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Abstract: This study presents a back propagation neural network (BPNN) method to rebuild a global
and long-term soil moisture (SM) series, adopting the microwave vegetation index (MVI). The data
used in our study include Soil Moisture and Ocean Salinity (SMOS) Level 3 soil moisture (SMOSL3sm)
data, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), and
Advanced Microwave Scanning Radiometer 2 (AMSR2) Level 3 brightness temperature (TB) data and
L3 SM products. The BPNNs on each grid were trained over July 2010–June 2011, and the entire year
of 2013, with SMOSL3sm as a training target, and taking the reflectivities (Rs) of the C/X/Ku/Ka/Q
bands, and the MVI from AMSR-E/AMSR2 TB data, as input, in which the MVI is used to correct
for vegetation effects. The training accuracy of networks was evaluated by comparing soil moisture
products produced using BPNNs (NNsm hereafter) with SMOSL3sm during the BPNN training
period, in terms of correlation coefficient (CC), bias (Bias), and the root mean square error (RMSE).
Good global results were obtained with CC = 0.67, RMSE = 0.055 m3/m3 and Bias = −0.0005 m3/m3,
particularly over Australia, Central USA, and Central Asia. With these trained networks over each
pixel, a global and long-term soil moisture time series, i.e., 2003–2015, was built using AMSR-E
TB from 2003 to 2011 and AMSR2 TB from 2012 to 2015. Then, NNsm products were evaluated
against in situ SM observations from all SCAN (Soil Climate Analysis Network) sites (SCANsm).
The results show that NNsm has a good agreement with in situ data, and can capture the temporal
dynamics of in situ SM, with CC = 0.52, RMSE = 0.84 m3/m3 and Bias = −0.002 m3/m3. We also
evaluate the accuracy of NNsm by comparing with AMSR-E/AMSR2 SM products, with results of a
regression method. As a conclusion, this study provides a promising BPNN method adopting MVI to
rebuild a long-term SM time series, and this could provide useful insights for the future Water Cycle
Observation Mission (WCOM).

Keywords: soil moisture; neural network; long time series; microwave vegetation index

1. Introduction

Land surface soil moisture (SM), which is the water stored in the upper soil layer, is a key
variable to improve our understanding of the energy and water cycles in the Earth system; thus, it
is an important parameter in climate, hydrology, and environment [1–4]. SM plays a crucial role in
a large number of applications, including numerical weather prediction, disaster monitoring, crop
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yield prediction, flood and drought damage estimation, water resources management, greenhouse
gas accounting, civil protection, and epidemiological modeling of water borne diseases [5–8]. SM, as
a key parameter in the water cycle process, has been endorsed by the Global Climate Observing
System (GCOS) as one of 50 Essential Climate Variables (ECVs), which are required to support
the work of the United Nations Framework Convention on Climate Change (UNFCCC) and the
Intergovernmental Panel on Climate Change (IPCC). As many applications mentioned above require a
soil moisture record that spans a longer period than the lifetime of a single sensor, SM is required for
both current and historical observations. There is a need to build a long time-series SM product. Lack
of spatial-temporal-consistent, long time series products, existing SM data with various resolutions,
and accuracy cannot provide effective support for the study of the water cycle response mechanism
to global climate change, which has been identified as one of scientific objectives of the new Chinese
satellite mission of WCOM [9,10]. It is necessary to build space-temporal-consistent, long time series
products of SM, to answer the scientific problems in the study of the water cycle and climate change.

Both the active and passive microwave remote sensing systems can estimate SM through the
observation of backscatter signals and brightness temperatures (TBs), especially passive microwaves
at low frequencies. The theoretical basis of microwave remote sensing of soil moisture is that very
large differences between the dielectric constants of dry soil and liquid water lead to a very large
contrast between wet soil and dry soil [11,12]. Several microwave radiometers onboard satellites
can be used to estimate global soil moisture, such as radiometers operating at the C band and at
higher frequencies [13–15], including the Scanning Multichannel Microwave Radiometer (SMMR),
the Special Sensor Microwave/Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI), WindSat, AMSR-E/AMSR2, and FY-3 (FengYun 3) from China, etc. However,
these radiometers are easily affected by vegetation attenuation, are insensitive to soil moisture under
conditions of moderate vegetation (water content greater than ~3 kg/m2), and measurements can only
represent information about the top of 1 cm of soil [11]. Since the launch of SMOS of the European
Space Agency (ESA), which operates at a low frequency (L-band), several similar satellites have
been successively launched, including the Aquarius- and the Soil Moisture Active Passive (SMAP)
mission [1,6,16,17]. All of them can provide global observations in the L-band, in which SMOS provides
TB observations with multiple incidence angles, and the SMAP mission and Aquarius/SAC-D are
supposed to provide global measurements at both the L-band TB and backscatter. However, the SMAP
radar stopped working in July 2015. L-band has more advantages in the retrieval of soil moisture,
because it can penetrate the atmosphere and vegetation coverage (up to ~5 kg/m2 water content), and
TB represents information on the upper 5 cm of soil [1].

In order to make full use of the observations accumulated by different sensors, and to build
a long time series dataset, multisource soil moisture data from historical and existing data should
be merged for a long period of time. Liu et al. [18] presented an approach for combining passive
and active soil moisture. This research spanned the soil moisture observations period starting from
1979, and is of great significance to enhance our basic understanding of soil moisture in the water,
energy and carbon cycles. In view of the similar and different payload configurations, the solutions for
products rebuilding can be divided into two types: (1) Cross calibration method. For similar payload
configurations of different sensors, we can use the method of cross calibration. Different sensors
with similar payload configurations include SMMR, SSM/I, TMI, WindSat, AMSR-E/AMSR2, with
multi-frequency bands ranging from C, X, Ku, Ka-bands to higher frequencies; different sensors with
similar payload configurations also include sensors at low-frequencies, i.e., L band, such as SMOS,
Aquarius, SMAP/Radiometer, etc. The reconstruction solution of long time series products in this
case is takes cross calibrations between different sensors, unifies the algorithm, and applies the same
algorithm to the observations of different sensors; (2) Taking the most credible retrieval products (such
as SMOS products, etc.) as the standard reference, to train other data. For different sensors with low
and high frequencies, such as AMSR-E, with the C, X, Ku, and Ka-band, and SMOS, with the L band,
the reconstruction solution of long time series products may be the option in this case.
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The NNs method is an effective nonlinear method to establish a model. It has been widely
applied in remote sensing fields, including soil moisture retrieval. The general idea is to build
relationships between input data (TB/backscatter, SM) and target SMs (in situ SM, model SM, or
satellite SM) through NNs training, and then retrieve SM using the trained NNs. At a small scale, such
as the watershed scale, NNs have been used to retrieve soil moisture, with in situ measurements as
reference and airborne/satellite observations as input, including synthetic aperture radar (SAR) [19–25]
and radiometer observations [26–30], or both active/passive data [31,32]. Another approach is to
use a model SM as a reference to train NNs (models such as National Centers For Environmental
Prediction (NCEP), European Centre For Medium Range Weather Forecasts (ECMWF), Global Land
Data Assimilation System (GLDAS)), and add some auxiliary data to the input layer (Normalized
Difference Vegetation Index (NDVI), land surface temperature (LST), Precipitation (PRC)) to obtain
more ideal retrieval results [33–35]. These studies built the foundations of NN application in SM
retrieval. In recent years, some researchers have used NNs method to rebuild long time series global
SM products. Lu et al. [36] reconstructed a time series soil moisture dataset using SMOS and AMSR2
soil moisture products to train the NN, with daily TB, NDVI, LST, PRC, and DEM information as input
data. However, this study concentrated on the Heihe River Basin, and its time-series products only
had a year of products in 2012 because the limitations of AMSR2 TBs. In order to develop longer time
series products, based on the ESA-funded SM fusion study program, de Jeu et al. [37,38] designed
three approaches to retrieve global time series soil moisture datasets during the 2003–2013 period,
with SMOS and AMSR-E datasets over the June 2010–September 2011 period. Their goal was to carry
out an integration of SMOS in a consistent soil moisture climate record. The first approach was based
on statistical regression, which was adopted by Al-Yaari et al. [39]. The authors retrieved global soil
moisture during the 2003–2011 period using SMOSL3sm and AMSR-E TB observations as the training
dataset. The second approach is a NN method developed by Rodriguez-Fernandez et al. [40], using
ECMWF SM predictions and SMOSL3sm products as reference to train the NNs, with SMOS TB, ASCAT
backscatter (σ), NDVI, and soil texture information as input data. Rodriguez-Fernandez et al. [41–43]
compared different combinations of input data (TB, NDVI, texture) and obtained the best configuration
of TB to train NN. Additionally, they analyzed the contribution of auxiliary data to the accuracy of
SM retrieval. The third method, called Land Parameter Retrieval Model (LPRM) fusion, was derived
by van der Schalie et al. [44]. Their research updated roughness parameterization, and optimized
AMSR-E LPRM parameters for the C- and X-bands to match SMOS retrievals.

In our study, for comprehensive consideration, we adopted the second solution to rebuild long
time series SM products, using a BPNN method with SMOSL3sm products as a reference. The main
target of this study was to develop a reconstruction approach to obtain long time series global soil
moisture datasets, on the basis of previous studies. The initial purpose of this study is to find a way to
refine the former observations from the future WCOM soil moisture products, which mainly rely on
L-S-C band observations. Therefore, the best option is to use SMOS observations to train the former
AMSR-E/AMSR2 data. The data fusion of multi-source satellite observations lies outside of the aim of
this study. On the choice of reference, from Aquarius, SMAP, and SMOS, we selected SMOS SM as the
standard reference of SM products. SMOS provides multi-angular global microwave TB observations,
from 2010 until the present, and its SM products have the high accuracy of 0.04 m3/m3. A great deal
of research has evaluated SMOS SM products and demonstrated its high accuracy [45–56]. For the
consideration of long time series, we choose AMSR-E/AMSR2 data as the training dataset because it
has the same configuration and constitutes a continuous time series, for AMSR-E, lasting from 2003 to
2011, and AMSR2, lasting from 2012 to the present. In contrast to previous studies, we implemented
the Microwave Vegetation Indices (MVI) as inputs in order to provide information on the effects of
vegetation. Additionally, this study serves as part of the pre-feasibility studies of the scientific objectives
of WCOM. We will join the modeled and WCOM observed soil moisture to produce an even better
product, and then use this to refine the former observations (including SMOS, AMSR-E/AMSR2, etc.).
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The rest of this paper is organized as follows. Section 2 presents the different data used in the
study and the BPNN method used to retrieve soil moisture. Section 3 shows the results of BPNN
and evaluates NNsm with SCAN in situ SM observations. Then, Section 4 discusses the accuracy
and advantages of NNsm in comparison to satellite SM products, and the resulting datasets of other
methods. Finally, Section 5 provides conclusions.

2. Used Data and Methods

2.1. Used Data

2.1.1. SMOS Data

The ESA SMOS satellite has a sun-synchronous polar orbit with a 06:00/18:00 equator overpass
time of ascending and descending orbits. It provides global multi-angular TB observations at the
1.41 GHz L-band from 2010 until the present, with a resolution of 35–50 km, and the mission target of
SM products is 0.04 m3/m3 [57].

The SMOSL3sm ascending product (at 06:00 local time) was selected in our study, corresponding
to the AMSR-E/AMSR2 descending nighttime data (at 01:30 local time). SMOSL3sm daily products
are provided by CATDS (Centre Aval de Traitement des Données). It can be freely downloaded
from CATDS website from 16 January 2010, to the present. The SMOSL3sm daily product is a
gridded product, with a global size of 1383 rows × 586 columns and a 25 km resolution global EASE
(Equal Area Scalable Earth) grid. The format of the product is NetCDF, which is a user-friendly format.
The SMOSL3sm product represents the soil moisture of the top 5 cm of the soil layer.

SMOSL3sm was used in this study in the BPNN training period, and consisted of two years of
data: From 1 July 2010 to 30 June 2011, and the entire year of 2013. The first data period coincides with
the AMSR-E data below, and the second data period coincides with the AMSR2 data below.

2.1.2. AMSR-E Data

AMSR-E is one of six sensors onboard the NASA Aqua satellite, which was launched on 4 May
2002, and stopped operations on 4 October 2011. It had a 13:30/01:30 equator-crossing orbit of
ascending and descending orbits, with a one- to two-day repeat coverage. The AMSR-E sensor is
a passive microwave radiometer operating at six frequencies, ranging from 6.925 GHz to 89.0 GHz
(6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz). Both horizontal and vertical
polarized radiations are measured at each frequency with an incidence angle of 55◦. The ground spatial
resolution at the nadir is 75 × 45 km for the 6.925 GHz channel (C-band), and the footprints of the
higher frequencies are much smaller than that of the C-band.

AMSR-E L3 TB data and AMSR2 L3 TB data, described in Section 2.1.3, are descending nighttime
data (at 01:30 local time), because, at night, surface temperatures (Ts) are more stable than during the
daytime, and the vegetation temperature is closer to that of soil temperature [58]. AMSR-E L3 TB
data are provided by the National Snow and Ice Data Center (NSIDC), and can be downloaded free of
charge from the NSIDC. These data are provided in EASE-Grid projections [59,60] (global cylindrical)
at a 25-km resolution, which is the same as SMOSL3sm data. For the dataset, spatial coverage is global,
data are daily, and coverage begins 19 June 2002, and ends 27 September 2011. The TB data (in tenths
of Kelvins) are two-byte unsigned integers.

We used two kinds of AMSR-E L3 SM products. One kind was the standard products of AMSR-E,
derived by the NSIDC, and can be downloaded from [61]. The other type of product is based on
the Land Parameter Retrieval Model (LPRM) algorithm, and can be downloaded freely [62], with a
0.25 × 0.25 resolution.

In this study, the AMSR-E L3 TB data used in the BPNN training period ranged from 1 July 2010
to 30 June 2011, which coincide with the aforementioned first period of SMOSL3sm data. The AMSR-E
L3 TB used in the simulation period span from 1 January 2003 to 27 September 2011. The AMSR-E L3
SM products used to compare with NNsm have the same range as the AMSR-E L3 TB.
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2.1.3. AMSR2 Data

The AMSR2 onboard the Global Change Observation Mission-Water (GCOM-W) satellite is
operated by the Japan Aerospace Exploration Agency (JAXA). The aim of this satellite is to observe
water circulation changes. As a follow-up mission for AMSR-E/Aqua, the sensor and satellite
configurations of AMSR2 are almost the same as those of AMSR-E/Aqua, as described in last section.

AMSR2 L3 TB is produced by JAXA, and has an equi-rectangular (EQR) projection. For the
dataset, spatial coverage is global, data are daily, the number of pixels for EQR projection is 0.25◦,
the resolution is 1440 × 720, and coverage began 3 July 2012 and is continuing today. Data can be
accessed freely from the GCOM-W1 Data Providing Service.

We used two kinds of AMSR2 L3 SM products. One is the standard products of AMSR2 from
JAXA, based on the lookup table method. Furthermore, it can be obtained from [63]. Another is based
on the Land Parameter Retrieval Model (LPRM) algorithm, with a 0.25 × 0.25 resolution, and can be
downloaded from [64].

The AMSR2 L3 TB data used in this study lasted the entire year of 2013, which coincided with
the aforementioned second period of SMOSL3sm data. The AMSR2 L3 TB used in the simulation
period spanned from 1 January 2013 to 31 December 2015. In order to collocate with SMOS data, the
AMSR2 data with an EQR projection of 1440 × 720 are interpolated to a SMOS 1383 × 586 grid of
EASE projection. The AMSR2 L3 SM used in this study ranged from 2013 to 2015.

2.1.4. In Situ Network Data

To evaluate the NNsm time series, we used in situ data from the Soil Climate Analysis Network
(SCAN) [65,66]. SCAN sites are comprehensive automated weather stations that provide agricultural
producers and resource managers with hourly data to monitor soil and weather conditions. Each SCAN
installation can measure soil moisture and temperature at depths of 5, 10, 20 and 50 cm below ground
surface. This database is available from 1 January 1996 until the present, and can provide long
time series of in situ soil moisture observations that met our demands. It is an essential means of
the geoscientific community for validating and improving global satellite observations and land
surface models.

The sampling interval of SCAN is one hour; we use the daily average soil moisture, at a depth of
5cm, corresponding to the measurement depth of the L-band. We used 206 sites, which can provide
effective data, from a total of 232 SCAN sites across the United States. We selected 15 representative
SCAN sites for more detailed analysis, which covered a wide variety of land cover types, soil types,
and climates [49]. The characteristics of the selected 15 sites are shown in Table 1.

Table 1. Characteristic descriptions of the selected Soil Climate Analysis Network (SCAN) sites.

Num Site ID Site Name Group

1 SCAN2076 AllenFarms

sites with strong
interannual variations

2 SCAN2089 ReynoldsHomestead
3 SCAN2024 GoodwinCreekPasture
4 SCAN2075 McalisterFarm
5 SCAN2078 BraggFarm
6 SCAN2084 UAPBMarianna
7 SCAN2030 UAPBLonokeFarm
8 SCAN2059 NewbyFarm
9 SCAN2079 MammothCave

10 SCAN2001 RogersFarm#1 sites with weak
interannual variations11 SCAN2093 Phillipsburg

12 SCAN2002 CrescentLake#1

sites in semi-arid areas
13 SCAN2026 WalnutGulch#1
14 SCAN2027 LittleRiver
15 SCAN2168 JornadaExpRange
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2.2. Methods

2.2.1. The BPNN Method

A neural network (NN) is a powerful nonlinear regression method. BPNN, one of the
commonly-used NNs, is a type of multilayer feedforward network, in which the algorithm is trained
according to error back propagation. Its learning rule is the steepest descent method, adjusting the
network weights and threshold by error back propagation in order to minimize the sum of squared
error of the network.

The structure of the BPNN model includes the input layer, the hidden layer, and the output
layer. Our research adopted the three-layer network model with a single hidden layer. We used
Matlab software to realize the training and verification of BPNN. After several tests, we selected the
appropriate configurations and built the following network:

net = newff(P, T, 7, {‘tansig’, ’purelin’}, ‘trainlm’) (1)

where P is the input vector; T is the output vector; 7 is the number of neuron nodes in the hidden
layer, which is determined when the learning error does not significantly decrease with the increase of
neuron nodes, after several training tests, with a small initial value of neuron nodes; ‘tansig’ is the
node transfer function of the hidden layer, and it is a hyperbolic tangent sigmoid transfer function,
with an arbitrary input and output, ranging from −1 to 1, which is different from the linear transfer
function ‘purelin’ etc.; ‘purelin’ is the transfer function of the output layer, ‘trainlm’ is the training
function that uses the Levenberg-Marquardt algorithm to estimate the training weight.

The input layer includes effective surface reflectivities (Rs) of each channel of AMSR-E/AMSR2
and the microwave vegetation index (MVI), and the output layer is the SMOSL3sm product. For the
selection of key input variables in our study, we chose the Rs of the C/X/Ku/Ka/Q bands and the
MVI derived from AMSR-E/AMSR2 TBs as the input layer, rather than the TBs from each channel of
AMSR-E/AMSR2. Figure 1 shows the flow chart of the BPNN method.
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2.2.2. Input Layer Selection

On the selection of the input layer, we start with the radiative transfer process of land surfaces.
Different soil moisture contents, from dry soil to wet soil, lead to different soil dielectric constants,
so the corresponding soil emissivities/reflectivities vary. The soil information is then affected by
vegetation and the atmosphere and is observed by microwave sensors. The main influence factors in
passive microwave retrieval of soil moisture are vegetation coverage and surface roughness. First,
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we adopt Rs to represent the final surface signals, which can be derived from the TB signals and the
surface temperature (Ts):

Ri
p = 1 −

TBi
p

Ts
(2)

where p is the polarization and i represents the five frequencies of AMSR-E/AMSR2. The surface
temperature (Ts) can be calculated by an empirical formula with a V polarization TB of 36.5 GHz [67]:

Ts = 1.11 × TB36.5
v − 15.2 (3)

Vegetation has a significant influence on total surface emissivities. The training target of the
BPNN is soil moisture; in order to optimize the training relationship, we introduced the microwave
vegetation index (MVI) [68] as an input for vegetation effect correction. MVI is only affected by
vegetation and can express vegetation characteristics well. Previous studies have shown that MVI is
related to vegetation properties and can be used for soil moisture retrieval through analytical [69] or
iterative solutions [70]. In comparison to the optical vegetation indices, such as NDVI, Ratio Vegetation
Index (RVI), and Leaf Area Index (LAI), MVI has the following advantages: (1) it will not be affected by
the conditions of weather and lighting; (2) it will not reach saturation easily in thickly vegetated areas;
and (3) it includes information about both the leafy and woody parts of vegetation, due to its greater
penetration and sensitivity, while NDVI mainly responds to a thin layer of canopy. Compared to
other microwave vegetation indices, such as microwave polarization difference temperature (MPDT),
microwave polarization difference index (MPDI), and microwave emissivity difference vegetation
index (EVDI) [71–74], MVI can remove the influence of soil background signals and only depends on
vegetation properties. MVI can be derived from AMSR-E/AMSR2 TBs [68]:

MVI(f1, f2) =
TBv(f2)− TBh(f2)

TBv(f1)− TBh(f1)
= b(f1, f2)×

Vt(f2)

Vt(f1)
(4)

where f1 and f2 are two adjacent frequencies; b is the linear coefficient of emissivity for f1 and f2; Vt is
the vegetation transmission component, which is related to temperature and the overall vegetation
transmissivity effect. MVI is polarization independent and is not affected by ground surface emission
signals when using the ratio of polarization differences. In our study, we use the TBs of the C-band
and X-band of AMSR-E/AMSR2 to calculate MVI.

2.2.3. BPNN Training

The BPNNs in Equation (1) were trained in order to determine the best relationship between the
input and the output. In the training phase, we took Rs of C/X/Ku/Ka/Q bands and the MVI from
AMSR-E/AMSR2 TB data as input, and used two years of SMOSL3sm data as the reference output:
from 1 July 2010 to 30 June 2011, and the entire year of 2013, which coincides with the AMSR-E data
and the AMSR2 data, respectively. Thus, the BPNNs were trained on each grid, over the two-year
period (July 2010–June 2011, and 2013). Grids with numbers of AMSR-SMOS matching measurements
(N) less than 50 were excluded.

2.2.4. Development of the NNsm Product

In the simulation phase, our input layer Rs and MVIs are derived from TBs, thus, we considered
the time coverage of the AMSR-E and AMSR2 TBs. Based on the BPNNs trained in the previous step,
we can develop a long-term SM dataset over 2003–2015 (except 2012) on each grid, with available
AMSR-E TB from 1 January 2003 to September 2011 and AMSR2 TB from 2013 to 2015. Normally, soil
moisture is not retrieved over frozen soils, thus, before the simulation, we preprocessed the TBs and
TS data, removing those data where Ts were lower than 273.15 K.
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2.2.5. Evaluation of NNsm Product

Before application of the NNsm product, we firstly evaluate the performance of the BPNN
algorithm. Because we take SMOSL3sm as a training target, we compared NNsm with SMOSL3sm
during the period of the BPNN training. To evaluate long-term NNsm products, we compared NNsm
products with SCAN in situ observations. The evaluation was done using the correlation coefficient
(CC), the root mean square error (RMSE) and bias (Bias), defined as follows:

CC =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(5)

where the overline indicates the mean and xi is the NNsm, yi is SMOSL3sm or SCAN in situ SM
observations:

RMSE =

√
∑(xi − yi)

2

N
(6)

Bias =
1
N ∑(xi − yi) (7)

where N is the number of matching data.
Additionally, to better understand the similarity/dissimilarity between NNsm and other SM’s

patterns with the in situ SCANsm patterns, Taylor Diagrams [75,76] were used. A Taylor Diagram
provides a way of graphically summarizing how closely a pattern (or a set of patterns) matches
observations. The similarity between two patterns is quantified in terms of several statistics, including
their correlation (CC), their centered centered RMS difference (CRMS) and the standard deviations
(SD), which are related by:

ECRMS2 = SD2 + 1 − 2SD · CC (8)

To plot statistics of two SM products, the statistics can be normalized (and non-dimensionalized),
dividing both the centered RMS difference and the SD of the two products by the SD of the in situ
observations, and thus get the normalized SD (NSD) and the normalized centered RMS difference
(NCRMS):

NSD = SD/SDre f (9)

NCRMS = CRMS/SDre f (10)

To understand whether SM retrievals capture the interannual variations and rainfall events, in
addition to the seasonality, we compute their anomalies [18]. The anomalies (ANO) were obtained by
removing the product’s seasonality SM from the original (ORI) time series:

ANOY
DOY = ORIY

DOY − SMDOY (11)

where Y represents the years from 2003 to 2015, DOY means one day of the year. The seasonality SM
is one time series of 366 days:

SMDOY =

(
2015

∑
Y=2003

ORIY
DOY

)/
N (12)

3. Results and Analysis

3.1. BPNN Training Results

To display the training results, we compared the daily and three-day average NNsm with
the corresponding reference SMOSL3sm on 2 July 2010, as shown in Figure 2. Figure 2 shows
that the trained NNsm has an almost identical spatial distribution and structure with SMOSL3sm.
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This illustrates that the BPNN method has a good training result, and the input AMSR TB has a good
nonlinear relationship with the reference SMOSL3sm.Remote Sens. 2017, 9, 35  9 of 27 
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Figure 2. Global soil moisture maps on 2 July 2010. (a,b) NNsm (c,d) corresponding SMOSL3sm
(e,f) difference value of NNsm and SMOSL3sm. The left panels (a,c,e) show daily data and the right
panels (b,d,f) show 3-day average data.

We quantitatively evaluated the quality of the training by analyzing the agreement between the
NNsm and SMOSL3sm products. The accuracy of the training results, in terms of CC, RMSE and Bias,
were compared with SMOSL3sm over the training period (July 2010–June 2011, and 2013) and are
shown in Figure 3.

In Figure 3a, the correlation coefficients between the reference (SMOSL3sm) and the trained SM
(NNsm) are shown. The trained SM values generally correlate well with the reference SM values
over most of the globe, with a global mean of CC = 0.67, and with higher values of CC (CC > 0.8)
obtained over the United States, South Africa and Northwestern Africa, the south of South America,
etc., and especially over Australia, where it corresponds to low to moderate vegetation coverage.
Highly vegetated areas, including the Amazon and Congo rainforests, have a low correlation or failure
in retrieval due to the vegetation effects. There are also areas with low vegetation coverage with poor
results, such as the Arabian Peninsula. The spatial distribution of the RMSE values are plotted in
Figure 3b, with a global mean of RMSE = 0.055 m3/m3. Lower RMSE values (<0.04 m3/m3) were
generally distributed over arid, semi-arid, and desert regions with short and sparse vegetation or
bare soil (e.g., Australia, Sahara, Southwestern United States), while high RMSE values (~0.1 m3/m3)
were distributed over regions with moderate to high vegetation or alpine flora (e.g., Southeastern
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China, India, Southeastern Australia, Eastern United States, and locations close to the Earth’s equator).
In general, the CC values are mainly moderate to high, and the RMSE values are moderate, but in an
acceptable and reasonable range. Figure 3c shows the absolute value of Bias, with a magnitude of
10−3 and mean global value of Bias = −0.0005 m3/m3. The results show that the BPNN trained SM is
mainly unbiased compared with the original SMOSL3sm, and it ensures the stability of the long time
series of soil moisture.
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In Figure 3, we can note that there is such a gap in the data such as in southern Asia. As we know,
in southern Asia and the northeastern Africa, the RFI is serious. The NNs training are affected by RFI.
In those areas, the NNs cannot be trained effectively or the NNs training result have a poor relationship
between the input and the output, so the soil moisture cannot be retrieved correctly. The poorly
retrieved NNs cause a gap in the data in southern Asia and the low correlations in northeastern Africa.

In order to better understand the accuracy of the training results, we specifically analyzed each
grid that the selected SCAN sites belong to. Detailed analysis results are shown in Figures 4 and 5
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and Table 2. Figure 4 shows the temporal series scatterplots for the trained NNsm (red dots) versus
SMOSL3sm (blue dots) over the training period (July 2010–June 2011, and 2013). As can be seen
from the figures, the trend of the trained NNsm (red dots) is consistent with the trend of SMOSL3sm
(blue dots), and NNsm captures the temporal dynamic of SMOSL3sm. Table 2 presents the statistical
comparison between NNsm and SMOSL3sm for the training period (July 2010–June 2011, and 2013).
In the analysis, we computed the statistical characteristics in terms of CC, Bias, and RMSE. Figure 5
shows the scatterplots for the trained NNsm versus SMOSL3sm and the RMSE values. In Table 2,
it is obvious that the value of CC is high, ranging from 0.49 to 0.95, with an average value 0.75 of
15 selected sites and an average value 0.63 of all SCAN sites. The RMSE have an average value
0.062 m3/m3 of 15 selected sites and an average value 0.053 m3/m3 of all SCAN sites. The better values
are 0.037 m3/m3 from site 2093 and 0.034 m3/m3 from site 2026; particularly, the RMSE is 0.018 m3/m3

for site 2168 for a lower dynamic range of soil moisture in an arid area. However, site 2079 has an
exceptionally high RMSE value of 0.16 m3/m3. The trained net over this site cannot simulate SM well,
and from the long time series in Section 3.2, the NNsm has a higher dynamic range than that of SCAN
sm. The value of Bias has a magnitude of 10−3 and better ones can be 10−4 from site 2026 and site 2075.
The unbiased trained results ensure the stability and consistency of the NNsm products. This indicates
that the trained results are unbiased compared with original soil moisture, which is the most important
factor to ensure the stability and consistency of the long time series soil moisture products.
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Figure 5. Scatterplots for trained NNsm (y axis) vs. SMOSL3sm (x axis) over the training period
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Table 2. Statistical comparison between NNsm and SMOSL3sm for training period (July 2010–June
2011, and 2013). All of these correlations are significant correlations (p-value < 0.05).

SiteID CC RMSE Bias p-Value < 0.05

SCAN2076 0.73 0.073 −0.0063 yes
SCAN2089 0.49 0.114 −0.0106 yes
SCAN2024 0.75 0.066 0.0101 yes
SCAN2075 0.73 0.054 0.0001 yes
SCAN2078 0.65 0.053 0.0067 yes
SCAN2084 0.87 0.053 0.0021 yes
SCAN2030 0.84 0.064 −0.0223 yes
SCAN2059 0.71 0.050 0.0038 yes
SCAN2079 0.65 0.161 0.0049 yes
SCAN2001 0.66 0.056 −0.0173 yes
SCAN2093 0.78 0.037 −0.0005 yes
SCAN2002 0.86 0.040 −0.0063 yes
SCAN2026 0.82 0.034 0.0003 yes
SCAN2027 0.72 0.057 0.0085 yes
SCAN2168 0.95 0.018 0.0014 yes

Mean-15sites 0.75 0.062 0.004 yes
Mean-allsites 0.63 0.053 −0.0017 yes
Mean-global 0.67 0.055 −0.0005 yes
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3.2. NNsm Products and Evaluation

We further undertook assessments to evaluate the performance of the long-term NNsm products
over the period of 2003 to 2015 (except 2012) with the in situ observations of the SCAN sites.
The satellite standard SM products of AMSR-E/AMSR2 (AMSRsm) from NSIDC and JAXA were also
added as a reference. The evaluations were done by plotting time series, and in terms of CC, RMSE
and Bias, as shown in Figures 6–9 and Table 3 (left part).

Table 3. Comparative results for NNsm and AMSR_LPRM against in situ SCANsm (selected 15 sites)
for the 2003–2015 period. The mean value is computed only when the correlations are significant
correlations (p-value < 0.05).

SM NNsm AMSR_LPRM

SCANID CC RMSE Bias p < 0.05 CC RMSE Bias p < 0.05

SCAN2076 0.71 0.080 0.007 yes 0.38 0.252 0.230 yes
SCAN2089 0.23 0.088 0.017 yes 0.29 0.216 −0.068 yes
SCAN2024 0.50 0.084 −0.075 yes 0.27 0.156 0.208 yes
SCAN2075 0.56 0.076 −0.063 yes 0.33 0.243 0.122 yes
SCAN2078 0.46 0.060 −0.079 yes 0.24 0.119 −0.161 yes
SCAN2084 0.65 0.070 −0.060 yes 0.20 0.151 −0.034 yes
SCAN2030 0.69 0.083 0.063 yes 0.55 0.103 0.049 yes
SCAN2059 0.70 0.086 −0.029 yes 0.59 0.115 −0.008 yes
SCAN2079 0.46 0.173 0.004 yes 0.17 0.194 0.008 yes
SCAN2001 0.56 0.078 −0.051 yes 0.23 0.131 −0.066 yes
SCAN2093 0.47 0.068 −0.033 yes 0.18 0.107 0.111 yes
SCAN2002 0.21 0.091 −0.024 yes 0.27 0.107 0.059 yes
SCAN2026 0.52 0.077 0.053 yes 0.36 0.058 −0.028 yes
SCAN2027 0.56 0.056 0.185 yes 0.43 0.140 0.215 yes
SCAN2168 0.48 0.062 0.061 no 0.57 0.061 0.104 yes

Mean-15sites 0.52 0.084 0.002 yes 0.34 0.144 0.123 yes
Mean-allsites 0.43 0.078 −0.004 yes 0.34 0.127 0.0004 yes

Mean-15sites (Anomaly) 0.24 0.058 −0.0004 yes 0.20 0.104 0.087 yes
Mean-allsites (Anomaly) 0.28 0.062 0.007 yes 0.30 0.075 0.010 yes

Figures 6–9 show the temporal series scatterplots (upper panel) and anomaly time series (lower
panel) for SCANsm (red line), NNsm (blue dots) and AMSRsm (green diamonds) over a long time
period (2003–2015). Table 3 (left) shows the CC, RMSE and Bias of the selected SCAN sites and all
SCAN sites. For the results of NNsm vs. SCANsm, the CC has a mean value 0.52 of 15 selected sites
and 0.43 of all SCAN sites, ranging from 0.21 to 0.71. The RMSE has a mean value 0.084 m3/m3 for
15 selected sites and 0.078 m3/m3 for all SCAN sites. The value of Bias has a magnitude of 10−3 and
an average value −0.004 of all SCAN sites. From the time series plots, it is evident that the majority
of the SCAN sites have a good consistency between NNsm and SCANsm, but several SCAN sites
overestimate or underestimate the soil moisture. The performance of NNsm is superior to that of
AMSRsm. AMSRsm from NSIDC and JAXA underestimate soil moisture significantly and has a little
variation range.

For anomaly time series, after removing the contribution of seasonal cycle, the mean value of
CC is lower than that of origin time series, while the mean value of RMSE decreases, as shown in
Table 2. It means that the seasonal cycles make a considerable contribution to the value of origin CC.
In addition to the seasonal cycles, NNsm weakly capture the interannual variations and the rainfall
events. In contrast, after removing the contribution of seasonal cycle, the AMSRsm hardly has a
fluctuation, based on the little variation range of original time series. It means that AMSRsm can
weakly capture the seasonal cycles and cannot capture the interannual variations and the rainfall
events. Detailed analysis is presented by dividing these sites into three categories: (1) sites with strong
interannual variations; (2) sites with weak interannual variations; and (3) sites in semi-arid areas.
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3.2.1. Sites with Strong Interannual Variations

Figure 3 shows the time series and anomaly time series for seven SCAN sites from Table 3.
From these time series figures, it is obvious that the NNsm can capture the dynamic variety of SCAN
in situ soil moisture well, and the interannual variation of NNsm is noteworthy. Relatively speaking,
the fluctuation range of SCANsm is bigger than that of NNsm. Furthermore, there are problems in the
consistency and the continuity of the soil moisture between AMSR-E and AMSR2. The most consistent
sites are SCAN site 2076 and site 2089, with almost no bias. However, for SCAN site 2024, site 2075, site
2078, and site 2084, the NNsm underestimated the soil moisture by 7%, 6%, 8%, and 6%, respectively.
Especially, for site 2078 and site 2084, the NNsm have obviously been underestimated from 2003 to
2006. For site 2030, the NNsm overestimated soil moisture, particularly in the peak area of interannual
soil moisture variability. For anomaly time series, after removing the contribution of seasonal cycle
NNsm weakly capture the interannual variations and the rainfall events, while AMSRsm cannot
capture the interannual variations and the rainfall events.
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Figure 7 shows the time series and anomaly time series for two SCAN sites from Table 3.
From these time series figures, it is obvious that NNsm can capture the interannual dynamic variety of
in situ soil moisture well, but the dynamic ranges have some differences.

Over site 2059, the dynamic range of NNsm is lower than that of SCAN in situ soil moisture.
From the trained time series plot of site 2059 in Figure 4, the reference SMOSL3sm is distributed in the
range of 0.1–0.3 m3/m3, so the trained NNsm is also distributed in this range. However, the SCANsm
in this site range from 0 to 0.4 m3/m3. Therefore, the range difference of site 2059 is mainly derived
from the difference between the reference SMOSL3sm and the in situ SCANsm.
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NNsm (blue dots) and AMSRsm (green diamonds) over the long time period (2003–2015) in sites:
(a) 2059 and (b) 2079.

Over site 2079, the dynamic range of NNsm is higher than that of in situ SCANsm. Land cover of
this site is deciduous broadleaf forest, while around 76% of the site is a cropland/natural vegetation
mosaic. The soil moisture in crop lands has a higher variety in range than that in forest areas. Therefore,
NNsm has a higher dynamic range than in situ site soil moisture.

For anomaly time series, after removing the contribution of seasonal cycle, NNsm still has a
smaller range and a bigger range than SCANsm, over site 2059 and 2079 respectively. AMSRsm series
is almost a flat line, and cannot capture the interannual variations and the rainfall events.

3.2.2. Sites with Weak Interannual Variations

Over site 2001 and site 2093, shown in Figure 8, NNsm is roughly in agreement with SCANsm.
However, the interannual variation of soil moisture is weaker. AMSRsm underestimated the soil
moisture. Through the analysis of the land cover, we found the reason for this.

The land cover of these two sites is cropland, and, around the two sites, 72% land cover of site
2001 and 84% land cover of site 2093 are croplands. Crops are short vegetation, so the soil moisture
changes faster. After rain or irrigation, soil moisture content will decrease rapidly. The corresponding



Remote Sens. 2017, 9, 35 17 of 27

change trend of soil moisture over these two sites is falls rapidly after rising. Additionally, when
SCANsm is higher than the overall SM level from 2003 to 2007, and is higher than that in the training
period, NNsm has obvious underestimations in soil moisture.
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3.2.3. Sites in Semi-Arid Areas

Figure 9 shows a time series of soil moisture over four sites: Site 2002, site 2026, site 2027, and site
2168, which are located in semi-arid areas. Over these four sites, the soil moisture level is not high,
and basically remains below 0.2 m3/m3. NNsm overestimates the soil moisture over site 2026, site
2027, and site 2168, particularly in the drier period, while NNsm underestimated the soil moisture of
site 2002. The main landcover types around these sites are croplands, cropland/natural vegetation
mosaic, and grassland and open shrublands. Around site 2027, 88% is croplands and cropland/natural
vegetation mosaic. A total of 96% of the surface of site 2168 is shrubland. For site 2002, most surfaces
are croplands. The surface of site 2026 is 48% grasslands and 52% open shrublands. Thus, the soil
moisture of these sites changes faster.

From the trained time series plots of site 2026, site 2027, and site 2168, in Figure 4, the reference
SMOSL3sm distributed at around 0.1 m3/m3, 0.1–0.5 m3/m3, and 0.1 m3/m3, so the trained NNsm
also distributed in these ranges, respectively. However, the SCANsm from site 2026 and site 2168 were
almost 0 m3/m3 in the drier period, and the SCANsm of site 2027 ranges from 0 to 0.2 m3/m3, which
are distinctly lower than the level of in situ observations. Therefore, the differences on these sites are
mainly derived from the differences between the reference SMOSL3sm and the in situ SCANsm.
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Figure 9. Time series (upper panel) and anomaly time series (lower panel) for SCANsm (red line), 
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Figure 9. Time series (upper panel) and anomaly time series (lower panel) for SCANsm (red line),
NNsm (blue dots) and AMSRsm (green diamonds) over the long time period (2003–2015) in sites:
(a) 2002; (b) 2026; (c) 2027; and (d) 2168.
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Compared with SCANsm and NNsm, we can clearly find that AMSRsm has an overestimation
of soil moisture. Additionally, soil moisture from AMSR-E and AMSR2 have poor consistency and
continuity, especially for AMSR2 soil moisture from 2013 to 2015 over site 2002 and site 2027, while
NNsm has a better consistency and continuity.

For anomaly time series over site 2027, the total shift between NNsm and SCANsm was
removed, and the NNsm still overestimates the soil moisture. The NNSm can slightly capture the
interannual variations.

The disagreement between the satellite derived NNsm and the in situ observations may be caused
by several factors. First, satellite-derived soil moisture represents the spatial mean value within a
satellite footprint, while the in situ soil moisture observations are point measurements. The scaling
difference between the point observations and the surface observations will lead to a disagreement,
especially in terms of RMSE and Bias [71]. In addition, the soil moisture derived from satellite data
may have a different representative depth with that observed from in situ sites. The satellite-derived
soil moisture may dry more rapidly after rainfall events or irrigation than that of in situ sites. Moreover,
the heterogeneity in the satellite footprint will lead to the difference between the satellite grids and
the in situ sites. For example, soil moisture will differ and change rapidly with cropland land cover
of a site than that of a footprint with 80% forest. Despite all the above-mentioned impacting factors,
NNsm reproduced the soil moisture variability and changing trends without drifts in the long-term
data record well, which is essential for climate analyses.

4. Comparison and Discussion

To clarify the advantages of our retrieval results, we further discuss our soil moisture products
(NNsm) by comparing them with other long-term soil moisture products, generated using alternative
methods: (a) AMSR-E/2 soil moisture products generated using the same algorithm, the LPRM
(Land Parameter Retrieval Model) algorithm (AMSR_LPRM hereafter), through cross-calibration; and
(b) AMSR-E soil moisture retrievals through a regression method (Reg_sm hereafter) with the target
reference of SMOSL3sm.

4.1. Comparing with Satellite Products

In Section 3, we compared NNsm with the reference SMOSL3sm, in situ SCANsm, and AMSRsm.
It turns out that NNsm has a high consistency and accuracies relative to the reference. However,
the AMSRsm from NSIDC and JAXA underestimate SM significantly. In this section, we discuss the
performance of NNsm by comparing it with AMSR-E and AMSR2 soil moisture products (we call it
AMSR_LPRM), generated by the same algorithm, namely the LPRM algorithm. These long time-series
datasets are from two similar sensors, namely AMSR-E and AMSR2 satellite sensors, and further more
they are retrieved both from the LPRM algorithm and are from one dataset, so we treated them as one
long time-series datasets. We average the statistical results of the 15 selected sites, as shown in Table 3.

From the point of view of the time series (upper panel) and anomaly time series (lower panel)
shown in Figure 10, it is obvious that NNsm is more consistent and continuous with SCANsm than the
performance of AMSR-LPRM. AMSR_LPRM overestimate soil moisture over these sites. Additionally,
the soil moisture from AMSR-E and AMSR2 are not consistent over these sites. Some panels show a
shift in soil moisture in the AMSR-E period compared to the AMSR-2 period that could be explained
by not accounting for possible bias between the LPRM datasets. Over site 2076, there is a big shift
between the AMSR-E and AMSR2 data, so after anomaly process, AMSR-E underestimates the soil
moisture and the AMSR2 overestimate the soil moisture. With respect to accuracy, NNsm has an
average value of CC = 0.52 for 15 selected sites and CC = 0.43 for all sites; and NNsm has a mean value
of RMSE = 0.084 for 15 selected sites and RMSE = 0.078 for all sites. These statistics of NNsm is more
accurate than that of AMSR_LPRM, whether the time series or the anomaly time series.
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Figure 10. Time series (upper panel) and anomaly time series (lower panel) for SCANsm (red line), 
NNsm (blue dots) and AMSR_LPRM (green diamonds) over the long time period (2003–2015) in sites: 
(a) 2030; (b) 2076; (c) 2093; and (d) 2168. 

Figure 10. Time series (upper panel) and anomaly time series (lower panel) for SCANsm (red line),
NNsm (blue dots) and AMSR_LPRM (green diamonds) over the long time period (2003–2015) in sites:
(a) 2030; (b) 2076; (c) 2093; and (d) 2168.
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Furthermore, the Taylor diagram is presented to display statistical comparison between NNsm
(blue dots) and AMSRsm/AMSR_LPRM (green dots) with the in situ SCANsm (red dot) over the
long time period (2003–2015) for all SCAN sites, as shown in Figure 11. In general, the dots (sites) are
unevenly distributed in the Taylor diagram for both NNsm and AMSRsm/AMSR_LPRM, meaning
that their accuracy varies from one site to another. For the left panel, the NSDs of AMSRsm are much
less than the one unit of normalized NSD, indicating a little variability of AMSRsm. For the right
panel, the NSDs of AMSR_LPRM are much larger than the one unit of normalized NSD, indicating a
larger variability of AMSR_LPRM. While the NSD of NNsm are always around the arc of one unit,
compared with that of AMSRsm/AMSR_LPRM. As shown in the diagrams, the NNsm has a slightly
higher CC with SCANsm than that of AMSRsm/AMSR_LPRM, meaning that these three products
have very comparable correlation with SCANsm. Additionally, most blue dots are within the arc of
one unit of CRMS, indicating that NNsm matches SCANsm more.
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4.2. Comparing with a Regression Method

As mentioned in the Introduction Section, Al-Yaari et al. [39] used a regression approach to
retrieve global time series soil moisture datasets, with SMOSL3sm as a training reference target and
AMSR-E TB as training input. We compared results NNsm with Reg_sm of the algorithm used by
Al-Yaari. The comparative results are listed in Table 4 for the training and simulation period.

Table 4. Comparative results between retrieved SM and reference SM/in situ SCAN observations
(selected 15 sites) in the training and simulation period. Only significant correlations (p-value < 0.05)
are presented.

Algorithm CC RMSE Bias Time Period Input

Training Retrieved SM vs. Reference SM

NNsm 0.67 0.055 0.0005 2010–2011, 2013 AMSR-E/AMSR2
Reg_sm 0.60 0.057 - 2010–2011 AMSR-E

Simulation Retrieved SM vs. SCANsm

NNsm 0.52 0.084 −0.002 2003–2015 AMSR-E/AMSR2
Reg_sm 0.49 0.100 −0.033 2003–2009 AMSR-E
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In the training period, compared with the reference SMOSL3sm, NNsm has a slightly higher CC
0.67 than 0.60 of Reg_sm, and NNsm has a slightly lower RMSE 0.055 m3/m3 than 0.057 m3/m3 of
Reg_sm. By the statistical comparisons, we can see that our NNsm has a better training result than the
Reg_sm. Moreover, the input of NNsm includes TBs from AMSR-E and AMSR2, while the input of
Reg_sm is only AMSR-E TB. It makes it possible to derive continuous and longer soil moisture dataset
from AMSR-E and AMSR2 TB in the next simulation step.

In the simulation period, from an accuracy perspective against SCANsm, NNsm has a slightly
higher CC 0.52 than 0.49 of Reg_sm. However, the two algorithms have nearly equal RMSE when
compared with in situ SCANsm. For the long-term dataset, the NNsm can simulate soil moisture from
2013 to 2015 based on AMSR-E/AMSR2 TBs, longer than the dataset from Reg_sm.

5. Conclusions

This study investigates the feasibility of a BPNN method to build a long time-term soil moisture
time series using SMOSL3sm products and AMSR-E/AMSR2 TB observations. First, the BPNNs on
every grid were trained using SMOSL3sm products as a training target, and we took reflectivity (R)
and the MVI from AMSR-E/AMSR2 TB observations during July 2010–June 2011 and the entire year
of 2013 as inputs. With these BPNNs, we built long time series of global soil moisture from 2003 to
2015, using AMSR-E TB in 2003–2011 and AMSR2 TB in 2013–2015.

We evaluated the quality of the training step over the training period (July 2010–June 2011, and
2013), and it achieved a good agreement between the NNsm and SMOSL3sm products, with a mean
global value of CC = 0.67, RMSE = 0.055 m3/m3 and Bias = −0.0005 m3/m3. A specific analysis on
selected SCAN sites shows that the trend of the trained NNsm is consistent with that of SMOSL3sm,
with a high CC value. These results ensure the following step of building a long time series of
soil moisture.

The long time series and anomaly time series of NNsm were evaluated against in situ SCANsm
observations. It turns out that our result NNsm has a high consistency and accuracy with reference
SMOSL3sm and the in situ SCANsm, and captured the temporal dynamics of soil moisture, with
CC = 0.52, RMSE = 0.084 m3/m3 and a Bias with a magnitude of 10−3. Over most of the SCAN
sites, NNsm well captures the in situ SCANsm and has strong seasonal and interannual variations.
However, in some SCAN sites, although our method can capture the interannual dynamic variety
well, there are some differences in the dynamic ranges between NNsm and SCANsm. This can be
mainly explained by two factors, in which one is the differences between the reference SMOSL3sm
and the in situ SCANsm, and the other is the heterogeneity in the satellite footprint. The soil moisture
of some sites has weak interannual variations. Through our analyses we found that the land cover is
mainly croplands. Thus, influenced by irrigation in these areas, soil moisture changes faster and has no
obvious interannual variations. In some semi-arid sites, NNsm has overestimated or underestimated
soil moisture. There are differences between the reference SMOSL3sm and the in situ SCANsm, which
is the reason for overestimations or underestimations.

To further evaluate the accuracy and state the advantages of NNsm, we compared it with
AMSR_LPRM products and a regression method. Comparative results show that NNsm is more
consistent and continuous with SCANsm than the performances of AMSR_LPRM and Reg_sm. NNsm
has significant advantages relative to the regression method, with a higher accuracy and longer
time series.

For improvement and further research, we wish to continue the following work: (1) for the
improvement of our BPNN method, we can test different combinations of Rs and MVI. For example,
we can use low or high frequency bands of Rs and MVI, as we used all frequencies in this study,
which may not be the optimal input combination for BPNN training; (2) Another direction is to train
BPNNs for future WCOM. Because WCOM will have no overlapping data with AMSR-E data, we
can train BPNNs using only the AMSR2 data and apply the BPNNs to cross-calibrated AMSR2 and
AMSRE data.
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In conclusion, through BPNNs training, this study provides a promising method to build long
time series of global soil moisture products. The BPNN method can produce surface soil moisture in
terms of absolute values and temporal variations. In addition, the BPNN method is independent of
various ancillary data, and only relies on the reference SMOS data. This method can be applied in
other satellite missions, such as SMAP and future WCOM satellite mission, so long as they have an
overlap period with AMSR-E/AMSR2 observations.
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