near-infrared
reflectance contains more meaningful BRDF information associated with canopy structure against
red reflectance. However, this study was based on limited available data, HDVI will be adopted
and qualified over different vegetation types in long periods of time with the accumulation of robust
validation exercise.

Acknowledgments: This work was supported in part by Advanced Science Foundation Research Project of the
Chinese Academy of Sciences (Grant No.: QYZDY-SSW-DQC014) and the Natural Science Foundation of China,
Grant No. 41271424 and No. 41501479. We thank VITO for providing the Proba-V 300 m products. The authors
also thank the Environmental and Ecological Science Data Center for West China, National Natural Science
Foundation of China for providing the AWS data and land cover map (http://westdc.westgis.ac.cn).

Author Contributions: Mingzhao Yu contributed to the research experiments, analyzed the data, and wrote
the paper. Bingfang Wu conceived the experiments, and was responsible for the research analysis. Nana Yan,
Qiang Xing and Weiwei Zhu collected and pre-processed the original data. All the co-authors helped to revise
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the
roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40,
1933–1951. [CrossRef]

2. Liou, Y.A.; Galantowicz, J.F.; England, A.W. A land surface process/radio brightness model with coupled
heat and moisture transport for prairie grassland. J. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1848–1859.
[CrossRef]

3. Hryama, T.; Sugita, M.; Kotoda, K. Regional roughness parameters and momentum fluxes over a complex
area. J. Appl. Meteorol. 1996, 35, 2179–2190. [CrossRef]

4. Marticorena, B.; Kardous, M.; Bergametti, G.; Callot, Y.; Chazette, P.; Khatteli, H.; Le Hégarat-Mascle, S.;
Maillé, M.; Rajot, J.; Vidal-Madjar, D.; et al. Surface and aerodynamic roughness in arid and semiarid areas
and their relation to radar backscatter coefficient. J. Geophys. Res. Earth Surf. 2006, 111. [CrossRef]

5. Monteith, J.L. The micrometeorology of crops. In Principles of Environmental Physics; Edward Arnold: London,
UK, 1973; pp. 190–215.

6. Brutsaert, W. Evaporation into the Atmosphere. Theory, History, and Applications; Springer: Dordrecht,
The Netherlands, 1982.

7. Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land
surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996,
101, 7251–7268. [CrossRef]

8. Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.;
Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration
(METRIC)–Model. J. Irrig. Drain. Eng. 2007, 133, 395–406. [CrossRef]

9. Borak, J.S.; Jasinski, M.F.; Crago, R.D. Time series vegetation aerodynamic roughness fields estimated from
MODIS observations. Agric. For. Meteorol. 2005, 135, 252–268. [CrossRef]

10. Maurer, K.D.; Hardiman, B.S.; Vogel, C.S.; Bohrer, G. Canopy-structure effects on surface roughness
parameters: Observations in a Great Lakes mixed-deciduous forest. Agric. For. Meteorol. 2013, 177, 24–34.
[CrossRef]

11. Jasinski, M.F.; Crago, R.D. Estimation of vegetation aerodynamic roughness of natural regions using frontal
area density determined from satellite imagery. Agric. For. Meteorol. 1999, 94, 65–77. [CrossRef]

12. Hasager, C.B.; Jensen, N.O. Surface-flux aggregation in heterogeneous terrain. Q. J. R. Meteorol. Soc. 1999,
125, 2075–2102. [CrossRef]

http://westdc.westgis.ac.cn
http://dx.doi.org/10.1175/1520-0450(2001)040&lt;1933:AEOTMF&gt;2.0.CO;2
http://dx.doi.org/10.1109/36.774698
http://dx.doi.org/10.1175/1520-0450(1996)035&lt;2179:RRPAMF&gt;2.0.CO;2
http://dx.doi.org/10.1029/2006JF000462
http://dx.doi.org/10.1029/95JD02165
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
http://dx.doi.org/10.1016/j.agrformet.2005.12.006
http://dx.doi.org/10.1016/j.agrformet.2013.04.002
http://dx.doi.org/10.1016/S0168-1923(98)00129-4
http://dx.doi.org/10.1002/qj.49712555808


Remote Sens. 2017, 9, 6 14 of 15

13. Menenti, M.; Ritchie, J.C.; Humes, K.S.; Parry, R.; Pachepsky, Y.; Gimenez, D.; Leguizamon, S. Estimation
of aerodynamic roughness at various spatial scales. In Scaling up in Hydrology Using Remote Sensing;
John Wiley and Sons: Chichester, UK, 1996; Volume 272.

14. Menenti, M.; Ritchie, J.C. Estimation of effective aerodynamic roughness of walnut gulch watershed with
laser altimeter measurements. Water Resour. Res. 1994, 30, 1329–1337. [CrossRef]

15. Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces.
Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [CrossRef]

16. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.;
Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [CrossRef]

17. Raupach, M.R. Simplified expressions for vegetation roughness length and zero-plane displacement as
functions of canopy height and area index. Bound. Layer Meteorol. 1994, 71, 211–216. [CrossRef]

18. Schaudt, K.; Dickinson, R.E. An approach to deriving roughness length and zero-plane displacement height
from satellite data, prototyped with BOREAS data. Agric. For. Meteorol. 2000, 104, 143–155. [CrossRef]

19. Li, J.; Wang, J.; Menenti, M. Estimation of area roughness length for momentum using remote sensing data
and measurements in field. Sci. Atmos. Sin. 1999, 23, 632–640.

20. Gupta, R.K.; Prasad, T.S.; Vijayan, D. Estimation of roughness length and sensible heat flux from WiFS and
NOAA AVHRR data. Adv. Space Res. 2002, 29, 33–38. [CrossRef]

21. Zhang, J.; Huang, J.P.; Zhang, Q. Retrieval of aerodynamic roughness length character over sparse vegetation
region. Acta Ecol. Sin. 2010, 30, 2819–2827.

22. Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between
surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [CrossRef]

23. Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J. Multi-angular optical remote sensing for assessing
vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [CrossRef]

24. Gao, F.; Schaaf, C.B.; Strahler, A.H. Detecting vegetation structure using a kernel-based BRDF model.
Remote Sens. Environ. 2003, 86, 198–205. [CrossRef]

25. De Colstoun, E.C.; Walthall, C.L. Improving global scale land cover classifications with multi-directional
POLDER data and a decision tree classifier. Remote Sens. Environ. 2006, 100, 474–485. [CrossRef]

26. Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T. Improving the estimation of leaf area index by using
remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 2010, 114, 514–519. [CrossRef]

27. Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the
correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [CrossRef]

28. Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional
reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [CrossRef]

29. Lacaze, R.; Chen, J.M.; Roujean, J.L. Retrieval of vegetation clumping index using hot spot signatures
measured by POLDER instrument. Remote Sens. Environ. 2002, 79, 84–95. [CrossRef]

30. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.;
et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83,
135–148. [CrossRef]

31. Zhong, B.; Ma, P.; Nie, A.; Yang, A.; Yao, Y.; Lü, W.; Zhang, H.; Liu, Q. Land cover mapping using time series
HJ-1/CCD data. Sci. China Earth Sci. 2014, 57, 1790–1799. [CrossRef]

32. Zhong, B.; Yang, A.; Nie, A.; Yao, Y.; Zhang, H.; Wu, S.; Liu, Q. Finer resolution land-cover mapping using
multiple classifiers and multisource remotely sensed data in the Heihe river basin. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2015, 8, 4973–4992. [CrossRef]

33. Gao, Y.; Hu, Y. Advances in HEIFE Research (1987–1994); China Meteorological Press: Beijing, China, 1994.
34. Li, X.; Li, X.W.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G.; et al. Watershed allied

telemetry experimental research. J. Geophys. Res. Atmos. 2009, 114, 2191–2196. [CrossRef]
35. Liu, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe

watershed allied telemetry experimental research (Hiwater): Scientific objectives and experimental design.
Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [CrossRef]

36. Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance
and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol.
Earth Syst. Sci. 2011, 15, 1291–1306. [CrossRef]

http://dx.doi.org/10.1029/93WR03055
http://dx.doi.org/10.1002/qj.49711448006
http://dx.doi.org/10.1016/S0034-4257(02)00074-3
http://dx.doi.org/10.1007/BF00709229
http://dx.doi.org/10.1016/S0168-1923(00)00153-2
http://dx.doi.org/10.1016/S0273-1177(01)00624-X
http://dx.doi.org/10.1016/0034-4257(94)90020-5
http://dx.doi.org/10.1016/S0034-4257(02)00150-5
http://dx.doi.org/10.1016/S0034-4257(03)00100-7
http://dx.doi.org/10.1016/j.rse.2005.11.003
http://dx.doi.org/10.1016/j.rse.2009.10.005
http://dx.doi.org/10.1029/92JD01411
http://dx.doi.org/10.1029/95JD02371
http://dx.doi.org/10.1016/S0034-4257(01)00241-3
http://dx.doi.org/10.1016/S0034-4257(02)00091-3
http://dx.doi.org/10.1007/s11430-014-4877-5
http://dx.doi.org/10.1109/JSTARS.2015.2461453
http://dx.doi.org/10.1029/2008JD011590
http://dx.doi.org/10.1175/BAMS-D-12-00154.1
http://dx.doi.org/10.5194/hess-15-1291-2011


Remote Sens. 2017, 9, 6 15 of 15

37. Zhu, W.; Wu, B.; Yan, N.; Feng, X.; Xing, Q. A method to estimate diurnal surface soil heat flux from MODIS
data for a sparse vegetation and bare soil. J. Hydrol. 2014, 511, 139–150. [CrossRef]

38. Zhang, M.; Li, Q.; Wu, B. Investigating the capability of multi-temporal landsat images for crop identification
in high farmland fragmentation regions. In Proceedings of the 2012 First International Conference on
Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012.

39. Jia, K.; Wu, B.; Li, Q. Crop classification using HJ satellite multispectral data in the North China Plain.
J. Appl. Meteorol. 2013, 7, 073576. [CrossRef]

40. Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.;
Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J.
Remote Sens. 2014, 35, 2589–2614. [CrossRef]

41. Eerens, H.; Haesen, D. SPIRITS User Manual, v1.4. Available online: http://spirits.jrc.ec.europe.eu/
(accessed on 20 March 2016).

42. Brutsaert, H.W. Exchange processes at the earth-atmosphere interface. In Engineering Meteorology;
Plate, E., Ed.; Elsevier: New York, NY, USA, 1982; pp. 319–369.

43. Panofsky, H.A. Determination of stress from wind and temperature measurements. Q. J. R. Meteorol. Soc.
1963, 89, 85–94. [CrossRef]

44. Dyer, A.J. A review of flux-profile relationships. Bound. Layer Meteorol. 1974, 7, 363–372. [CrossRef]
45. Webb, E.K. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc.

1970, 96, 67–90. [CrossRef]
46. Frangi, J.P.; Richard, D.C. The WELSONS experiment: Overview and presentation of first results on the

surface atmospheric boundary-layer in semiarid Spain. Ann. Geophys. 2000, 18, 365–384. [CrossRef]
47. Zhou, Y.; Ju, W.; Sun, X.; Wen, X.; Guan, D. Significant decrease of uncertainties in sensible heat flux

simulation using temporally variable aerodynamic roughness in two typical forest ecosystems of China.
J. Appl. Meteorol. Climatol. 2012, 51, 1099–1110. [CrossRef]

48. Pielke, R.A.S. Mesoscale Meteorological Modeling, 3rd ed.; Academic Press: San Diego, CA, USA, 2013.
49. Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical

BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [CrossRef]
50. Strugnell, N.C.; Lucht, W. An algorithm to infer continental-scale albedo from AVHRR data, land cover class,

and field observations of typical BRDFs. J. Clim. 2001, 14, 1360–1376. [CrossRef]
51. Leblanc, S.G.; Chen, J.M.; White, H.P.; Cihlar, J.; Roujean, J.L.; Lacaze, R. Mapping vegetation clumping

index from directional satellite measurements. In Proceedings of the 8th International Symposium Physical
Measurements & Signatures in Remote Sensing, Aussois, France, 8–12 January 2001; pp. 450–459.

52. Holben, B.; Fraser, R.S. Red and near-infrared sensor response to off-nadiir viewing. Int. J. Remote Sens. 1984,
5, 145–160. [CrossRef]

53. Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Dordrecht,
The Netherlands, 2012.

54. Liu, X.P.; Dong, Z.B. Review of aerodynamic roughness length. J. Desert Res. 2003, 23, 337–346. (In Chinese)
55. Chen, Q.; Jia, L.; Hutjes, R.; Menenti, M. Estimation of aerodynamic roughness length over oasis in the Heihe

River Basin by utilizing remote sensing and ground Data. Remote Sens. 2015, 7, 3690–3709. [CrossRef]
56. Sun, G.; Hu, Z.; Wang, J.; Xie, Z.; Lin, Y.; Huang, F. Upscaling analysis of aerodynamic roughness length

based on in situ data at different spatial scales and remote sensing in north Tibetan Plateau. Atmos. Res. 2016,
176, 231–239. [CrossRef]

57. Zhou, Y.L.; Sun, X.M.; Zhang, R.H.; Zhu, Z.L.; Xu, J.P.; Li, Z.L. The improvement and validation of the model
for retrieving the effective roughness length on TM pixel scale. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; pp. 3059–3062.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2014.01.019
http://dx.doi.org/10.1117/1.JRS.7.073576
http://dx.doi.org/10.1080/01431161.2014.883097
http://spirits.jrc.ec.europe.eu/
http://dx.doi.org/10.1002/qj.49708937906
http://dx.doi.org/10.1007/BF00240838
http://dx.doi.org/10.1002/qj.49709640708
http://dx.doi.org/10.1007/s00585-000-0365-7
http://dx.doi.org/10.1175/JAMC-D-11-0243.1
http://dx.doi.org/10.1109/36.841980
http://dx.doi.org/10.1175/1520-0442(2001)014&lt;1360:AATICS&gt;2.0.CO;2
http://dx.doi.org/10.1080/01431168408948795
http://dx.doi.org/10.3390/rs70403690
http://dx.doi.org/10.1016/j.atmosres.2016.02.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Study Area 
	Site Description 
	Data 
	In Situ Data 
	Satellite Data 


	Methods 
	Ground Aerodynamic Roughness Length 
	BRDF Parameters with Ross-Li Model 
	NDHD, NDVI and HDVI 

	Results 
	Simulated Reflectance in Red and NIR Band 
	Relationship between NDVI/HDVI and z0m 
	Regional-Scale z0m 

	Discussion 
	Conclusions 

