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Abstract: The ability of texture models and red-edge to facilitate the detection of subtle structural
vegetation traits could aid in discriminating and mapping grass quantity, a challenge that has been
longstanding in the management of grasslands in southern Africa. Subsequently, this work sought to
explore the robustness of integrating texture metrics and red-edge in predicting the above-ground
biomass of grass growing under different levels of mowing and burning in grassland management
treatments. Based on the sparse partial least squares regression algorithm, the results of this study
showed that red-edge vegetation indices improved above-ground grass biomass from a root mean
square error of perdition (RMSEP) of 0.83 kg/m2 to an RMSEP of 0.55 kg/m2. Texture models further
improved the accuracy of grass biomass estimation to an RMSEP of 0.35 kg/m2. The combination of
texture models and red-edge derivatives (red-edge-derived vegetation indices) resulted in an optimal
prediction accuracy of RMSEP 0.2 kg/m2 across all grassland management treatments. These results
illustrate the prospect of combining texture metrics with the red-edge in predicting grass biomass
across complex grassland management treatments. This offers the detailed spatial information
required for grassland policy-making and sustainable grassland management in data-scarce regions
such as southern Africa.
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1. Introduction

Understanding above-ground grass biomass variations at various scales has become increasingly critical
among stakeholders, such as farmers, ecologists and scientists, amongst others. Grasslands are significant
carbon sinks, accounting for 18% of the global terrestrial carbon sinks [1]. Furthermore, grasslands are one
of the biodiversity hot spots harbouring a wide variety of plants and animals [2], while facilitating soil
formation and preservation. From an agricultural perspective, native grasses are the cheapest source
of stock feed available. Moreover, grasslands are also a significant source of livelihood, especially to
rural communities in southern Africa, where natural disasters and socio-economic hardships are
frequent. Collectively, these factors drive the growing interest of accurately monitoring grassland
biomass variations for developing optimal management regimes.

A total of 7.5% of the world’s grasslands have been degraded, while about 16% are currently being
degraded [3]. Tropical grasslands, specifically, are often at risk of degradation because of increasing pressure
from human activities due to population increase [4]. For instance, infrastructural development, crop farming
and overgrazing have been cited as the major causes of tropical grassland degradation [3]. Livestock farming
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has been considered as the fastest growing agricultural sector due to the demand for meat and milk
products. Consequently, overstocking and overgrazing have been reported as drivers of grassland
degradation. To optimise productivity, while preserving native grasses, numerous grass management
practices have been introduced [5]. These include burning, mowing, fertiliser application, as well as
controlled grazing [5]. However, insights on the effectiveness of these grass management treatments on
grass productivity are limited. This is because there are no cost-effective monitoring systems that have
hitherto been developed. Furthermore, the use of existing methods has not been comprehensively
evaluated across space and time to the extent that is sufficient for meaningful decision-making and
management in data-scarce regions, such as southern Africa.

To acquire comprehensive quantitative information on grass biomass, the utility of earth
observation (EO) data has recently become more popular and feasible with an increase, as well as
advances, in the available sensors [6]. EO data have been renowned for facilitating rapid, repeated and
ongoing biomass observations over various spatial and temporal scales. This is because EO enables
comparatively convenient data acquisition dating back over several years, while offering satisfactory
ranges of accuracy on above-ground biomass estimation over larger spatial scales. Despite the fact
that numerous EO methodologies have been evaluated in quantifying above-ground biomass,
no study has hither to illustrate an operational technique that is consistent, precise and repeatable for
estimating biomass at local to continental scales. This is caused by the variations in the biophysical,
environmental and topographic traits of vegetation in space and time [7,8].

A growing body of literature illustrates that the common approach for estimating biomass,
based on EO data, has been to examine the possible association between the ground measured
biomass and the EO data, since biomass quantities cannot be directly derived from remotely sensed
data [9,10]. Landsat data is the most widely used EO data in vegetation above-ground biomass
estimation studies due to its limited costs. However, the majority of the studies have used Landsat
for forest inventories [11,12]. The few studies that have been conducted on grass productivity have
focused only on a limited number of grass management treatments [13,14].

Furthermore, primary vegetation indices (VIs), such as the normalised difference vegetation
index (NDVI), have been widely used for estimating above-ground grass biomass [13,14].
VIs have been widely used because they tend to supersede the influences of the soil background,
atmospheric impurities and the viewing and zenith angle effects, while magnifying the signature
of vegetation [15,16]. However, these have attained only moderate success in the tropical and
subtropical regions [17,18] characterised by complex management treatments, with high spatial
heterogeneity. This is due to the lack of strategically located wavebands [19,20], such as the red-edge
(i.e., in the Landsat data series). Furthermore, these indices are affected by saturation, soil background
and the coarse spatial resolutions for application in grass grown across different grassland management
treatments, which still remains a challenge [17,21,22]. This is aggravated by the lack of a clear criterion
on the appropriateness of specific EO sensors, proxies, as well as repeatable operational techniques
that could provide accurate biomass information from a variety of grass management treatments.

Red-edge (680–740 nm) and texture models seem to offer better proxies, which suppress
the soil-background effect, saturation issues [17] and high spatial heterogeneity. Literature shows that
the red-edge is sensitive to chlorophyll, as well as leaf structure reflection (i.e., leaf area index, leaf angle
distribution), thereby providing more information for the characterization of vegetation [23,24].
More specifically, when the concentration of foliar chlorophyll increases, it results in the bulging
of the optical chlorophyll absorption feature, shifting away from the long wavelength margin,
and thereby shifting the red-edge to longer wavelengths [25]. Meanwhile, the concentration of
leaves of a certain vegetation canopy, as well as the angular nature of those leaves, directly affects
the spectral reflectance of that vegetation, especially in the red-edge portion of the electromagnetic
spectrum [26]. Subsequently, the biomass of vegetation with a high chlorophyll concentration or
leaf area index can then be detected from that with less concentration, based on these shifts. In this
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regard, it is perceived that the red-edge waveband and its derivatives can better estimate above-ground
biomass, when compared to primary bands and vegetation indices [17].

On the other hand, literature indicates that grey level co-occurrence optical texture models
also relate better with field measured above-ground vegetation biomass when compared with
vegetation indices [7,27]. For instance, work by Cutler et al. [28] indicated that integrating
texture metrics data improved biomass estimation from R2 of 0.05, 0.23 and 0.16 to 0.79,
0.79 and 0.84 in Thailand, Malaysia and Brazil, respectively, when compared with multispectral
data. Furthermore, texture models offer information that could characterize the subtle structural
characteristics of the vegetation canopy, such as those induced by different grassland management
treatments. Texture metrics i.e., the grey level co-occurrence matrix, distinguishes minute, but critical,
vegetation details, based on a local spectral variation in the image [6]. This is due to the fact that texture
models can also suppress the influence of atmospheric effects, the sensor view-angle and the sun
view angle, which improve the vegetation spectral signature required for the accurate estimation
of above-ground grass biomass [7,29,30]. It is, therefore, important to note that texture variables
can optimize the discrimination of vegetation spatial information independently from the tone,
while spectral features, i.e., the red-edge, provides detailed vegetation tonal variations that are
paramount for accurate vegetation mapping. Based on the above premise, the combination of optimal
texture models and red-edge wavebands has a high potential for improving above-ground biomass
estimation across different grassland management treatments, superseding the saturation effect of
spectral data. To the best of our knowledge, very few studies, if any, have been conducted, based on
texture models, to predict above-ground grass biomass.

The majority of the studies that utilised texture metrics were focused on forest above-ground
biomass [6,10,30–33]. In addition, most of these studies utilised the moderate resolution Landsat data,
which does not capture the minute variations that could be induced by different grass treatments in
a grassland landscape that is characterised by high spatial heterogeneity [1]. Considering the lack
of suitable specific proxies for accurate biomass information in southern African grasslands, due to
limited resources and data scarcity [30], there is a need to evaluate the performance of possible
sources of spatial information, such as texture models and red-edge wavebands. The advent of a new
generation of multispectral sensors, such as the newly launched Sentinel-2 multispectral imager and
WorldView-3, offers an opportunity to improve the accuracy of above-ground grass biomass estimation
in southern Africa. This is because of their spectral regions—such as red-edge, which are crucial
for vegetation mapping, as well as their optimal spatial resolution—could offer the critical spatial
information that is required in well-informed grassland management practices.

Despite the relatively high costs associated with high spatial resolution EO data, these data
sources offer abundant texture information, which could better characterize the spatial distribution of
different grassland management treatments [29]. For example, the new WorldView-3 (WV-3) sensor,
characterized by a fine spatial resolution of 2 m, as well as the strategically positioned red-edge
waveband, offers better spatial information, when compared to other sensors, such as Landsat,
which has a moderate spatial resolution and lacks the red-edge waveband. In that regard, WorldView-3
texture models, combined with red-edge band derivatives, could have better spectral responses to
grass above-ground biomass estimation with complex grass management treatments [7].

The aim of this study, therefore, is to test whether combining WV-3 optical texture models with
red-edge can improve the accuracies of predicting above-ground biomass of native grass grown under
different levels of mowing, burning and fertilizer treatments using the sparse partial least squares
regression algorithm. To achieve the above aim we tested the strength of (i) WV-3 wavebands with
that of broadband Vis; (ii) WV-3 standard wavebands combined with broadband VIs compared with
that of red-edge-derived Vis; (iii) WV-3 wavebands, broadband and red-edge VIs combined compared
to single-band texture models; (iv) all variables combined compared to that of all texture models in
estimating above-ground biomass of grass grown under different grassland treatments.
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2. Methods and Materials

2.1. Study Area Description

This study was undertaken at the Ukulinga Research Farm in Pietermaritzburg, KwaZulu-Natal,
South Africa (29◦24′E, 30◦24′S) (Figure 1). The weather at Pietermaritzburg is characterised by cold
winters and hot summers, with a minimum mean monthly temperature of 6 ◦C, as well as a maximum
mean monthly temperature of ±27 ◦C. Ukulinga is a 228 ha farm that is situated on a plateau, hence it
is characterized by a generally flat terrain with an altitude ranging between 838 and 847 m above sea
level [34]. The major grass species at the grassland trials on the University farm are Themeda triandra,
Heteropogon contortus, Eragrostis plana, Panicum maximum, Setaria nigrirostrosis and Tristachya leucothrix.
The mean height of these grasses was about 40 cm. The soils at the research farm are generally infertile,
acidic and of the Westleigh type [34]. The experimental site at Ukulinga was established by JD Scott
in 1950 [35], with the aim of understanding the influence of different management practices on grass
quantity and quality. In general, these grasslands in South Africa have a total economic value of
R 9.7 billion, which includes a consumptive value of R 1.59 million as well as an indirect value of about
R 8 million [36].
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2.2. Experimental Design

The experiment consisted of grass burning, mowing and fertilisation treatments at timely intervals.
A total of 54 plots measuring 13.7 m × 18.3 m, with native grass growing under mowing and burning,
were utilised in this study (Table 1). Burning treatments were undertaken at three levels, namely:
(i) annually; (ii) biennially (after two years); and (iii) triennially (after three years). Mowing was also
implemented at three levels. At Level 1, there was no mowing, at Level 2 grass was mown once in
August, and at Level 3, grass was mown twice in August and after the first Spring rains.

Table 1. Reflectance samples measured on each rangeland management treatment.

Treatment Level Treatment Samples Plots

C1 Control 60 3
C2 Annual burn (in August) 60 3
C3 Annual burn (after Spring rain) 60 3
C4 Biennial burn (in August) 60 3
C5 Biennial burn (after Spring rain) 60 3
C7 Triennial burn (in August) 60 3
C8 Triennial burn (after Spring rain) 60 3
C10 Mowing (in August) 60 3
C11 Mowing (after Spring rain) 60 3
D1 Control 60 3
D2 Annual burn (in August) 60 3
D3 Annual burn (after Spring rain) 60 3
D4 Biennial burn (in August) 60 3
D5 Biennial burn (after Spring rain) 60 3
D7 Triennial burn (in August) 60 3
D8 Triennial burn (after Spring rain) 60 3

D10 Mowing (in August) 60 3
D11 Mowing (after Spring rain) 60 3
Total 1080 54

Note: Grass on C treatments are removed end of February, while those in D are removed twice in February
and December.

2.3. Field Campaign

To extract spectra from each plot, 20 points were randomly generated in a Geographic Information
System (GIS) environment. Ultimately, 1080 points were derived from 54 plots and used to extract all
WV-3 variables, using an overlay function in a GIS (Table 1). To test the capability of the combined
red-edge and texture models in estimating above-ground grass biomass, we conducted a field survey
on the 10 February 2016. During the field campaigns, plots with native grasses grown under mowing,
burning, as well as no-treatment, were surveyed and the grass biomass clipped. The wet biomass of
grass from each level of treatment was derived after cutting during the field survey. The samples
were then taken to the laboratory, where moisture content was determined and dry grass biomass,
hereafter referred to as above-ground grass biomass, was derived.

2.4. Remotely Sensed Data

A WorldView-3 image, acquired on a cloudless day on 16 February 2016, was used in this study
to evaluate the strength of red-edge, combined with texture models, in predicting above-ground
biomass. The WV-3 image has eight multispectral bands, i.e., coastal blue at 400–450 nm, blue at
450–510 nm, green at 510–589 nm, yellow at 585–625 nm, red at 630–690 nm, red-edge at 705–895 nm
and two near-infrared bands, which overlap, at 770–895 and 860–1040 nm, respectively. The spatial
resolution of all wavebands was 2 m. The image was first pre-processed to correct for the influence
of atmospheric effects, using the Fast Line of Sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH), based on the parameters that were provided with the image. The FLAASH analysis
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was conducted after converting the image into radiance in Envi 5.2. Subsequently, the WorldView-3
image was geometrically corrected, based on ten locations measured using a handheld Trimble
GeoXH 6000 global positioning system with a sub-meter accuracy. The image was then to resample
using the first order polynomial transformation and nearest-neighbor resampling technique as in
Sibanda et al. [37]. As mentioned earlier, the atmospherically corrected image was used in an overlay
analysis, in conjunction with the point map, in order to derive spectral signatures of grass growing
under different levels of grassland management treatments.

2.5. Modelling Above-Ground Grass Biomass

Single wavebands, broadband and red-edge vegetation indices, as well as grey level co-occurrence
single-band and band-ratio texture models, were derived in Envi 4.3 from the pre-processed WV-3
image. The vegetation indices used in this study were chosen based on their optimal performance in
literature [17,22]. Formulae for computing vegetation indices are detailed in Schumacher et al. [38].
The window sizes for deriving the grey-level co-occurrence texture models used in this study were
3 × 3, 5 × 5 and 7 × 7 pixels [39,40]. These window sizes were selected because their area was not
bigger than that of a single plot of grass used in this study. The co-occurrence shifts considered in this
study were 0:1, 1:1, 1:0, −1:1, 1:−1 which were chosen based on literature [30,41] and a quantization
level of 64 was used in this study. The texture models computed in this study were mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment and correlation. More details about
the formulae for computing these texture models are summarised in Dube and Mutanga [30], as well
as Schumacher et al. [38]. All the variables used in this study, and the formulae used to compute them,
are detailed in Table 2. The derived spectral signatures were saved in a table format and exported to
Microsoft Excel as comma separated values. These were then imported into Statistica Version 7 and R
statistical software for statistical modelling.

Table 2. Variable categories used in this study.

Phase Analysis Variable Description Reference

1 Bands WV-3 B2-B8 Single-bands—reflectance values

vs.

Broadband VIs Broadband VIs

Chlorophyll Index Green CGM =
NIR

G
− 1

Kang et al. [42],
Gitelson et al. [43]

Green normalised
difference VI GNDVI =

NIR− G
NIR + G

Fernández-Manso et al. [44]

Green blue normalised
difference VI GBNDVI =

NIR− (G + B)
NIR + (G + B)

Santoso et al. [45]

Normalised difference VI NDVI =
NIR− R
NIR + R

Tucker [46]

Soil adjusted vegetation index SAVI =
NIR− R

NIR + R + 0.5
× (1 + 0.5) Huete [47]

Enhanced vegetation index EVI =
2.5× NIR− R

NIR + 6× R− 7.5× B + 1
Cabezas et al. [48]

2 Broadband VIs + bands Red-Edge Indices

vs. Browning reflectance index BRI =
1
G −

1
RE

NIR
Merzlyak et al. [49]

Red-Edge Vis Canopy chlorophyll
content index CCCI =

NIR− RE
NIR + RE
NIR− R
NIR + R

El-Shikha et al. [50]

Normalised difference
near-infrared red-edge index NDNRE =

NIR− RE
NIR− RE

Normalised difference
red-edge index NDRE =

RE− R
RE + R

Fitzgerald et al. [51]

Tasseled cap: Soil
brightness Index

TCSBI = 0.332× G + 0.603× R +
0.675× RE− 0.262× NIR Cabezas et al. [48]

Anthocyanin reflectance Index Gitelson et al. [52]
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Table 2. Cont.

Phase Analysis Variable Description Reference

3 All VI + Bands Single Band Textures,
windows (3 and 5)

vs. Texture type:

Single-band textures Mean Mn =
N−1
∑

i,j=0
(Pi,j)

Wallis [31]
Kelsey et al. [53]

Schumacher et al. [38]
Ouma et al. [54]
Salas et al. [33]
Zhao et al. [21]

Variance Var =
N−1
∑

i,j=0
Pi, j(i−ME)2

Homogeneity Hom =
N−1
∑

i,j=0

Pi, j

1 + (i, j)2

Wallis [31]
Kelsey et al. [53]

Schumacher et al. [38]
Ouma et al. [54]
Salas et al. [33]
Zhao et al. [21]

Contrast Con =
N−1
∑

i,j=0
Pi, j(i− j)2

Wallis [31]
Kelsey et al. [53]

Schumacher et al. [38]
Ouma et al. [54]
Salas et al. [33]
Zhao et al. [21]

Dissimilarity Dis =
N−1
∑

i,j=0
Pi, j|i− j|

Entropy Ent =
N−1
∑

i,j=0
Pi, j

(
−, ln Pi,j

)
Second moment Sec =

N−1
∑

i,j=0
P2i, j

Correlation Cor =
N−1
∑

i,j=0
Pi, j

[
(I −ME)(j−ME)√

VAIVAJ

]

4 Band texture variables Band-ratios texture
B2/B3, B2/B5, B2/B7, B2/B8, B3/B5,
B3/B7, B3/B8, B5/B7, B5/B8, B2/B6,
B3/B6, B6/B7, B6/B8, B6/B8, B8/B7,

vs.

All combined data

Note: Pi, j = ∑N−1
I,J=0 Vi, j where Vµ is the value in cell i, j and N is the number of rows or columns.

2.5.1. Statistical Modelling of Above-Ground Grass Biomass

The initial step was to conduct exploratory analysis and to derive descriptive statistics in Statistica
Version 7. Under the exploratory data analysis procedure, we tested whether above-ground grass
biomass data measured in the field significantly deviated (α = 0.05) from the normal distribution,
based on the Lilliefors test. We then tested whether there was significant difference in the amount of
above-ground biomass of grass grown under different levels of mowing and burning treatments based
on analysis of variance and Tukey’s honest significant difference post hoc test.

2.5.2. Regression Modelling

In this study, we used Chun and Keleş’s [55] sparse partial least regression (SPLSR) algorithm.
The SPLSR algorithm converts the variables into new orthogonal factors to circumvent multicollinearity
and overfitting issues, considering the large number of variables used in this study. In converting
the variables into orthogonal factors, SPLSR imparts sparsity into the models and then selects
the optimal variables that correlate better to grass above-ground biomass. Because of these capabilities,
SPLSR is appropriate for application on data with multicollinearity issues, such as the texture models of
this study, relative to other algorithms (i.e., partial least squares regression (PLSR)) [55,56]. In this study,
the aim was to test whether combining WV-3 optical texture models with red-edge derivatives improves
accuracies. Therefore, SPLSR was chosen and utilised because of its ability to select optimal variables.

2.5.3. Assessing the Accuracy of Above-Ground Grass Biomass Models

To evaluate the accuracy of above-ground grass biomass models in this study, a leave-one-out
cross-validation (LOOCV) procedure was followed, as detailed in Ritcher et al. [18]. In implementing
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the LOOCV procedure, 1080 samples, derived from 54 grassplots, were eliminated one by one and
above-ground grass biomass estimation errors for each latent variable were derived. The latent variables
that exhibited the least root mean square errors were considered as the optimal models for estimating
above-ground grass biomass across different levels of grassland management treatments. We computed
the coefficient of determination (R2), root mean square error (RMSEP) as well as the relative root mean
square error (RMSEP_rel), as in Frazer et al. [57], to evaluate the models derived using band indices,
as well as texture models. Models that exhibited small RMSEs and a high R2 were considered to be best
in estimating above-ground biomass. Considering that SPLSR has the capability of identifying selecting
optimal variables, we then used the variable importance (VIP) scores allocated for each of the selected
variables by SPLSR, to distinguish the most influential ones from the best models [56].

Finally, an analysis of variance was used to test whether there were significant differences between
the accuracies (RMSEP) of: (i) WV-3 wavebands; (ii) broadband Vis; (iii) Wavebands combined with
broadband VIs; (iv) red-edge VIs; (v) combination of all VIs and wavebands; (vi) single-band texture
models; (vii) combination of single-band and band-ratio texture models; and (viii) all variables combined
in predicting above-ground biomass. These combinations were derived from literature [30,38].
Analysis of variance (ANOVA) was used after the normality test and it indicated that the data did not
significantly deviate from the normal distribution.

2.5.4. Phases of Estimating Above-Ground Grass Biomass

Table 2 summarises the four phases that were followed. In phase one, the strength of
WV-3 wavebands was compared with that of broadband vegetation indices. In the second
phase, wavebands were combined with broadband vegetation indices and then compared with
the performance of red-edge vegetation indices. In the third phase, the wavebands, broadband and
red-edge vegetation indices were combined and compared to the performance of single-band texture
models. Lastly, the combination of all variables were then compared with the performance of all
texture models. The optimal bands, indices and texture models that are derived using the variable
selection capability of SPLSR were then used to estimate above-ground biomass across all grassland
management treatments in this study. Figure 2 conceptually illustrates the phases followed.
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Figure 2. Flowchart illustrating stages in estimating above-ground (ABG) grass biomass in this study.
Wbs represents WV-3 wavebands, VIs are vegetation indices, BB-VIs are broadband vegetation indices,
SB-TXT represents single band texture models and BR-TXT represents band ratio texture models.
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3. Results

3.1. Descriptive Statistical Analysis and ANOVA Tests

Normality test results based on the Lilliefors test, showed that above-ground grass biomass
did not significantly deviate from the normal distribution (α = 0.05), as illustrated in Figure 3a.
Consequently, ANOVA and SPLSR were then conducted. Figure 3a illustrates other descriptive
statistics of grass above-ground biomass. The mean of 3.158 kg and a median of 3.149 kg were derived
from the field-measured above-ground biomass of grass growing under different levels of burning and
mowing treatments. Significant differences in the amount of above-ground biomass were observed
amongst grasses growing under different grassland treatments (Figure 3b). Furthermore, Tukey’s HSD
post hoc test showed that there were significant differences in the quantity of grass biomass between
different pairs of burning and mowing grass treatments, as illustrated in Table 3 (p-value < 0.05).
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Figure 3. (a) Descriptive statistics of measured grass above-ground biomass; (b) significant difference
amongst different levels of mowing and burning grassland management treatments based on analysis
of variance test. Bars represent mean biomass of each management treatment level while whiskers
represent confidence intervals of means at 95%.

Table 3. Significant differences between different pairs of grass above-ground biomass grown under
different levels of mowing and burning treatments, based on the Tukey’s HSD test.

C2 0.00
C3 0.00 0.00
C4 0.00 0.89 0.00 0.00 Significant (α = 0.05)
C5 0.00 1.00 0.00 1.00 1.00 Non-Significant
C7 1.00 0.00 0.00 0.00 0.00
C8 0.00 0.00 1.00 0.00 0.00 0.00

C10 0.00 0.53 0.04 0.00 0.04 0.00 0.14
C11 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.14
D1 0.00 0.02 0.00 0.94 0.37 0.00 0.00 0.00 0.00
D2 0.00 0.04 0.00 0.98 0.53 0.00 0.00 0.00 0.00 1.00
D3 0.00 0.00 0.00 0.73 0.14 0.00 0.00 0.00 0.00 1.00 1.00
D4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.14 0.53 0.03
D7 0.00 0.08 0.00 1.00 0.69 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.08
D8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.24 0.69 0.01 1.00 0.14
D10 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.92 0.83 0.99 0.00 1.00 0.69 1.00
D11 0.00 0.97 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.83 0.92 0.53 0.00 0.00 0.97 0.00 0.01

Treatment C1 C2 C3 C4 C5 C7 C8 C10 C11 D1 D2 D3 D4 D5 D7 D8 D10

Note: light grey cells illustrate significant differences between pairs of treatments, while dark grey cells represent
non-significant differences (α = 0.05). D1 to D11 and C1 to C11 represent the different levels of burning and
mowing treatments illustrated in Table 1.
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3.2. Comparing the Performance of WorldView-3 Wavebands Combined with Broadband Vegetation Indices
(Vis) and Red-Edge VIs in Estimating Above-Ground Grass Biomass

Exploring the possibility that WV-3 wavebands could better estimate above-ground biomass
in relation to broadband VIs resulted in very small and very high RMSEP indicating poor model
fitting. In that regard, those results were not presented. It can be observed from Figure 4a,b that
the red-edge-derived vegetation indices performed better than broadband vegetation indices combined
with band reflectance values. Red-edge-derived VIs resulted in higher accuracies (lower RMSEP),
when compared with combined broadband VIs and band reflectance values. Specifically, triennial
burning treatment D7 (R2 = 0.45, RMSEP = 0.26 kg/m2, RMSEPrel = 12.83) exhibited the lowest
prediction error, when red-edge-derived vegetation indices were used. Meanwhile, the highest
prediction errors obtained based on the red-edge vegetation indices were observed in C5 (R2 = 0.62,
RMSEP = 0.87 kg/m2, RMSEPrel = 28.49). Red-edge-derived vegetation indices improved the
accuracies of above-ground grass biomass estimation. However, relatively high prediction errors
were observed from the triennial burn treatment D7 (R2 = 0.2, RMSEP = 0.34 kg/m2, RMSEPrel = 13)
and C5 (R2 = 0.04, RMSEP = 1.81 kg/m2, RMSEPrel = 92.21), when WV-3 bands were combined
with broadband vegetation indices in estimating above-ground grass biomass. The optimal red-edge
indices that were selected were the normalized difference near-infrared red-edge index, the normalized
difference red-edge index, the canopy chlorophyll content index, the tasseled cap: soil brightness
index, and the anthocyanin reflectance index, in order of influence.
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Figure 4. A comparison of estimation accuracies derived using different WV-3 satellite data and its
derivatives. Root mean square error of prediction (RMSEP) and R squares obtained in comparing (a,b)
WV-3 combined BB_VIs and red-edge vegetation (RE_VIs) (c,d), all VIs combined with WVbs and
single-band texture models (SB_TXT) and (e,f) SB_TXT) and all data combined. C1–11 and D1–11 are
illustrated in Table 1.
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3.3. Comparing the Performance of Single-Band Texture Models with All WV-3 VIs and Band Reflectance
Values in Estimating Above-Ground Grass Biomass

The results of this study showed that the single-band texture models derived using the SPLSR
algorithm predicted above-ground grass biomass better than all vegetation indices and wavebands
combined. Figure 4c,d shows accuracies derived from using single-band texture models, as well as
combined vegetation indices and wavebands. Based on single-band texture models, triennial burn
treatments C7 (R2 = 0.51, RMSEP = 0.18 kg/m2, RMSEPrel = 5.56) had the least prediction errors.
The single-band texture predictions had relatively lower estimation errors, when compared with all
vegetation indices, combined with wavebands (C7 R2 = 0.18, RMSEP = 0.48 kg/m2, RMSEPrel = 9.83).
When single-band texture models were used, the optimal window sizes were 3 × 3 and 5 × 5 at [0:1]
and [1:1] offsets. The mean, dissimilarity, homogeneity entropy, correlation, variance and second
moment texture model types were frequently selected as optimal variables at this stage, based on
the SPLSR algorithm. In this study, the single-band texture and band-ratio texture models did not
perform significantly differently, hence those results were not included in this study.

3.4. Comparing the Performance of Combined Single-Band and Band-Ratio Texture Models with
the Combination of All WV-3 VIs, Band Reflectance Values and Single-Band Texture Models in
Estimating Above-Ground Grass Biomass

Results of this work also showed that all data combined (texture indices, vegetation indices
a nd spectral wavebands), outperformed the texture models (i.e., single-band and band-ratio
texture). Texture models individually exhibited slightly higher prediction errors when compared
to the combination of single-band texture models’ vegetation indices and wavebands. Based on all
variables combined, biennial burn treatments C4 (R2 = 0.89, RMSEP = 0.1 kg/m2, RMSEPrel = 3.45)
had the lowest estimation errors. The combination of texture models resulted in comparatively lower
accuracies with higher errors (C4: R2 = 0.29, RMSEP = 0.22 kg/m2, RMSEPrel = 5.61) (see Figure 4e,f).

3.5. Estimating Above-Ground Grass Biomass across Different Levels of Grassland Management Treatments
Using WV-3-Derived Texture Models Combined with Optimal Vegetation Indices Selected by
the SPLSR Algorithm

When all data were combined and all treatments pooled, a comparatively lower prediction error
was obtained, as illustrated in Figure 5. Further analysis (Figure 5b) illustrated that the stray points
on Figure 5a were induced by those variables which exhibited low correlation coefficients such as B6,
B6/B7 and NDRRE. However, the overall influence of stray points on error was minimal as indicated
by an observed R2 of 0.90 and RMSEP of 1.67 kg/m2. It was also observed that the red-edge-derived
texture and vegetation indices were the most influential variables that produced relatively lower
accuracies (Figure 6). From the selected variables, the 5 × 5 second moment and variance simple
band-ratio texture models derived from Bands 6 and 7 exhibited the highest scores in this study.

Figure 7 illustrates the spatial distribution of above-ground biomass (ABGB) across different
levels of mowing and burning treatments. It can be observed that the triennial (C8) and biennial
C5) treatments accumulate more biomass, compared to the annual burn (D3). On the other hand,
the mowing treatments (C10) show less ABGB accumulation, due to the high removal of grass.
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Figure 5. (a) Relationship between the field-measured and estimated grass above-ground biomass
across all grass management treatments for validating sparse partial least regression (SPLSR) models,
based on the leave-one-out cross-validation procedure. Note that the relative root mean square error is
presented as a percentage; (b) illustrates the relationship between all the optimal variables and grass
biomass across all treatments.
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Figure 6. Best variables selected using SPLSR, in estimating above-ground grass biomass across
different grassland management treatments. Note that on ‘B6/B7’ represents the ratio of WV-3
Bands 6 and 7 and NDRE is the normalized difference red-edge index.
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Figure 7. Spatial distribution of biomass across different grassland management treatments.

Figure 8 summarises the accuracies obtained, using single wavebands, broadband vegetation
indices, red-edge vegetation indices, single-band and band-ratio texture models, in predicting
ABGB across different levels of mowing and burning treatments. When single wavebands were
used in estimating above-ground grass biomass, an average RMSEP of 1.02 kg/m2 was obtained.
These variables had the highest RMSEP and were the least accurate predictors for estimating grass
ABGB in this study. The accuracy of estimating ABGB slightly improved to an average RMSEP of
0.83, 1.02 kg/m2, when broadband vegetation indices were used. However, combining the broadband
vegetation indices did not significantly improve the accuracy of ABGB estimation, as illustrated in
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Figure 8. The red-edge vegetation indices significantly improved the accuracy of ABGB estimation
to average RMSEP: 0.55 kg/m2. The combination of red-edge vegetation indices with broadband
vegetation indices, as well as single wavebands, did not significantly improve the accuracy of
estimating grass ABGB in this study. When single-band grey level co-occurrence texture matrices
were used the ABGB prediction accuracy significantly improved (average RMSEP: 0.35 kg/m2).
In comparison, the combination of single-band and band-ratio texture models did not significantly
improve the accuracy of estimating ABGB. When all variables were combined (red-edge and texture
models), optimal accuracies (average RMSEP: 0.2 kg/m2) were obtained in this study.
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the upper and lower confidence intervals of the mean.

4. Discussion

This study tested the robustness of combining texture models with red-edge in estimating
the ABGB across different rangeland management treatments, based on the recently launched
WorldView-3 EO data. This study specifically sought to find out whether the integration of the red-edge
with grey level co-occurrence texture models, extracted at different window sizes and offsets,
could improve the accuracy of models for predicting grass above-ground biomass across different
levels of mowing and burning treatments in the context of southern African grasslands.

4.1. Combining Texture Models with Red-Edge in Predicting above-Ground Grass Biomass

The findings of this study suggest that combining texture metrics and red-edge-derived vegetation
indices has relatively higher prospects of improving the estimation accuracy of ABGB growing across
different levels of grassland management treatments, when compared to the performance of texture
metrics as stand-alone data.

This could be attributed to the sensitivity of the red-edge section of the electromagnetic spectrum
to the variations in LAI and LAD changes [58,59], as well as foliar chlorophyll variability caused
by different levels of mowing, and the influx of post-fire nutrients [60]. During the mowing
process, grass twigs and leaves are reduced, according to different mowing treatment levels.
This results in the alteration of the grass LAI as well as LAD across different levels of mowing.
Accordingly, the spectral reflectance from these mowing different levels is better detected by
the red-edge section of the electromagnetic spectrum, augmenting the performance of texture models.
Furthermore, the red-edge is also sensitive to the variability in chlorophyll content, which accumulates
after the burning treatment of grass. This also facilitates an improvement in the accuracy of
the estimation of grass biomass, when the red-edge is combined with texture models.

Meanwhile, the textural variables are sensitive to the geographical distribution of minute,
but crucial, tonal grass variations in the image induced by the reflectance of different levels of
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grassland management treatments on certain spectral bands, such as the red-edge and its derived band
ratios [61]. This boosts the robustness of texture models and red-edge variables in estimating ABGB.
Furthermore, texture is also sensitive to the variations in LAI and LAD induced by mowing, as well
as the high chlorophyll content from post-fire nutrients in those grasses grown under different levels
of burning and mowing treatments. Subsequently, high estimation accuracies of above-ground grass
biomass are realised when texture models are combined with the red-edge derivatives. In addition
texture optimises the characterisation of spatial information independently of the tone, while increasing
the range of biomass to optimal levels [8]. This facilitates robustness and a plausible performance,
when texture metrics are combined with red-edge waveband derivatives, optimising the accurate
estimation of ABGB across complex grassland management treatments in this study. Our results are
consistent with those of Zhang et al. [62], who noted that the models derived from a combination
of spectrum and texture models of the Chinese high-resolution remote sensing satellite Gaofen-1,
increased the estimation accuracies of Populus euphratica forest when compared with the performance
of reflectance or texture models. In another similar study, Takayama and Iwasaki [63] showed that
the combination of the spatial and spectral information from spectral responses and texture models
optimally improved the estimation accuracies of tropical vegetation biomass from a RMSE of 66.16 t/ha
to a RMSE of 62.62 t/ha in Hampangen, Central Kalimantan, Indonesia, based on WV-3 satellite data.
Kelsey and Neff [53] also demonstrated that texture models improved the estimation of vegetation
biomass at the San Juan National Forest in southwest Colorado, USA, from a RMSE of 56.4 to a RMSE
of 45.6, based on Landsat data.

Results of this study also indicated that the single-band texture metrics improved the accuracy
of ABGB estimation relative to red-edge and broadband VI, combined with single wave bands.
This is because texture metrics are renowned for accurately capturing the heterogeneity of vegetation
structural traits when compared to vegetation indices as a stand-alone dataset [29,32]. The local
variance within pixels at a defined neighbourhood, induced by different levels of mowing and burning
treatments in this study, is better distinguished by the texture variables when compared with their
spectral signature variations at various WorldView-3 wavelengths. Specifically, the spectral responses
of vegetation are computed on a pixel basis, while texture is computed from a desired neighbourhood
of pixels that is adjustable, increasing the prospects of texture in credibly predicting biomass better
than broadband and spectral reflectance [53].

Furthermore, the optimal performance of texture variables, in relation to red-edge and other
wavebands and indices in this study, could be explained by the fact that the saturation levels of texture
metrics in estimating biomass are considerably higher when compared to those of vegetation indices,
such as NDVI, which saturate at lower levels of biomass [64,65]. This results in the underestimation of
ABGB. In addition, the distinctive performance of texture models could also be attributed to the fact that
the band-ratio textures are an amalgamation of strengths derived from different spectral wavebands,
combined with image tone variations. This increases the sensitivity of texture and red-edge models
to the spatial characteristics of different grass canopies, hence facilitating a comparatively higher
estimation accuracy of ABGB, a mammoth challenge when using vegetation indices.

Our results are consistent with those of a growing body of literature that attests the optimal
performance of grey level texture models, when compared to all vegetation indices [32,64,66].
For example, Zhang et al. [62] noted that when texture models from a high spatial resolution
(2 and 16 m) GoaFen-1 optical EO data were integrated, the accuracy of above-ground of
the Populus euphratica forest. In a related study, Sarker and Nichol [7] concluded that the spectral
reflectance and traditional vegetation indices have low prospects for estimating biomass,
when compared with texture models. Specifically, Sarker and Nichol [7] noted that texture models
derived from ALSO AVNIR-2 improved the vegetation biomass estimation from a RMSE of 64 t/ha,
based on traditional vegetation indices and spectral reflectance to a RMSE of 46 t/ha, as noted in
this study. However, Sarker and Nichol’s [46] results showed that band ratios further improved
the accuracy of estimating biomass to a RMSE of 32 t/ha. Their results are contrary to those of this
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study, which indicated that band-ratio and single-band texture models did not perform significantly
differently when predicting ABGB across different levels of grassland management treatments.

Furthermore, results of this study showed that the red-edge waveband derivatives improved
the accuracy of the models for predicting ABGB at different grassland management treatments,
when compared to broadband vegetation indices combined with wavebands. Based on the results of
this study, the red-edge bands outperformed the broadband vegetation indices, combined with raw
wavebands. These results were somewhat expected, as this has been noted in literature. This can be
explained by the fact that the red-edge portion of the electromagnetic spectrum is highly sensitive
to changes in the grass chlorophyll [67], induced by disturbances such as mowing and burning.
Post-fire foliar nutrients, which are rich in nitrogen and phosphorus, induce high chlorophyll
concentrations in the grass, which is then detected by the red-edge waveband derivatives in this study.

Meanwhile, the decreases in the leaf area distribution and LAI, due to mowing activities,
induces a variation in the signature of grass, which is then detected better by the red-edge derivatives,
when compared with the single wavebands and broadband vegetation indices. Our results are
consistent with those found in a growing body of contemporary literature [68–71]. For instance,
Fernández-Manso et al. [44] noted that red-edge derivatives detected the fire activities better and with
higher accuracies (Modified Simple Ratio red-edge narrow R2: 0.69), when compared to single wave
bands and broadband vegetation indices (Red band R2: 0.093, NIR R2: 0.63, and NDVI R2: 0.43) in
Sierra de Gata (central-western Spain), based on Sentinel data. Gara, et al. [70] also noted that the
inclusion of red-edge derivatives also improved the estimation of carbon stocks from an explained
variance of 63%, based on NDVI, to 70% in the savanna dry forest of Zimbabwe.

4.2. Biological Behavior of Grasses at Ukulinga Research Farm Based on Literature Review

As highlighted earlier, mowing through defoliation reduces grass LAI as well as LAD.
This markedly reduces the relative abundance of the dominant Themeda triandra (which is a highly
palatable grass species), overall grass basal cover as well as the biomass [72]. The changes in
grass species composition and dominance then could explain the spatial variability of grass
biomass noted in this study. Furthermore, mowing at Ukulinga increased sward productivity in
the season following the removal treatment when compared to burning which promotes growth of
grasses with higher protein content [72]. This is illustrated by high estimates of biomass in some
mowing (C10 and 11 as well as D10 and 11) treatments in relation to other burning treatments
(C2 and 3 as well D2 and 3) in the results of this study through high biomass. Treatments with
frequent fire administration would yield a variety of short grasses dominated by a Themeda triandra,
Hyparrhenia hirta and Tristachya leucothrix as shown by Kirkman et al. [73] which could also explain
some of the variabilities observed in treatments such as C1 and 2 with annual burning relative to
other treatments. Kirkman et al. [73] reported that there is a high replacement rate of the dominant
grass species between annually burned and unburned treatments at Ukulinga. These findings by
Kirkman et al. [73] are in agreement with the results of this study which indicate a variability in
the estimated ABGB between annually burned and the control treatments. Furthermore research
shows that biennially burnt treatments tend to produce more biomass, on average, than treatments
burnt less frequently or mown annually in winter [74]. Above all, the effects of mowing and burning,
as well as their interaction on native grasses still requires further studies [75] especially from a remote
sensing context.

5. Conclusions

The aim of this study was to assess the accuracy of combining red-edge derivatives with texture
models in predicting the above-ground biomass of grass growing under different levels of grassland
management treatments. Based on the findings of this study, we conclude that:

• combining texture models with red-edge derivatives provides a more accurate approach in
estimating the above-ground biomass of grass grown under complex grassland management
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treatments. To the best of our knowledge, this is the first study to evaluate the utility of texture
models and red-edge in estimating above-ground grass biomass, across a multitude of grassland
management treatment levels,

• the best predictor in estimating above-ground biomass (ABGB) grown under complex grassland
management treatments was derived using all data combined,

• texture models perform better than the red-edge vegetation indices in estimating grass
above-ground biomass, and

• as expected, the red-edge spectrum-derived vegetation indices outperformed the broadband indices.

In testing specific objectives, our results suggests that (i) broadband vegetation indices such as
normalised difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil-adjusted
vegetation index (SAVI) are comparatively better predictors of ABGB WorldView-3 (WV-3) standard
wavebands; (ii) red-edge-derived vegetation indices are better predictors than standard wave
bands combined with broadband vegetation indices; (iii) texture models are better predictors of
ABGB in relation to red-edge, broadband vegetation indices (Vis) combined with all WV-3 bands;
(iv) band texture ratios are better predictors of ABGB across different treatments when compared to all
variables combined. Ultimately, when all variables were combined, red-edge VI texture and band-ratio
texture exhibited optimal ABGB predictions in this study. The results of this work give insights into
the estimation of grass biomass in complex grassland management treatments of arid tropical region
grasses. The bulk of the studies that have demonstrated the utility of texture variables in above-ground
biomass estimation have focused on the forests and crops of America and Europe. Therefore, to the best
of our knowledge, the results of this study demonstrate, for the first time, the utility of texture models
combined with red-edge waveband derivatives in estimating above-ground grass biomass across the
complex grassland management treatments of the arid tropics, characterised by a high soil background
effect. These results are an important footstool upon which critical spatial information required for
grassland policy-making and sustainable grassland management in southern Africa could be derived.
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