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Abstract: Visible and near infrared (VIS-NIR) spectroscopy has been applied to estimate soil organic
carbon (SOC) content with many modeling strategies and techniques, in which a crucial and
challenging problem is to obtain accurate estimations using a limited number of samples with
reference values (labeled samples). To solve such a challenging problem, this study, with Honghu
City (Hubei Province, China) as a study area, aimed to apply semi-supervised regression (SSR) to
estimate SOC contents from VIS-NIR spectroscopy. A total of 252 soil samples were collected in
four field campaigns for laboratory-based SOC content determinations and spectral measurements.
Semi-supervised regression with co-training based on least squares support vector machine regression
(Co-LSSVMR) was applied for spectral estimations of SOC contents, and it was further compared
with LSSVMR. Results showed that Co-LSSVMR could improve the estimations of SOC contents
by exploiting samples without reference values (unlabeled samples) when the number of labeled
samples was not excessively small and produce better estimations than LSSVMR. Therefore, SSR
could reduce the number of labeled samples required in calibration given an accuracy threshold, and
it holds advantages in SOC estimations from VIS-NIR spectroscopy with a limited number of labeled
samples. Considering the increasing popularity of airborne platforms and sensors, SSR might be a
promising modeling technique for SOC estimations from remotely sensed hyperspectral images.

Keywords: visible and near-infrared reflectance; soil organic carbon content; semi-supervised
regression; co-training

1. Introduction

Soil organic carbon (SOC) plays important roles in chemical and physical processes of soil
environment [1], and it is a key indicator of soil quality [2]. Therefore, effective estimations of SOC
contents are helpful for soil quality mapping and precision agriculture [3]. Over the past several
decades, visible and near infrared (VIS-NIR) reflectance spectroscopy has been proven to be an
efficient, non-destructive and cost-effective alternative for SOC content estimations [1,4–8]. Although
most previous studies have been focused on modeling SOC contents using laboratory-based reflectance
spectroscopy, some studies demonstrated the feasibility of estimating SOC contents with airborne and
even spaceborne hyperspectral images at within-field and regional scales [5,7].
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Several regression models, such as multiple linear regression, partial least square regression [9],
principal component regression, support vector machine regression (SVMR) [10], artificial neural
networks and random forests, have been employed to estimate SOC contents from VIS-NIR
spectroscopy [11]. In these methods, sufficient training samples describing soil variations of study
areas play a decisive role in the accurate estimations of soil properties, including SOC contents [12].
Traditional soil property determination is time-consuming and costly, limiting sample size in model
calibration processing. By contrast, the spectral measurements of soil samples used to derive soil
properties are more efficient, and, meanwhile, a large amount of soil spectra can be obtained with
hyperspectral imaging system under ideal soil and weather conditions.

In addressing the issue on combining above-mentioned traditional soil property determination
method and modern spectroscopy technique, semi-supervised learning (SSL) might be an attractive
solution, because it is developed to enhance model performance by employing samples with reference
values (labeled samples) and those without reference values (unlabeled samples) [13]. The underlying
idea of SSL is to exploit unlabeled samples to refine models initially calibrated with labeled samples.
As a paradigm of SSL, co-training was first proposed by Blum and Mitchell [14], and it trains two
classifiers separately on two sufficient and redundant views. An algorithm proposed by Goldman and
Zhou [15] trains two classifiers on a single view using two different supervised learning algorithms,
and it has drawn significant attentions in the classifications of text [16] and language sentiment [17].

The SSL with co-training has also been introduced to regression. A semi-supervised regression
(SSR) approach called Co-training Regressors was proposed by Zhou and Li [18], and it generates
two k-nearest neighbor models on the same dataset with different distance metrics, in which each
model makes estimation on the unlabeled data for the other during the learning phase. The labeling
confidence for an unlabeled sample is determined by the amount of mean square error on the labeled
samples, and the final estimation is obtained by averaging the estimates of the two refined models.
Although there are some problems ahead to be resolved for SSL, such as stop learning criterion and
potentially introducing noise, studies [19,20] have indicated that SSL might be a promising technique
both in qualitative and quantitative remote sensing, such as image classification, spectral unmixing
and water quality parameter retrieval. No study has been found to apply SSR to estimate SOC contents
from VIS-NIR spectroscopy.

Using laboratory-based VIS-NIR reflectance spectroscopy, this study aimed to: (i) evaluate
the effectiveness of SSR in improving SOC content estimations by exploiting unlabeled samples;
(ii) determine the behavior of SSR regarding to the percentage of labeled samples; and (iii) investigate
the sensitivity of SSR to the number of labeled and unlabeled samples.

2. Theory and Algorithm

2.1. Least Squares Support Vector Machine Regression

Support vector machine regression (SVMR) can offer complex fitting properties by mapping
training data non-linearly into a high-dimensional space using a kernel function [21]. Least squares
SVMR (LSSVMR) is a modified version of SVMR [22], solving multivariate calibrations by applying
least squares error in training error function. LSSVMR has a more simplified training process than
SVMR [22], and it has been proved to be a favorable supervised calibration technique in estimating
soil properties from VIS-NIR spectroscopy [23–26].

LSSVMR model can be expressed as follows:

y =
|L|

∑
i=1

αiK(xi, x) + b

where K(xi, x) is the kernel function, |L| is the number of training samples, and α and b are
the regression coefficients. The most popular kernel function is radial basis function (RBF,
exp

(
−||xi − x ||2/2σ2), where σ2 is the width of the Gaussian function) because of its adaptability
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to non-linear data [25]. RBF4, a variant of RBF kernel function (1/2
(
3− ||xi − x ||2/σ2) ×

exp(−||xi − x ||2/2σ2) [27], was used to generate diversity in SSR with co-training in this study.
For more details about LSSVMR, please refer to the Appendix A.

2.2. Semi-Supervised Regression with Co-Training Based on LSSVMR (Co-LSSVMR)

Let L =
{
(x1, y1), (x2, y2), . . . ,

(
x|L|, y|L|

)}
denote the labeled sample set, where xi represents a

vector of a soil spectrum, and yi is the associated SOC content. Let U denote the unlabeled sample set,
whose soil spectra are available and SOC content values are unknown.

In the SSR with co-training, two regressors are firstly trained with labeled samples, and each
regressor is then gradually refined by using the unlabeled samples selected by the other regressor
during the co-training progress. In this algorithm, the first key point is building two diverse regressors.
In this study, the difference between the two regressors is achieved by using two different kernel
functions because the solution of LSSVMR is obtained in a kernel-induced feature space. The second
key point is determining the labeling confidence for the unlabeled samples. In the literature [18],
the labeling confidence is rated by consulting the influence of each unlabeled sample on the labeled
samples, and the sample with the highest labeling confidence is the one that reduces the most of fitting
error when used in calibration. In this study, the labeling confidence on each unlabeled sample was
measured by the reduction of root mean square error of leave-one-out cross-validation (RMSECV)
before and after the sample was added to the training set.

Other two important problems to be addressed in SSR with co-training are the stopping criteria
and model selection in learning phases. In theory, a weak learner trained with labeled samples can
be raised to an arbitrary precision through the constant use of unlabeled samples [28]. However,
experiments have shown that the learning performance could not be improved further after a number
of learning iterations [28]. Hence, to avoid overfitting problem, the number of learning rounds is
often specified [18]. However, in our initial experiments, a fixed number of learning iterations often
failed to select the best model, and thus the learning phase was performed until all potential unlabeled
samples were used in this study. RMSECV and root mean square error of calibration (RMSEC) were
tested as model selection criterion, and the model with the lowest RMSECV or RMSEC was selected
for each regressor.

In Co-LSSVMR, two LSSVMR models (s1 and s2) generated from the labeled samples with two
kernel functions (RBF and RBF4) were employed to label the unlabeled samples and to determine
the labeling confidence. In each iteration, the sample with the highest confidence was used to refine
the other learner. The learning process was continued until no unlabeled sample could reduce the
RMSECV of the two models. After the learning phase, one model was selected for each regressor based
on model selection criterion. The final estimation was obtained by averaging the estimations of these
two refined models. The steps of Co-LSSVMR are illustrated in Figure 1 and summarized as follows:

(1) Copy labeled set L to L1 and L2.
(2) Train two LSSVMR regressors s1 and s2 from L1 and L2 with RBF and RBF4 as their kernel

functions, respectively.
(3) Obtain labeling set U1 and U2 from the unlabeled set U using s1 and s2, respectively.
(4) Add the most confidently labeled sample xu of U2 to L1, and remove xu from U1 and U2. xu is the

one that results in the largest reduction of RMSECV of s2.
(5) Add the most confidently labeled sample xu of U1 to L2, and remove xu from U1 and U2. xu is the

one that results in the largest reduction of RMSECV of s1.
(6) Retrain s1 and s2, and update the labeling values of U1 and U2 with s1 and s2, respectively.
(7) Repeat Steps (4)–(6) until neither L1 nor L2 changes.
(8) Select a refined model for each regressor (s1 and s2) according to the model selection criterion.
(9) For a sample to be estimated, the average of the estimations of the two refined models is

considered the final estimation.
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Figure 1. Flow chart for model calibration and validation: (a) the setup for sensitivity to the percentage of labeled samples; (b) the setup for the sensitivity to the 
number of labeled samples; (c) the setup for the sensitivity to the number of unlabeled samples; and (d) the co-training process in semi-supervised regression (SSR). 
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3. Materials and Methods

3.1. Study Area and Field Sampling

Honghu City (113◦07′–114◦05′E, 29◦38′–30◦12′N) is situated in the north shore of the middle
reaches of the Yangtze River and the central south of Hubei Province, China. It has a mean annual
temperature of 16.6 ◦C and a mean annual precipitation ranging from 1000 to 1300 mm. The landform
is flat and vast, with an average elevation less than 50 m. The parent material is dominated by
quaternary alluvial deposits and lacustrine sediments, and the main soil types are paddy (Anthrosols)
and fluvo-aquic soil (Gleysols) [29,30].

A total of 252 soil samples were collected in four field campaigns (108 on 20–21 December 2011,
60 on 10–11 July 2012, 40 on 17–19 November 2012 and 44 on 14–15 April 2013), 180 of which were
fluvo-aquic soil and the others were paddy soil. At each sampling point, about 1.0 kg of surface soils
(0–10 cm) was collected after wiping off plant material, plant residues, roots and stones. Each soil
sample was kept in a sealed package for spectral measurement and SOC content determination in
the laboratory.

3.2. Laboratory Analyses and Measurements

After being air-dried at an indoor temperature for three days and removing stones and plant
residues, all soil samples were ground with an agate mortar and passed through a 20-mesh sieve
(<2 mm). Each sample was placed in a 10 cm-diameter petri dish. The geometric conditions of the
measurement were detailed by Shi [6]. The reflectance spectra were measured in a laboratory through
an ASD FieldSpec 3 portable spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA)
with a wavelength range of 350–2500 nm. Its sampling intervals are 1.4 in the 350–1000 nm range
and 2 in the 1000–2500 nm range, and its spectral resolutions are 3 nm in the 350–1000 nm range and
10 nm in the 1000–2500 nm range. The measured values are interpolated, and the spectroradiometer
finally provides a spectrum of 2151 bands with a uniform spectral interval of 1 nm. Correction with
a standardized white Spectralon panel (Labsphere, Inc., North Sutton, NH, USA) with near 100%
reflectance was performed prior to each scan. An average value of 10 spectral measurements for each
sample was calculated as the final reflectance spectrum. After spectral measurements were made,
the SOC contents of all soil samples were determined using the Walkley and Black method [31] in the
laboratory, which is based on wet oxidation in potassium dichromate.

3.3. Spectral Preprocessing and Outlier Detection

Considering the high noise effects at spectral edges, the reflectance spectra were reduced to
400–2450 nm and then smoothed with the Savitzky–Golay smoothing method [32] with a second
order polynomial fit and a window size of 9 data points. The outliers were detected using robust
principal component analysis (ROBPCA) method, and samples with a large score distance and a
large orthogonal distance within the principal component analysis (PCA) subspace were identified
as outliers. The ROBPCA was implemented through a Matlab toolbox provided by Verboven and
Hubert [33]. Six outliers (Figure 2) were detected and eliminated.

To reduce data dimensionality and to match the finer spectral resolution of the spectroradiometer,
the reflectance spectra were resampled using 3-nm spacing intervals, providing 681 variables. The SOC
contents of the remaining samples were statistically described. The soil samples were divided equally
in number into four groups based on SOC content values from low to high, and the average spectrum
of each group was calculated, visualized and analyzed.
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3.4. Model Calibration

Models were calibrated using the settings in Figure 1a–c, respectively, to investigate the sensitivity
of SSR to the percentage of labeled samples, and the number of labeled and unlabeled samples. A total
of 164 out of the 246 samples were selected as candidate calibration dataset through Kennard-Stone
(KS) algorithm [34]. The selected samples were recorded in the order produced by the KS algorithm.
The remaining 82 samples were used as the validation dataset. For investigating the sensitivity of
SSR to the percentage of labeled samples, the first m samples (m = 10, 20, . . . , 160, and 164) out of
the 164 samples were considered as labeled samples, and the remaining 164–m samples were used as
unlabeled samples in Co-LSSVMR. Considering the popularity of the partial least square regression
(PLSR) in SOC content estimations [35], PLSR models were also calibrated only with the first m labeled
samples and compared with LSSVMR and Co-LSVMR models.

In the above experiments, the gains in estimation accuracy were mitigated when 100 out of
the 164 samples were used as labeled samples. For assessing the sensitivity of Co-LSSVMR to the
number of labeled samples, the unlabeled samples were kept invariant. The last 64 samples out of the
164 samples were used as unlabeled samples, and the first m samples (m = 10, 20, . . . , 100) were used
as labeled samples for Co-LSSVMR. The model performance was studied by increasing the labeled
samples size gradually.

For investigating the sensitivity of Co-LSSVMR to the number of unlabeled samples, the labeled
samples used for calibration were kept invariant. The first 80 out of the 164 samples were used as
labeled samples, and the following 10, 20, . . . , 60, and 64 samples were considered as unlabeled samples.
The model performance was studied by increasing the dataset size of unlabeled samples gradually.

3.5. Model Evaluation and Comparison

For comparing the performance of LSSVMR and Co-LSSVMR, the average of SOC estimations
obtained by the two initial LSSVMR models calibrated only with labeled samples was considered as
the estimation of the LSSVMR. The estimation performance was evaluated using the validation dataset,
and the accuracy was assessed by the RMSE of validation (RMSEV), coefficient of determination
(R2

v) and ratio of inter-quartile range to RMSEV (RPIQ) [36,37]. Bellon-Maurel et al. [37] suggested
that RPIQ, based on quartiles, might be a better indicator for performance estimation than residual
prediction deviation (RPD). Moreover, the gains in estimation accuracy obtained by Co-LSSVMR with
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respect to LSSVMR were obtained by subtracting the RMSEV of Co-LSSVMR from RMSEV of LSSVMR
and then dividing the result by the RMSEV of LSSVMR.

All programs, including spectra preprocessing, parameter optimization and modeling, were
implemented in MATLAB 7.11.0 (www.mathworks.com), and the parallel computing toolbox was used
to improve computing efficiency. The LS-SVMlab toolbox [27] was used to implement the LSSVMR.

4. Results

4.1. Descriptive Statistics and Reflectance Spectra of Soil Samples

The statistical descriptions of SOC contents for the whole, candidate calibration and validation
datasets are shown in Table 1. The SOC contents for the whole dataset varied from 0.76 to 45.73 g·kg−1,
with an average value of 11.51 g·kg−1 and a median value of 10.04 g·kg−1. The distributions of the
whole, calibration and validation datasets showed a positively skewed distribution with a skewness of
1.01, 1.26 and 0.65 and a kurtosis of −0.83, 2.74 and 1.28, respectively.

Table 1. Statistical description of the soil organic carbon (SOC) contents (g·kg−1) of soil samples.

Dataset N Min Max Mean Median Q1 Q3 Std. Skew Kurtosis

Whole 246 0.76 45.73 11.51 10.04 5.43 15.85 6.87 1.01 −0.83
Calibration 164 0.76 45.73 11.64 10.31 6.17 15.96 6.99 1.26 2.74
Validation 82 2.35 27.46 11.25 9.60 8.11 20.48 6.67 0.65 1.28

N: sample number, Min: minimum, Max: maximum, Std.: standard deviation, Q1: first quartile, Q3:
third quartile.

The average reflectance curves show the typical patterns of soil spectra in the VIS-NIR regions
with three prominent absorption features around 1400, 1900 and 2200 nm (Figure 3). The absorption
region near 1400 nm is the first overtone of OH stretches, and the second region near 1900 nm is due to
the combination of OH stretches and H–O–H bend [38]. The absorption near 2200 nm results from
OH stretches and Al/Fe–OH bend [25]. The average reflectance with 4.31 g·kg−1 SOC is the highest,
and that with 21.35 g·kg−1 SOC is the lowest. However, the spectra curves of the two other groups
are very close to each other, possibly indicating the non-linear relationship between spectra and SOC
contents, as SOC and other soil elements combine to produce a soil spectrum.
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4.2. Sensitivity to the Percentage of Labeled Samples

To illustrate the models’ behavior in the co-training process, the RMSECV, RMSEC and RMSEV
of the two regressors with regard to the number of unlabeled samples exploited are plotted for the
scenarios of 10, 70 and 150 labeled samples used in the calibration (Figure 4). For these three cases,
the RMSECV of the two regressors exhibited a decreasing trend as more unlabeled samples were
incorporated in the calibration, whereas the RMSEC and RMSEV displayed different patterns. When
only 10 labeled samples were used, a clear overfitting phenomenon was observed with RMSEC close
to 0, whereas the validation performance of the two regressors deteriorated gradually. The calibration
and validation accuracies of the two regressors obviously increased when 70 labeled samples were
used. For 150 labeled samples, a slight improvement was observed for RMSEC and RMSEV.

Remote Sens. 2017, 9, 29  8 of 20 

 

the RMSECV of the two regressors exhibited a decreasing trend as more unlabeled samples were 
incorporated in the calibration, whereas the RMSEC and RMSEV displayed different patterns. When 
only 10 labeled samples were used, a clear overfitting phenomenon was observed with RMSEC close 
to 0, whereas the validation performance of the two regressors deteriorated gradually. The calibration 
and validation accuracies of the two regressors obviously increased when 70 labeled samples were 
used. For 150 labeled samples, a slight improvement was observed for RMSEC and RMSEV.  

 
Figure 4. Behaviors of root mean square error of cross-validation (RMSECV), root mean square error 
of calibration (RMSEC) and root mean square error of validation (RMSEV) achieved by regressors s1 
and s2 versus the number of unlabeled samples exploited when 10, 70 and 150 labeled samples (m) 
were used in Co-LSSVMR, respectively. 

In addition to the 10 labeled samples, the overfitting phenomena were observed when no more 
than 40 labeled samples were used in the calibration, which indicated that 40 samples were not 
sufficient to capture the SOC variations for this study area. Therefore, the cases with less than 40 
labeled samples were not considered in determining the model selection criterion. The RMSE versus 
RMSEC and RMSE versus RMSECV are plotted (Figures 5 and 6) to examine the relationships of 
model performance with calibration accuracy and cross-validation accuracy. In most cases, RMSEV 
values had a similar increasing or decreasing trend with RMSEC (Figure 5); whereas RMSEV 
exhibited weak correlations with RMSECV (Figure 6) because the decrease in RMSECV did not surely 
result in a decrease in RMSEV. Thus, the RMSEC was selected as the model selection criterion, and 
the refined model for each regressor was selected according to the lowest RMSEC. Moreover, the 
cases with fewer than 40 labeled samples in calibration also adopted this model selection criterion. 

Figure 4. Behaviors of root mean square error of cross-validation (RMSECV), root mean square error of
calibration (RMSEC) and root mean square error of validation (RMSEV) achieved by regressors s1 and
s2 versus the number of unlabeled samples exploited when 10, 70 and 150 labeled samples (m) were
used in Co-LSSVMR, respectively.

In addition to the 10 labeled samples, the overfitting phenomena were observed when no more
than 40 labeled samples were used in the calibration, which indicated that 40 samples were not
sufficient to capture the SOC variations for this study area. Therefore, the cases with less than
40 labeled samples were not considered in determining the model selection criterion. The RMSE
versus RMSEC and RMSE versus RMSECV are plotted (Figures 5 and 6) to examine the relationships
of model performance with calibration accuracy and cross-validation accuracy. In most cases, RMSEV
values had a similar increasing or decreasing trend with RMSEC (Figure 5); whereas RMSEV exhibited
weak correlations with RMSECV (Figure 6) because the decrease in RMSECV did not surely result in a
decrease in RMSEV. Thus, the RMSEC was selected as the model selection criterion, and the refined
model for each regressor was selected according to the lowest RMSEC. Moreover, the cases with fewer
than 40 labeled samples in calibration also adopted this model selection criterion.
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The percentage of labeled samples used in calibration had an obvious effect on the estimation
accuracies of the models trained only with labeled samples as well as the refined models of Co-LSSVMR.
In general, more labeled samples were more likely to result in better estimation performance
(Figure 7a,b). When only 10 labeled samples were used, both models produced poor estimations with
high RMSEV and low R2

V. The performances of the two LSSVMR models were improved gradually
as the number of the labeled samples increased to 100, in which the performance leveled (Figure 7a).
No notable improvement was observed for the two refined models in Co-LSSVMR as the number of
the labeled samples increased from 20 to 50; however, the estimation accuracies improved remarkably
as the number of labeled samples increased from 50 to 60. Thereafter, the performances of both models
were improved until they leveled at 80 labeled samples.
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Figure 7. The performances of the two models trained only with labeled samples (a); and the refined
models of Co-LSSVMR (b); the number of unlabeled samples used in each refined model (c); and
total number of labeled and unlabeled samples used in each refined model (d) versus the number of
labeled samples and its percentage (in brackets). The “Max” in (c) indicates the maximum number of
unlabeled samples available for each regressor, which is one half of the pool size of unlabeled samples,
and the “Max” in (d) indicates the maximum total number of labeled and unlabeled samples available
for each regressor.

The number of unlabeled samples exploited and the total number of labeled and unlabeled
samples used by each refined model in Co-LSSVMR are summarized in Figure 7c,d. The number of
unlabeled samples used by each refined model increased quickly as the number of labeled samples
increased from 10 to 30. The number displayed a decreasing trend when more than 50 labeled samples
were used, which was approximately consistent with the maximum number of unlabeled samples
available for each regressor. For the total number of labeled and unlabeled samples used by each
refined model, the increasing trend was approximately consistent with the maximum number available
for each regressor when more than 30 labeled samples were used in the calibration.

Figure 8 illustrates and compares the final estimation performances of LSSVMR and Co-LSSVMR.
The RMSEV obtained by LSSVMR reduced gradually from 5.16 g·kg−1 at 30 labeled samples
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(RPIQ = 1.97, R2
V = 0.46) to 3.12 g·kg−1 at 100 labeled samples (RPIQ = 3.31, R2

V = 0.79), and then it
turned relatively stable. The RMSEV obtained by Co-LSSVMR decreased sharply from 4.62 g·kg−1

at 50 labeled samples (RPIQ = 2.19, R2
V = 0.53) to 3.58 g·kg−1 at 60 labeled samples (RPIQ = 2.84,

R2
V = 0.73), and further decreased gradually to 2.95 g·kg−1 at 80 labeled samples (RPIQ = 3.44,

R2
V = 0.81), where it began to level off. The RMSEV obtained by PLSR decreased gradually from

5.90 g·kg−1 at 10 samples to 3.24 g·kg−1 at 110 samples, and then it began to be stable. LSSVMR
obtained its best estimations when 130 labeled samples were used (RMSEV = 3.02 g·kg−1, RPIQ = 3.35,
R2

V = 0.80), and Co-LSSVMR had best estimation accuracy at 110 labeled samples (RMSEV = 2.77 g·kg−1,
RPIQ = 3.66, R2

V = 0.83). The estimations produced by Co-LSSVMR were better than the best estimation
obtained by LSSVMR when over 80 out of 164 samples were labeled samples.
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Figure 8. The performance of LSSVMR and Co-LSSVMR (a); ratio of inter-quartile range to RMSEV
(RPIQ) of LSSVMR and Co-LSSVMR (b); and the gains in accuracy obtained by Co-LSSVMR with
respect to LSSVMR (c) versus the number of labeled samples and its percentage (in brackets).
For comparison, the estimation results obtained by PLSR are also plotted in (a,b).

The gains in estimation accuracy achieved by Co-LSSVMR with respect to LSSVMR varied with
the percentage of labeled samples used in calibration (Figure 8c). When less than 40 out of the 164
samples were used as labeled samples, Co-LSSVMR had similar or poorer performance when compared
with LSSVMR, whereas Co-LSSVMR had an advantage over LSSVMR with over 15% gains in accuracy
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when 60 to 90 labeled samples were used. Furthermore, the gains in accuracy reached a maximum
of 22.52% at 80 labeled samples. The gains in accuracy obtained by Co-LSSVMR were moderate
(6.64%, 11.50%, 10.04% and 8.16%) for 100 to 130 labeled samples. When more than 140 samples
were labeled, Co-LSSVMR produced slightly better estimations than LSSVMR with gains in accuracy
smaller than 5%.

The calibration and validation results obtained by LSSVMR and Co-LSSVMR when 80 labeled
samples were used for calibration are illustrated and compared in Figure 9. The LSSVMR obtained
acceptable fitting accuracy with samples scattering around the 1:1 line (Figure 9a,b), however, it tended
to overestimated low SOC values and underestimated high SOC values with a slope of 0.60 and an
intercept of 4.05 g·kg−1 (Figure 9c). By exploiting the unlabeled samples, Co-LSSVMR obtained better
fitting accuracy (Figure 9e,f) and validation performance with a slope of 0.76 and an intercept of
2.45 g·kg−1 (Figure 9g).
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Figure 9. Scatter plots of the estimated versus measured SOC content (g·kg−1) for the calibration
dataset obtained by two supervised LSSVMR models: s1 (a); and s2 (b); and for the validation dataset
obtained by LSSVMR trained with 80 labeled samples (c); scatter plots of the estimated versus measured
SOC content for the calibration dataset obtained by the two refined: models s1 (d); and s2 (e); and for
the validation dataset (f) obtained by Co-LSSVMR, where 80 out of 164 labeled samples were labeled
samples. The “Measured SOC content” for each unlabeled sample in (d,e) is the value labeled by the
other regressor. The solid line is the regression line between estimated and measured values, and the
dashed line is the 1:1 line.

4.3. Sensitivity to the Number of Labeled Samples

Figures 10 and 11 show the results obtained by Co-LSSVMR with respect to its sensitivity to the
number of labeled samples. The performances of the two refined models in Co-LSSVMR and their
average estimations exhibited similar patterns, improving gradually as the number of the labeled
samples increased from 20 to 80. The number of the unlabeled samples included in each refined model
showed an upward trend as the number of labeled samples increased from 10 to 40 (Figure 10b), while
the total number of labeled and unlabeled samples in each refined model displayed an increasing
trend as the number of labeled samples increased constantly (Figure 10c).
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Figure 10. The performance of the two refined models of Co-LSSVMR (a); the number of unlabeled
samples used in each refined model (b); and the total number of labeled and unlabeled samples used
in each refined model (c) versus the number of labeled samples with 64 unlabeled samples available
for exploitation. The “Max” in (b) indicates the maximum number of unlabeled samples available,
which is 32, for each regressor; and the “Max” in (c) indicates the maximum total number of labeled
and unlabeled samples available for each regressor.
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Figure 11. The performance of: Co-LSSVMR (a); RPIQ of Co-LSSVMR (b); and the gains in accuracy
obtained by Co-LSSVMR with respect to LSSVMR (c) versus the number of labeled samples with
64 unlabeled samples available for exploitation.

The effectiveness of Co-LSSVMR was sensitive to the number of labeled samples (Figure 11).
The Co-LSSVMR produced less accurate estimations than LSSVMR when less than 40 labeled samples
were used in the calibration. In addition, the gains in accuracy obtained by Co-LSSVMR were
negligible even though 57 unlabeled samples were exploited when the size of the labeled samples
was 50. However, Co-LSSVMR produced notable gains in accuracy ranging from 13% to 21% when
60 to 90 labeled samples were used. The gains in accuracy were reduced to 6.64% when the number of
labeled samples was 100.

4.4. Sensitivity to the Number of Unlabeled Samples

The results obtained by Co-LSSVMR with 80 labeled samples are summarized in Figures 12
and 13, which show the sensitivity of Co-LSSVMR to the pool size of unlabeled samples. The RMSEV
obtained by each refined model and the difference of the RMSEV of the two refined models exhibited
decreasing trends as the pool size of unlabeled samples increased from 10 to 60, whereas the number
of unlabeled samples exploited by each model displayed an increasing trend. The differences of the
RMSEVs of the two refined models were larger than 0.1 g·kg−1 when less than 50 unlabeled samples
were available. Thereafter, the estimation performances of the two regressors tended to level off and
be comparable as more unlabeled samples were available and incorporated.
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This study found that SSR produced few model improvements or even reduced model 
performance when less than 50 labeled samples were used. The labeling confidence for unlabeled 
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Figure 12. The performance of the two refined models of: Co-LSSVMR (a); and the number of unlabeled
samples used in each refined model (b) versus the pool size of unlabeled samples with 80 labeled
samples used in calibration. “Max” in (b) indicates the maximum number of unlabeled samples
available for each regressor.
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Figure 13. The performance of: Co-LSSVMR (a); RPIQ of Co-LSSVMR (b); and the gains in accuracy
obtained by Co-LSSVMR with respect to LSSVMR (c) versus the pool size of labeled samples with
80 labeled samples used in calibration.

The estimation accuracies of Co-LSSVMR, RMSEV decreased gradually as the dataset size of
unlabeled samples increased from 10 to 60, whereas R2

V, RPIQ and the gains in estimation accuracy
showed increasing trends (Figure 13). Co-LSSVMR obtained good estimations with 11.36% gains
in accuracy over LSSVMR when the pool size of unlabeled samples was 10. The gains in accuracy
were greater than 20% when the pool size of unlabeled samples was larger than 50. The estimation
performance remained stable when more than 60 unlabeled samples were available.

5. Discussion

This study demonstrated the effectiveness of SSR in estimating SOC contents from VIS-NIR
spectroscopy when the number of labeled samples was limited but not excessively small. SSR is based
on the assumptions that the data lie on a low-dimensional manifold embedded in a higher-dimensional
space and similar inputs should have similar outputs [13]. These assumptions are valid for the
scenario of estimating SOC contents with VIS-NIR spectroscopy, since they are similar to spectral
matching in soil spectroscopy, which has been applied successfully to SOC contents as well as other
soil characteristics estimations [39–42]. SSR obtained better SOC estimations because the unlabeled
data provided helpful information on the ground-truth data distribution [43]. This statement was
confirmed by our results in Figure 9, which shows that the extra unlabeled samples included in the
refined models make each model more consistent with the labeled samples and accordingly produce
better performance for the validation dataset.
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This study found that SSR produced few model improvements or even reduced model
performance when less than 50 labeled samples were used. The labeling confidence for unlabeled
samples estimated by the amount of reduction of RMSECV on the labeled samples was not reliable,
which was also observed by other studies [19,43,44], and such result could be explained by that a
small sample dataset was not sufficient to capture information sufficient to describe the soil variations.
Thus, overfitting phenomena were more likely to occur when the number of labeled samples used in
calibration was small, which indicated that the model had poor generalization performance although
it fitted perfectly well for the training dataset. Given the poor performance for the validation dataset,
the labeling quality for the unlabeled samples should not be high, and more noises than useful
information might be introduced by the addition of unlabeled samples.

We also found that SSR appeared to be more useful when the percentage of labeled samples was
neither excessively large nor excessively small. As mentioned above, the performance degradation
occurred at small labeled-sample size could be attributed to unreliable labeling confidence evaluation
and low labeling quality. However, the labeling confidence became more reliable, and the labeling
quality became high as more labeled samples were used. Thus, SSR could capture more useful
information from unlabeled samples to improve the estimation accuracy. However, the usefulness of
SSR seemed to be limited when the percentage of labeled samples was large enough. This finding
might be explained by the following: (i) the high estimation accuracy obtained only with the labeled
samples left little room for improvement [44,45]; and (ii) only a small number of unlabeled samples
available for exploitation might reduce the probability of selecting highly informative unlabeled
samples. Moreover, the results obtained under the fixed number of unlabeled samples exhibited a
similar trend to the number of labeled samples.

Co-LSSVMR needed less labeled samples than LSSVMR to achieve good estimations, which could
be explained by that the estimation performance of Co-LSSVMR improved more quickly through the
use of unlabeled samples as the labeled-sample size increased. However, this study also indicated
that estimating SOC contents accurately with very few labeled soil samples through SSR might be
impractical. In some applications, SSL appeared to require significantly fewer labeled samples than
its corresponding supervised technique in obtaining high accuracy [45], whereas the usefulness and
performance of SSL was also found to be dependent on the complexity of the problems to be solved and
the labeled sample size [19,44,45]. Viscarra Rossel [4] pointed out that sufficient samples, which can
adequately describe the soil variation of the study area, were required for the high estimation accuracy
of soil properties. The complex relationship between SOC content and soil reflectance might explain
the failure to achieve accurate estimations with very few labeled samples, because soil spectrum is
determined by the combinations of absorption features from different mineral components and organic
matter [46,47].

We found that the effectiveness of SSR was also influenced by the dataset size of unlabeled
samples. To some extent, more unlabeled samples available for exploitation were more likely to cause
more gains in accuracy. Notable performance differences between the two regressors in Co-LSSVMR
were observed when a limited number of unlabeled samples were available. This finding also indicated
the improvement potential left for refinement, which was confirmed by the further improvements
obtained with larger dataset size of unlabeled samples.

In this study, no extra stopping criteria were adopted to terminate the learning phases because of
the limited number of unlabeled samples. However, testing all unlabeled samples exhaustively from a
large dataset is inefficient. It is especially true for hyperspectral imaging applications, in which a large
population of soil spectra can be collected [48–50]. In such a scenario, testing all available unlabeled
samples is impractical. In addressing this problem, a representative subset of unlabeled samples must
be extracted in advance [18]. Bazi et al. [19] compared three unlabeled sample selection strategies
based on random sampling, variance and differential entropy and found that differential entropy
outperformed the other two strategies. This study could be a good reference for future applications of
SSR in estimating SOC contents with hyperspectral images.
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Several modeling strategies and techniques have been explored in literatures to improve the
estimations of SOC contents from hyperspectral spectroscopy. For example, Local regression is
a promising modeling strategy especially for diverse datasets with large soil variations [40,42,51].
Testing the applicability of the SSR to large diverse and heterogeneous soil spectral dataset [52,53]
would be a meaningful task in the future. Moreover, investigating the compatibility of SSR with these
modeling strategies and techniques might be meaningful for further studies.

6. Conclusions

This study investigated the effectiveness of SSR in estimating SOC contents from laboratory-based
VIS-NIR spectroscopy with a limited number of samples with reference values. The principal
conclusions obtained can be summarized as follows:

(1) Co-LSSVMR can generally produce better estimations than LSSVMR when the number of labeled
samples is not excessively small (>50), and the gains in accuracy of Co-LSSVMR with respect to
LSSVMR can be up to over 20%.

(2) SSR requires less labeled samples to produce estimations of a certain accuracy.
(3) The usefulness of SSR is sensitive to the number of labeled and unlabeled samples, and SSR is

more likely to produce more gains in estimation accuracy when the number of labeled samples is
neither excessively small nor excessively large, and when the unlabeled samples are sufficient.
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Appendix A. Least Square Support Vector Machine Regression (LSSVMR)

In LSSVM, a linear estimation is done in a kernel-induced feature space (y = ωTφ(x) + b),
where φ(x) denotes the feature map. In LSSVMR, the error ξi quadratic norm is taken as the LSSVMR’s
loss function by Suykens [22]. The optimization problem is described as follows:

min J(ω, ξ) =
1
2

ωTω +
1
2

γ
|L|

∑
i=1

ξ2
i (A1)

Subject to the equality restriction

yi = ωTφ(xi) + b + ξi , i = 1, 2, . . . , |L| (A2)

The first part of this cost function is a weight decay, which is used to regularize weight sizes
and penalize large weights. Large weights will deteriorate the generalization ability of the LSSVMR
because they can cause excessive variance, so the weights converge to smaller values. The second
part of Equation (A1) is the regression error for all training data. The parameter γ is the punishment
factor, which determines the tradeoff between the complexity of the LSSVMR model and its accuracy
in capturing the training data. The restriction supplied by Equation (A2) gives the definition of the
regression error. For the optimization problem, the Lagrange function is introduced as follows:
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L(ω, b.ξ, α) =
1
2

ωTω +
1
2

γ
|L|

∑
i=1

ξ2
i +

|L|

∑
i=1

αi

[
ωTφ(xi) + b + ξi − yi

]
(A3)

In Equation (A3), αi(i = 1, 2, . . . , |L|) is the introduced Lagrange multiplier [54]. To obtain the
optimum, partial first derivatives of L with respect to each variable are computed and set to zero.
According to the Karush–Khun–Tucker (KKT) conditions, ω and ξ can be eliminated through the two
following equation:

ω−
|L|

∑
i=1

αiφ(xi) = 0 (A4)

γ
|L|

∑
i=1

ξi − γ = 0 (A5)

An important result of this approach is that the weights (ω) can be written as linear combinations
of the Lagrange multipliers with the corresponding data training (xi). The Lagrange multiplier α vector
and b follows from solving a set of linear equations:[

K + I
γ

1T
|L|

1|L|
0

][
α

b

]
=

[
y
0

]
(A6)

where K denotes the kernel matrix with ijth element being φ(xi)
Tφ
(
xj
)

and I denotes the identity
matrix |L| ×|L|, 1|L| = [1, 1, 1, · · ·, 1 ]T . K(xi, x) = φ(xi)

Tφ(x) is the so-called kernel function. Thus,
the original regression function (y = ωTφ(x) + b) can be replaced by the following one:

y =
|L|

∑
i=1

αiK(xi, x) + b (A7)

The most popular kernel functions in soil spectroscopy is Gaussian radial basis function (RBF) [38].
It should be noted that it is important to tune the width of the Gaussian function (σ2), in combination
with the regularization constant γ, to achieve a perfect regularization model.

As mentioned above, for LSSVMR with RBF kernel two parameters have to be optimized: γ and
σ. Straightforwardly, grid search can be used to optimized the two parameters, which is a global
exhaustive search technique [55]. To improve the performance and save computational cost, the tuning
of the parameters is conducted in two steps. First, a global optimization technique, coupled simulated
annealing (CSA), is used to determine the initial values of the parameters [56]. Then, these parameters
are given to a second optimization procedure using a simplex method for finding a local minimum of a
function of several variables, which is devised by Nelder and Mead [57]. For two variables, a simplex is
a triangle with three vertices representing the highest (worst) vertex, next highest vertex and the lowest
(best) vertex. The intuition is to move away from high point towards the low point gradually. The
simplex moves in several transformations that are known as “reflection”, “expansion”, “contraction”,
and “shrink” to find the optimal value for the minimization problem [58]. During the optimization
procedure, leave-one-out cross-validation [59] was used to determine the tuning parameters.
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