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Abstract: Urban heat island (UHI) effect, the side effect of rapid urbanization, has become an obstacle
to the further healthy development of the city. Understanding its relationships with impact factors is
important to provide useful information for climate adaptation urban planning strategies. For this
purpose, the geographically-weighted regression (GWR) approach is used to explore the scale effects
in a mountainous city, namely the change laws and characteristics of the relationships between land
surface temperature and impact factors at different spatial resolutions (30–960 m). The impact factors
include the Soil-adjusted Vegetation Index (SAVI), the Index-based Built-up Index (IBI), and the Soil
Brightness Index (NDSI), which indicate the coverage of the vegetation, built-up, and bare land,
respectively. For reference, the ordinary least squares (OLS) model, a global regression technique,
is also employed by using the same dependent variable and explanatory variables as in the GWR
model. Results from the experiment exemplified by Chongqing showed that the GWR approach
had a better prediction accuracy and a better ability to describe spatial non-stationarity than the
OLS approach judged by the analysis of the local coefficient of determination (R2), Corrected Akaike
Information Criterion (AICc), and F-test at small spatial resolution (< 240 m); however, when the
spatial scale was increased to 480 m, this advantage has become relatively weak. This indicates that
the GWR model becomes increasingly global, revealing the relationships with more generalized
geographical patterns, and then spatial non-stationarity in the relationship will tend to be neglected
with the increase of spatial resolution.
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1. Introduction

Rapid urban expansion and population growth leads to a common phenomenon, urban heat island
(UHI), where urban areas have higher air and surface temperatures than their rural surroundings [1,2].
The urban heat island (UHI) effect has received unprecedented attention because of its negative
influences on the healthy development of the city and the health of the urban population, such as
the increase of the heat and pollution-related mortality, the decrease of the habitats’ comfort, and the
elevation of the mean and peak energy demands of buildings [3].

With the development of remote sensing technology, the remote sensing data is widely used to
study the UHI for the ground surface because it provides a relatively cheap and rapid method of
acquiring up-to-date information over a large geographical area and obtaining data from inaccessible
regions, etc. In recent years, most studies on UHI have been focused on spatial distribution, impact
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factors, changing trends, and so on. Among the above, the relationships between the UHI and related
factors become a hot subject that wins wide-ranging and deep research. Price initially put forward the
triangle relationships between vegetation index, soil moisture, and radiation temperature aided by
remote sensing images [4]. Carlson took advantage of remote sensing data to research urbanization
and its impacts on the tropical rainforest, as well as that of the regional climate influenced by
urbanization [5]. Streutker proposed a two-dimensional Gaussian model to estimate the relationships
between UHI magnitude and impact factors [6,7]. Weng derived the vegetation fraction by a spectral
mixture model as an alternative indicator of vegetation abundance, and demonstrated that the land
surface temperature (LST) had a slightly stronger negative correlation with the vegetation fraction
than with the Normalized Difference Vegetation Index (NDVI) for all land cover types at the different
spatial resolutions [8]. Some scholars, such as Yuan and Weng, compared the Normalized Difference
Vegetation Index (NDVI), vegetation fraction and the percent of impervious surface area as indicators
of UHI effects by investigating their relationships to the UHIs quantitatively [9,10]. Jusuf and Callejas
probed and verified that land use types had rather more influence on the increase of land surface
temperature [11,12]. Marc used spatial analysis methods to assess the UHI skin temperature amplitude
and its relationship to land development intensity, size, and eco-environment for the 38 most populated
cities in the United States [13]. Several indices as the NDVI, the Normalized Difference Built-up Index
(NDBI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Bareness
Index (NDBaI) were utilized to indicate the coverage of the vegetation, build-up, water and bare land,
respectively, and their impacts on the UHI (LST) were studied deeply [14–16]. Ashtiani and Mirzaei
used artificial neural network (ANN) technology to predict the indoor thermal conditions on an urban
heat island based on the outdoor conditions recorded at the weather stations [17,18]; Lee created a
neural network predictive model to predict the urban heat island intensity and obtained good results
with coefficients of correlation ranging from 0.95 to 0.99 [19].

The above-mentioned studies on the quantitative analysis of the relationships between UHI and
impact factors are mainly based on the global regression models, like the ordinary least squares (OLS)
and the neural network predictive model. The global regression models are dependent upon the
assumption that the relationships are spatially invariant in the whole study area. However, in fact, the
relationships are often characterized by local changes and the global regression model may hide the
important details in the spatial distribution [20,21].

Recently, as an extension of traditional standard global regression techniques, geographically-weighted
regression (GWR) was developed to explore spatially-varying relationships [20,22]. A few studies have
tested and verified the efficacy of the GWR model for investigating spatially-varying relationships
in some fields, such as climatology [23,24], urban poverty [25,26], environmental equity [27],
land use/land cover [21,28], urban landscape fragmentation [29], groundwater quantity [30], and
forests [31]. The GWR model can effectively solve the problem of the spatial non-stationarity by
embedding the spatial location information into the regression parameters to explore the relationships
between the explanatory variables and the dependent variable within the range of certain space.

In order to overcome the defects of the global regression model, a limited number of scholars
applied the GWR model to quantify the relationships between the UHIs and impact factors, such as
environmental factors, climate factors, and land cover types, etc. Li and Buyantuyev first introduced
the GWR model into the relationships between the LST and the impact factors at the same time, and
the results indicated that the GWR model not only provided a better fit than the traditional ordinary
least squares (OLS) model, but also provided local detailed information about the spatial variation
of LST [32,33]. Su utilized the GWR model to test the spatial non-stationarity of the relationships
between land cover types and the LST in TaoYuan, Taiwan, and found that the urban heat island
intensity estimated by the global and GWR models for TaoYuan would equate to 2.63 ◦C and 3.17 ◦C,
respectively, and the urban heat island was underestimated by the global model [34]. Tian used the
GWR model to quantify the relationships of the LST and related environmental factors in the Heihe
River catchment, China, and found that all of the GWR models had better simulation with smaller
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Akaike Information Criterion (AICc) and higher coefficient of determination (R2), compared with the
OLS method [35].

However, the limited studies on the impacts of the impact factors on the UHI are focused on
comparing the relative advantages of the GWR model over other models and quantitative descriptions
of the GWR model. The scale effects, namely the change laws and characteristics at different spatial
scales (spatial resolutions), is rarely involved. Li had studied the spatial scale-dependent relationships
of UHI and related factors mainly from the influence of the bandwidth, namely a parameter of the GWR
model, but he failed to investigate the scale effects of the GWR model from spatial resolutions [32].
To solve the above problems, the Soil-Adjusted Vegetation Index (SAVI) [36], the Index-based Built-up
Index (IBI) and the Soil Brightness Index (NDSI) [37,38], which indicate the coverage of the vegetation,
built-up, and bare land, respectively, are utilized as the explanatory variables to investigate the scale
effects, namely the change laws and characteristics at different spatial scales (spatial resolutions), on
the UHI in a mountainous city by using the GWR model.

2. Study Area

Chongqing municipality, situated in the Southwestern China, is one of the fastest developing
cities in China in the past twenty years. Characterized by rugged hills, Chongqing belongs to a typical
inland mountain city and is known as a “mountain city”. It is also one of the three famous “stoves” in
China, the average temperature of the urban area is 5 ◦C–8 ◦C higher than that in rural area, and the
urban heat island effects of the study area are obvious because of the air circulation difficulty by the
terrain barrier, and the high population and building density caused by rapid urbanization. We chose
the core area of the main city and its surrounding expansion area as the target area, and the specific
location is shown as Figure 1.
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Figure 1. Location of the study area ((a) China, (b) Chongqing, and (c) the study area).

The study area ranges from 29◦25′-29◦42′N, 106◦22′–106◦39′E, and its area is about 845.88 km2.
The maximum and minimum elevations are 685 m and 90 m, respectively, and the average elevation
is 284 m over the study area. The Yangtze River and the Jialing River go through the area roughly from
south to north and from west to east, respectively. Separated by the terrain and the rivers, naturally,
the study area forms a multi-center structure.
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3. Methods

Firstly, the SAVI, IBI, NDSI, and LST were inversed from the Landsat-5 Thematic Mapper images,
and the relationships between UHI (LST) and impact factors (SAVI, IBI, and NDSI) were established
by the GWR model after they were aggregated from 30 m to 60 m, 120 m, 240 m, 480 m, and 960 m.
Then, the advantages of the GWR models over the OLS models were analyzed and compared. Lastly,
the scale effects of the relationships between UHI and impact factors by using a GWR model were
analyzed further. In this paper, all of the local R2, coefficients and residuals are interpolated by the
ordinary kriging method in order to make the results more intuitive.

3.1. Image Pre-Processing

Landsat-5 Thematic Mapper (TM) images dated on 18 June 2008 were used in this study.
The images were obtained from the website of the Institute of Remote Sensing and Digital Earth
Chinese Academic of Sciences, which has corrected the radiometric and geometrical distortions of the
images to a quality level of 2 and has re-sampled the thermal infrared band data to a spatial resolution
of 30 m before delivery. The image pre-processing was mainly performed by ENVI 4.8 software
(Exelis Visual Information Solutions, Boulder, CO, USA). Firstly, a total of 25 ground control points,
such as road intersections, river turns, and intersections, were selected based on the high-resolution
IKONOS image, and the raw images were further rectified and re-sampled with pixel sizes of 30 m
by 30 m for all bands, including the thermal band. The residuals at those control points ranged from
0.25 to 1.00 pixels. Then, the surface reflectivities of six optical band images were inversed through
radiometric calibration and atmospheric correction by the ENVI FLAASH tool.

3.2. Derivation of the Parameters and Data Aggregation

3.2.1. Dependent Variable: LST

The Landsat-5 Thematic Mapper (TM) thermal infrared band (10.4 to 12.5 µm) data were used
to inverse the LST. After the digital number (DN) value was transformed to the thermal infrared
spectral radiance received by the sensor at the top of the atmosphere, namely the top-of-atmospheric
(TOA) radiance [39], and then the TOA radiance was converted to surface-leaving radiance (Lsur f ace)
by eliminating the impacts of the atmosphere as follows [9,40]:

Lsur f ace =
LTOA − Lupper − τ(1− ε)Ldown

τε
, (1)

In Equation (1), LTOA represents the TOA radiance, ε is the surface emissivity, and the three
atmospheric parameters, namely τ, Lupper and Ldown, represent the atmospheric transmission, the
upwelling radiance and the downwelling radiance, respectively.

The atmospheric parameters (ε, Lupper, and Ldown) were obtained based on the atmospheric
correction tool developed by Barsi et al. and available at the NASA website [40,41]. In addition, the
surface emissivity (ε) was estimated by utilizing the classification result and the NDVI value [42].
Lastly, the LST was inversed from the surface radiance by the Landsat specific estimate of the Planck
curve, expressed in Equation (2) [39]:

LST =
K2

ln(1 + K1/Lsur f ace)
, (2)

In Equation (2), LST is the surface temperature in Kelvin (K), for Landsat-5 TM,
K1 = 607.76 (W·m−2·sr−1·µm−1), and K2 = 1260.56 K.
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3.2.2. Explanatory Variables: SAVI, IBI, and NDSI

The indices SAVI, IBI, and NDSI are positively correlated to the vegetation coverage, built-up
coverage, and bare land coverage in the urban area, respectively, and the three indices are widely
used for the land use mapping [36–38]. Therefore, the indices SAVI, IBI, and NDSI were utilized as
indicators of the coverage of the vegetation, built-up, and bare land, respectively, to analyze their
effects on the land surface temperature.

The Soil Adjusted Vegetation Index (SAVI) was put forward by Huete to eliminate the soil
background and noise. Compared to the NDVI, the SAVI is considered to be more suitable for the
low-vegetation coverage region, like the urban area, due to the introduction of a soil adjusted factor,
and it can be expressed as follows [36]:

SAVI =
(ρNIR + ρRED) ∗ (1 + l)

ρNIR + ρRED + l
, (3)

In Equation (3), l is the soil adjusted factor, and its value is ranging from 0 to 1. Usually, when l
value is equal to about 0.5, the soil background difference could be reduced, and the noise would be
further eliminated as well; ρNIR and ρRED represent the surface reflectivity of near infrared band and
red band, respectively.

The Index-based Built-up Index (IBI) is constructed with the indices, namely NDBI, the Modified
Normalized Difference Water Index (MNDWI) and SAVI and can be described as follows (4) [37]:

IBI =
2ρMIR/(ρMIR + ρNIR)− [ρNIR/(ρNIR + ρRED) + ρGREEN/(ρGREEN + ρMIR)]

2ρMIR/(ρMIR + ρNIR) + [ρNIR/(ρNIR + ρRED) + ρGREEN/(ρGREEN + ρMIR)]
, (4)

where ρGREEN , ρRED, ρNIR, and ρMIR represent the surface reflectivity of the green band, red band,
near-infrared band, and mid-infrared band, respectively.

Xu put forward the Soil Brightness Index (NDSI) to extract bare land, and the NDSI can be
described as follows [38]:

NDSI =
ρRED − ρGREEN
ρRED + ρGREEN

, (5)

where ρGREEN and ρRED represent the surface reflectivity of the green band and red band, respectively.

3.2.3. Data aggregation

The LST, SAVI, NDSI, and IBI at different spatial scales are obtained by aggregation processing,
and the expressions is as shown below:

X (i, j) =
1
M ∑ (k,l∈S)X (k, l) , X = LST, SAVI, NDSI, IBI, (6)

In Equation (6), X (k, l) represents the original pixel value, X (i, j) represents the aggregated pixel
value, X represents LST, SAVI, NDSI, and IBI, respectively, S is the aggregated area, and M is the
number of pixels of the aggregated area.

3.3. Geographically-Weighted Regression

The OLS model is a global regression model; its regression coefficients are constant, and the
relationships established by the OLS model are also treated as spatially constant in the whole study
area. The traditional global regression model can be expressed as follows:

yi = β0 + ∑
k

βkxk + ε, (7)

where yi represents the dependent variable, xk represents the explanatory variable, β0 is the intercept,
βk is the estimated coefficient, and ε stands for the random error.
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The GWR model was fully described by Fotheringham et al., who extended the concept of the
global regression model by adding regional parameters, and can be rewritten as Equation (8) [22]:

yi = β0(ui, vi) + ∑
k

βk(ui, vi)xik + εi, (8)

where (ui, vi) denotes the space location of the point i, β0 (ui, vi) represents the intercept at the point
i, βk (ui, vi) represents the local coefficients estimated for the explanatory variable xk at the point i,
and εi is the random error at point i with distribution N

(
0, σ2).

In Equation (8), β0 (ui, vi) and βk (ui, vi) can be estimated by solving the following matrix
equation [20,22]:

∧
β(ui, vi) = (XTW(ui, vi)X)

−1
XTW((ui, vi))Y, (9)

In Equation (8), β̂ (ui, vi) stands for the unbiased estimates of the regression coefficient β, X and
Y represent the vector for the explanatory and dependent variables respectively, and W (ui, vi) is the
weight matrix which is used to ensure that observations near to the specific point have a larger weight.
The Gaussian kernel function was used to compute the weight matrix as follows [22]:

Wij = exp(−
d2

ij

b2 ), (10)

where b is called as the bandwidth of the kernel function, and dij represents the Euclidean distance
between point i and j. According to the Gaussian curve, the Wij value is gradually decreasing as the
distance dij is increasing [22,43]. The weight value will be set to zero if the distance is greater than the
basil width of the kernel function.

In order to compare the performances of the OLS model and the GWR model, four evaluation
indices, including the coefficient of determination (R2), Moran’s index (Moran′s I), the approximate
likelihood ratio test based on the F-test (F), and the corrected Akaike Information Criterion (AICc),
were utilized in this research.

The coefficient of determination (R2), a measure of goodness-of-fit, is calculated by a comparison
between the estimated and the observed values, a higher R2 means the model is more perfectible. The
Moran index (Moran′s I), ranging from −1 to 1, a larger absolute value implies a more significant
spatial autocorrelation [31], was calculated to test the spatial autocorrelation.

The F-test was put forwarded by Fotheringham et al., the null hypothesis is that the GWR model
has no improvement over the OLS model, and the F-value is described as follows [22,35]:

F =
RSSO/DFO
RSSG/DFG

, (11)

where RSSO and DFO represent the residual sum of squares and the degree of freedoms of the OLS
model respectively, while RSSG and DFG represent the residual sum of squares and the degrees of
freedom of the GWR model.

The corrected Akaike Information Criterion (AICc) is also an important statistic to compare the
model performances of the OLS model and the GWR model, and can be described as follows [44]:

AICC = 2nloge(
∧
σ) + nloge(2π) + n{(n + tr(S))/(n− 2− tr(S)}, (12)

where n refers to the number of sampling points, σ̂ refers to the estimate of the standard deviation
of the residuals, and tr (S) refers to the trace of the hat matrix. As a general rule, a model with the
smallest AICc value is the best one which is closest to reality [45].

In this paper, both GWR and OLS models were built-up in ArcGIS 10.2 software (Environmental
Systems Research Institute (ESRI), Redlands, CA, United States), and all of the evaluation indices,
including R2, Moran′s I, F value and AICc, were also computed in it.
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4. Results

4.1. The Derivation Results of SAVI, IBI, NDSI, LST and Classification Result of the Study Area

The derivation results of SAVI, IBI, NDSI, LST, and the classification result of the study area were
derived from the images with a spatial resolution of 30 m, and are shown in Figure 2.
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the study area).

The classification result of the study area was obtained by using the SVM classifier and verified
by visual interpretation based on the Google Earth image, the overall accuracy of the classification
result is 96.2%. As we can see in Figure 2e, The Yangtze River and the Jialing River go through the
area roughly from south to north and from west to east, respectively, and the urban area forms a
multi-center structure separated by the terrain and the rivers, naturally. From Figure 2d,e, the urban
heat island phenomenon could easily be found in the study area, namely the surface temperature of
urban areas is much higher than the surface temperature of rural areas. The surface temperature of
urban areas are mainly distributed in the range of 28 ◦C–56 ◦C, the average temperature is 32.3 ◦C;
however, the surface temperature of the rural areas are mainly distributed in range of 22 ◦C–32 ◦C,
the average temperature is 26.8 ◦C.

Obviously, as we can see in Figure 2a–d, there is a non-linear relationship between LST and SAVI
and NDSI in water areas, the pixels in the water areas are not suitable for building a linear model.
Therefore, only the pixels in the non-water areas will be selected as the training samples in this paper.

4.2. Data Sampling

In order to satisfy the requirement of the GWR module in ArcGIS 10.2 (Environmental Systems
Research Institute (ESRI), Redlands, CA, United States), the variables had to be further converted to
vector formats, the conversion of data formats involved following steps: firstly, the training samples
were uniformly generated in the non-water areas; then, training samples were converted into shapefile
format by using the GeoDA0.9.5-i (Luc Anselin, Champaign, IL, USA). The number of training samples
at different spatial resolutions is shown in Table 1.
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Table 1. The number of training samples at different spatial resolutions.

Spatial Resolution
Sampling Interval

Number
Column Line

30 m 8 8 13,668
60 m 4 4 13,660
120 m 2 2 13,730
240 m 1 1 12,556
480 m 1 1 4186
960 m 1 1 1002

4.3. The Analysis of the Relationships between the LST and the Impact Factors at a Single Scale

In this section, the GWR was used to investigate the spatial non-stationarity relationships between
the LST and the impact factors at a single spatial resolution (30 m). The impact factors include the SAVI,
IBI, NDSI, and the combination of those three indices. For reference, the corresponding OLS models
with the same dependent variable and explanatory variables in the GWR models were also explored.

4.3.1. Comparisons between the OLS and GWR Models

The GWR and OLS models at a spatial resolution of 30 m between the LST and the impact factors
were established in ArcGIS 10.2 software (Environmental Systems Research Institute (ESRI), Redlands,
CA, United States), and their evaluation indices are shown in Table 2.

Table 2. The performance comparisons of the OLS and GWR models.

Explanatory Variables Model AICc Adjusted R2 F

SAVI
OLS 31,304 0.56
GWR 29,299 0.68 105.27

IBI
OLS 30,968 0.58
GWR 28,800 0.70 108.54

NDSI
OLS 32,356 0.49
GWR 30,233 0.63 107.83

SAVI, IBI, NDSI
OLS 30,379 0.62
GWR 28,083 0.73 111.61

It is evident from Table 2 that all GWR models had much smaller AICc values, higher adjusted
R2 values, and better F-tests when compared with the corresponding OLS models. In single-factor
analysis, the IBI had the greatest impact on the LST with an AICc value of 30,968 and adjusted R2

value of 0.58 for the OLS model, and with an AICc value of 28,800 and adjusted R2 of 0.70 for the GWR
model, followed by SAVI and NDSI. The multi-factors relationship model, established with the IBI,
SAVI, and NDSI simultaneously, provided the best performance with an AICc value of 28,800 and
adjusted R2 value of 0.73 for the GWR model, and with an AICc value of 30,379 and adjusted R2 value
of 0.62 for the OLS model. Additionally, the F-tests of the significance of improvement suggested
the GWR performed better in all cases. It can be judged by the above comprehensive comparisons
that, as a local statistical model, the GWR model’s prediction accuracy is better than OLS and other
traditional global models, which also verified the results of Li and Tian’s research [32,35].

4.3.2. Spatial Non-Stationarity among Relationships

The results of the local coefficients and the local R2 provide an effective measure to analyze the
spatial varying relationships between the LST and the indices, which are shown in Figures 3 and 4.
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Figure 3. The spatial distribution of the local coefficients estimated by GWR models at a spatial
resolution of 30 m. (a–c) are the slope coefficients for the SAVI, IBI, and NDSI in single-factor
models, respectively; and (d–f) are the coefficients for the SAVI, IBI, and NDSI in multi-factor models,
respectively. Moreover, the yellow area represents water.

It can be found from Figure 3 that the local coefficients for all the GWR relationship models with
the LST to the indices change with the spatial location. Figure 3a–c indicate the space distribution of
the slopes for the SAVI, IBI, and NDSI in the single-factor models, respectively, and we can see that the
SAVI is negatively correlated to the LST with coefficient values from −19.5 to −1.38, while the IBI and
NDSI are positively correlated to the LST with coefficient values from 8.48 to 36.36, and from 10.53 to
48.39, respectively. The magnitude of the absolute value of the model coefficient indicates the degree
of the effect of the explanatory variables on the LST. By the coefficient absolute value, we can also find
that the spatial distribution of the SAVI’ effect on the LST is similar to that of the IBI’ effect on the LST,
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namely the SAVI and IBI had higher influence on the LST in the west and southeast, approximately
along the distribution of the Zhongliang mountain and Tongluo mountain, and had lower influence on
the LST in the other regions; while the influence of NDSI on LST is small in the west, southeast, and
also the middle area. Moreover, Figure 3d–f represent the coefficients for the SAVI, IBI, and NDSI in the
multi-factors GWR model (using the SAVI, IBI, and NDSI as the explanatory variables simultaneously),
respectively. From Figure 3d–f, it can be seen that the coefficients for the SAVI, IBI and NDSI are not
only changing with the spatial location, but also have both negative and positive correlations to the LST,
with coefficient values from −24.07 to 5.20, from −3.51 to 28.86 and from −41.86 to 27.29, respectively.
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Figure 4. The spatial distribution of the local R2 in the GWR models at a spatial resolution of 30 m,
(a) for the LST–SAVI model; (b) for the LST–IBI model; (c) for the LST–NDSI model; and (d) for
the multi-factor model (using the SAVI, IBI, and NDSI as the explanatory variables simultaneously).
Moreover, the yellow area represents water.

Local R2, ranging from 0 to 1, were used to detect and investigate the ability of the GWR model
to fit the observations, a local model with higher local R2 value will have a better performance.
The spatial distributions of the local R2 in the GWR models are shown as Figure 4. Unlike the
OLS model, the spatial patterns of the local R2 in the GWR model represent a marked regional
differentiation. In single-factor GWR models, the local R2 values for the LST–SAVI model, LST–IBI
model, and LST–NDSI model are in the ranges of 0.016–0.737, 0.165–0.757, and 0.02–0.71, respectively.
Moreover, the local R2 value for the multi-factor GWR model is from 0.198 to 0.774. For all GWR
models, the spatial distributions of the local R2 are similar, characterized by higher values (>0.5) in the
north, southeast, and southwest part. In conclusion, both the coefficients and the local R2 for all the
GWR models are changing with the spatial location, and this indicates that the GWR has a good ability
to characterize the non-stationarity of the relationships between the LST and the indices.
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4.4. Scale Effects of the Relationships Based on the GWR model at Multiple Scales

This section mainly analyzed the spatial scale effects of the relationships between LST and
multi-factors at multi-scales. Firstly, the SAVI, IBI, NDSI, and LST images were aggregated from the
original spatial resolution (30 m) to different spatial resolutions (60 m, 120 m, 240 m, 480 m, and 960 m).
Then, the multi-factor relationships between LST and SAVI, IBI, and NDSI were built up based on a
GWR model at different spatial resolutions (spatial scales). The maps of the local R2 and the residuals
of the multi-factor GWR models at different spatial scales are shown in Figures 5 and 6, respectively.

Remote Sens. 2016, 8, 760 11 of 19 

 

4.4. Scale Effects of the Relationships Based on the GWR model at Multiple Scales 

This section mainly analyzed the spatial scale effects of the relationships between LST and multi-
factors at multi-scales. Firstly, the SAVI, IBI, NDSI, and LST images were aggregated from the original 
spatial resolution (30 m) to different spatial resolutions (60 m, 120 m, 240 m, 480 m, and 960 m). Then, 
the multi-factor relationships between LST and SAVI, IBI, and NDSI were built up based on a GWR 
model at different spatial resolutions (spatial scales). The maps of the local R2 and the residuals of the 
multi-factor GWR models at different spatial scales are shown in Figures 5 and 6, respectively. 

 
Figure 5. The spatial distribution of the local R2 in the multi-factor GWR models (using the SAVI, IBI, 
and NDSI as the explanatory variables simultaneously) at different spatial resolutions, (a–f) represent 
the spatial resolutions of 30 m, 60 m, 120 m, 240 m, 480 m, and 960 m, respectively. Moreover, the 
yellow area represents water. 

Figure 5. The spatial distribution of the local R2 in the multi-factor GWR models (using the SAVI, IBI,
and NDSI as the explanatory variables simultaneously) at different spatial resolutions, (a–f) represent
the spatial resolutions of 30 m, 60 m, 120 m, 240 m, 480 m, and 960 m, respectively. Moreover, the yellow
area represents water.
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It can be seen from Figure 5 that the local R2 value of the entire study area in general is increasing
with the increase of the spatial scale (Figure 5a–f). The spatial distributions of the local R2 in the GWR
models at small spatial scales (30 m and 60 m) are basically similar (Figure 5a,b), namely, the relatively
low local R2 value is mainly located in some area with large topographic variation and the intersection
area of the Jialing River and the Yangtze River, and the local R2 of other region is relatively high.
Among them, the local R2 values of the intersection regions of the Jialing River and Yangtze River,
where the center region of the city with relatively higher human activities is, are obviously lower than
the local R2 values in other regions. This may be due to the influence of the higher human activities,
which have complicated impacts on the SUHI. Therefore, further consideration needs to be given to
the radiation effects of human activities in future work.

On the other hand, we can also intuitively find that the local difference of the spatial distribution
of the local R2 is gradually reduced with the increase of the spatial scale, especially after the spatial
scale is decreased to the 960 m; this change is much more obvious and the local R2 values of the
entire study area tends to be consistent. Further statistics from Figure 5 show that with the increase
of spatial scale, the distribution range of local R2 changes from 0.19–0.77 (30 m) to 0.83–0.92 (960 m),
the mean local R2 increases from 0.53 (30 m) to 0.86 (960 m), the proportion of the area with high local
R2 value (>0.65) to the total area decrease from 21.5% (30 m) to 96.2% (960 m). However, the standard
deviation of local R2 decreases from 0.22 (30 m) to 0.03 (960 m), which implies that the GWR results
become increasingly global, revealing the relationships with more generalized geographical patterns,
and then spatial non-stationarity in the relationship tends to be neglected with the increase of the
spatial resolution.

Furthermore, it is apparent from Figure 6 that with the increase of spatial scale, the degree of
the spatial autocorrelation of the local residuals of the GWR model is gradually enhanced. Among
them, the residuals distribution of the multi-factors GWR model at 30 m is approximately a random
distribution (Figure 6a), the residuals distribution of the GWR model at 240 m appears to be a certain
clustering (Figure 6d), and at the spatial resolution of 960 m, the values of the residuals are getting are
closer and closer (Figure 6f).

The statistical results of residuals for GWR models at different spatial scales are shown in Table 3.
It can be found from the Table 3 that with the increase of the spatial scale, the variation range of
residuals is reduced from −2.78–4.10 (30 m) to −1.38–1.25 (960 m), and the standard deviation of
residuals is decreased from 1.83 (30 m) to 0.52 (960 m). According to the change trends of the
distribution range and standard deviation of the residuals, the GWR models yield less accurate
simulation results which reveal more generalized geographical patterns with the increase of the spatial
scale, which is consistent with the analysis results from Figure 5. At the same time, from Table 3,
the Moran’s I values of the residuals gradually increase from 0.19 (30 m) to 0.39 (960 m) with the
increase of the spatial scale. Among them, the Moran’s I values at 30 m, 60 m, and 120 m are very close,
ranging from 0.19–0.21, and the Moran’s I values at 240 m, 480 m, and 960 m range from 0.31 to 0.39.
According to the analysis of Moran’s I values, with the increase of the spatial scale, the residuals of the
GWR model show more and more strong spatial autocorrelation and spatial clustering.

Table 3. The residuals statistical of the GWR models at different spatial scales.

30 m 60 m 120 m 240 m 480 m 960 m

Minimum −2.78 −2.52 −2.47 −2.18 −1.84 −1.38
Maximum 4.10 3.85 3.81 2.35 1.97 1.25
Std. 1.83 1.73 1.53 1.1 0.96 0.52
Moran’s I 0.19 0.2 0.21 0.31 0.34 0.39



Remote Sens. 2016, 8, 760 13 of 19

Remote Sens. 2016, 8, 760 13 of 19 

 

 
Figure 6. The spatial distribution of the local residuals in the multi-factor GWR models (using the 
SAVI, IBI, and NDSI as the explanatory variables simultaneously) at different spatial resolutions; (a)–
(f) represent the spatial resolutions of 30 m, 60 m, 120 m, 240 m, 480 m, and 960 m, respectively. 
Moreover, the blue area represents water. 

Furthermore, several performance indicators, including AICc, adjusted R2, and Moran’s I, of 
GWR and OLS models at different spatial scales are shown in Table 4. 
  

Figure 6. The spatial distribution of the local residuals in the multi-factor GWR models (using the
SAVI, IBI, and NDSI as the explanatory variables simultaneously) at different spatial resolutions;
(a)–(f) represent the spatial resolutions of 30 m, 60 m, 120 m, 240 m, 480 m, and 960 m, respectively.
Moreover, the blue area represents water.

Furthermore, several performance indicators, including AICc, adjusted R2, and Moran’s I, of GWR
and OLS models at different spatial scales are shown in Table 4.
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Table 4. Performance indicators of GWR and OLS models at different spatial scales.

Model Evaluation Indices 30 m 60 m 120 m 240 m 480 m 960 m

GWR
AICc 28,083 27,338 25,809 18,773 6953 1331

adjusted R2 0.73 0.76 0.81 0.86 0.89 0.88

OLS
AICc 30,379 29,522 28,549 23,923 9373 1465

adjusted R2 0.62 0.66 0.71 0.77 0.83 0.85

It can be seen from Table 4 that with the increase of the spatial scale, the AICc values of the
GWR and OLS models are continuously decreasing, and the adjusted R2 are continuously increasing.
This indicates that, characterized by AICc and adjusted R2, the fitting degree of the GWR and OLS
models are both constantly improved with the increase of spatial scale.

At the same time, we also can find from Table 4 that, characterized by higher R2 values and lower
AICc values, the GWR models have better ability than the OLS models to explain the relationships
between SUHI and the impact factors at small spatial scales (30 m–240 m), and when the spatial scale
is increased to 480 m and 960 m, this advantage becomes relatively weak. The main reason is, probably,
that the distance of the adjacent pixels, which has a positive correlation with the bandwidth of the
GWR model, is increasing with the increase of the spatial resolution, and the GWR results become
increasingly global, revealing the relationships with more generalized geographical patterns, and then
spatial non-stationarity in the relationship will tend to be neglected. When the scale space is small,
the GWR model can better reveal the SUHI’ local variation details, but when the spatial scale becomes
large, the performance difference between the GWR model and OLS model is relatively small because
of the decreases of the SUHI’ local difference details. Therefore, if the spatial resolution of remote
sensing data is less than 240 m, GWR mode is recommended to be used in the monitoring and analysis
of SUHI in the mountain city, and when the spatial resolution is greater than 480 m, both the GWR
and OLS models are suitable for the studies of SUHI because there are few performance differences
between them. The GWR model has a relatively high fitting degree at large spatial scale with the cost
of the smoothing of the detailed differences of the neighbor region; this is not conducive to reflecting
the real information of the research area. Thus, we need to pay more attention to weigh the balance
between the fitting degree of the model and the level of details of the spatial geographic information
reflected by the model.

5. Discussion

The results reported in this paper showed significant spatial non-stationarity in the relationships
between the land surface temperature (LST) and three explanatory variables in the mountain city.
Previous studies have reported that the regression relationships between land surface temperature
and impact factors are characterized by significant spatial non-stationarity and scale-dependence.
Li found that the regression relationships between land surface temperature and eight explanatory
variables are characterized by significant spatial non-stationarity [32]. Cui found that the variations
in temperature and its correlation with NDVI in different climatic zones and land use types were
characterized by significant spatial non-stationarity [46]. Thus, the hypothesis that a single set of
regression coefficients could capture space-varying relationships between variables in large-scale
analysis is not reasonable [47]. Some other scholars have made much the same discovery that significant
spatial non-stationarity is widespread and routine in the relationships between the land surface
temperature (LST) and its impact factors [33–35]. In this paper, the results from both single-factor and
multi-factor models at spatial resolution of 30 m were used to analyze the spatial non-stationarity in the
relationships between LST and three indices. The results from the single-factor models showed that the
SAVI was negatively correlated to the LST and the IBI and NDSI were positively correlated to the LST.
Regardless of the positive or negative association of LST with SAVI, IBI, and NDSI, the associations
were stronger for the west and southeast areas (Figure 3a–c), approximately along the distribution
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of the two mountains, where the land surface temperature distribution was more sensitive to two
mountain areas with high vegetation coverage and high altitude (Figure 4a–c). Meanwhile, the results
from the multi-factors models showed that the coefficients for the SAVI, IBI, and NDSI were not
only changing with the spatial location, but also had both negative and positive correlations to the
LST (Figure 3d–f). However, the associations were stronger for south areas of the urban under the
interaction of SAVI, IBI, and NDSI, where the land surface temperature distribution started to be more
sensitive to some urban areas (Figure 4d). This indicated that the performance of the GWR model
could be improved by using the combination of SAVI, IBI, and NDSI together. This result corresponded
to previous findings that a multi-factors GWR model may be more appropriate if the explanation
variables show spatial stationarity by the test [22,48].

Meanwhile, we found that the correlations between LST and SAVI, IBI and NDSI were not
significant in some regions, especially the intersection regions of the Jialing River and Yangtze River,
where the center region of the city is, with a relatively higher human activity. Previous studies
suggested that economic development, population growth, and industry expansion have been proved
as the significant driving factors for changes in the urban thermal environment [49–51]. Zhao suggested
that the correlation between the temperature and the NDVI was not significant in the regions with
higher human activity and wet conditions [31].

In recent years, the detection of scale-dependent phenomenon and modelling of ecological
processes across different scales have grown significantly [32,52]. That research studied the spatial
scale-dependent relationships of UHI and impact factors mainly from the influence of the bandwidth,
namely a parameter of the GWR model. Li pointed out that by changing the bandwidth size of
the GWR model, a series of spatial patterns of regression parameters at different spatial scales can
be obtained, which are helpful in determining the operational scale range for each explanatory
variable [32]. However, they failed to investigate the scale effects of the GWR model from the spatial
resolutions. In our study, we investigated the spatial scale-dependent relationships of UHI and impact
factors from another aspect, namely investigating the scale effects of the GWR model from spatial
resolutions, and we found that there was a contradictory phenomenon that the overall fitting degree of
GWR model was gradually improved, but the local difference of the spatial distribution of the local R2

was gradually reduced and the residuals of the GWR model showed stronger spatial autocorrelation
and spatial clustering with the increase of spatial resolution. This indicated that the performance of
the GWR model was not improved with the increase of spatial resolution. Further study on the choice
of the optimal spatial resolution for the GWR model must be the emphasis of the future works.

In our study, the results showed that the GWR model is superior to the OLS model with better
model performance and lower spatial autocorrelation of residuals at small spatial scales (30 m–240 m).
Several scholars suggested that the GWR model was advantage over other models. Su utilized the
GWR model to test the relationships between land cover types and the LST, and found that the urban
heat island intensity estimated by the global and GWR models for TaoYuan would equate to 2.63 ◦C
and 3.17 ◦C, respectively, and the urban heat island was underestimated by the global model [34].
Tian used a GWR model to quantify the relationships of the LST and related environmental factors
and found that all GWR models had better simulation with smaller AICc value and higher R2 value,
compared with OLS method [35].

However, when the spatial scale is increased to 480 m and 960 m, this advantage becomes
relatively weak. One reason for this may be that the distance of the adjacent pixels, which has a
positive correlation with bandwidth of the GWR model, is increasing with the increase of the spatial
resolution, and the GWR results become increasingly global, revealing the relationships with more
generalized geographical patterns, and then spatial non-stationarity in the relationship will tend to be
neglected. Therefore, if the spatial resolution of remote sensing data is less than 240 m, GWR mode
is recommended to be used in the monitoring and analysis of SUHI in the mountain city, and when
the spatial resolution is greater than 480 m, both GWR and OLS models are suitable for the studies of
SUHI because there are few performance differences between them.
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In this paper, we have explored and analyzed the scale effects in the relationships between
LST and SAVI, IBI, and NDSI in the mountainous city, but the result of this research still has some
limitations, like lacking of the analysis of the scale effects of the relationships in non-mountainous
cities, and lacking of the consideration of the influences of the complex topography in the study area.
Therefore, this paper only provides a limited reference opinion for helping researchers to choose a
suitable model for the non-mountainous cities to provide useful information for climate adaptation
urban planning strategies.

In future research, several works are needed to be further studied. Due to the limitations
of the complexities of UHI impact factors and the data, the conclusions of this paper just reflect
the relationships between UHI and several surface indices in a mountainous city. Therefore, the
comprehensive effects of the underlying surface properties, terrains, human activities, and other
impact factors on the UHI of both mountainous and non-mountainous city will be the emphasis of
future works.

6. Conclusions

In this paper, the SAVI, IBI, and NDSI were extracted from Landsat-5 TM images, and the LST
was inversed by a thermal radiation transfer model to analyze the distribution feature of SUHI. Then,
the regression models of the LST and SAVI, IBI, and NDSI were built at different spatial scales using
the geographically-weighted regression approach, and the spatial non-stationary and the spatial scale
effects of the relationships between the LST and the indices at both single scale and multi-scales were
discussed quantitatively. Chongqing was selected to experiment for a case study, and the results are
as follows:

1. Both single-factor and multi-factors GWR models have better prediction accuracies, characterized
by much smaller AICc values, higher adjusted R2 values, and better F-tests, when compared with
the corresponding OLS models. At the same time, both the coefficients and the local R2 of the
GWR models are changing with the spatial location, and this indicates that the GWR has a good
ability to characterize the non-stationarity of the relationships between the LST and the indices.

2. With the increase of spatial scales, the overall fitting degree of the GWR model is gradually
improved based on the distribution range, the mean value of local R2. However, the standard
deviation of the local R2 and residuals are gradually reduced from 0.22 (30 m) to 0.03 (960 m)
and 1.83 (30 m) to 0.52 (960 m), respectively. Meanwhile, the Moran’s I values of the residuals
gradually increase from 0.19 (30 m) to 0.39 (960 m). This indicates the GWR model becomes
increasingly global, revealing the relationships with more generalized geographical patterns, and
then spatial non-stationarity in the relationship tends to be neglected with the increase of the
spatial resolution.

3. Characterized by higher R2 value and lower AICc value, GWR models have better ability than
OLS models to explain the relationships between SUHI and impact factors (the SAVI, IBI, and
NDSI) at small spatial scales (30 m–240 m), and when the spatial scale is increased to 480 m and
960 m, this advantage has become relatively weak because the GWR model becomes increasingly
global, revealing the relationships with more generalized geographical patterns, and then spatial
non-stationarity in the relationship tends to be neglected with the increase of the spatial resolution.
Therefore, if the spatial resolution of remote sensing data is less than 240 m, GWR mode is
recommended to be used in the monitoring and analysis of SUHI in the mountain city, and when
the spatial resolution is greater than 480 m, both GWR and OLS models are suitable for the
researches of SUHI because there are few performance differences between them.
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Abbreviations

GWR Geographically weighted regression
OLS Ordinary least squares
UHI Urban heat island
LST Land surface temperature
SAVI Soil-adjusted Vegetation Index
IBI Index-based Built-up Index
NDSI Soil Brightness Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NDBI Normalized Difference Built-up Index
NDBaI Normalized Difference Bareness Index
ANN Artificial neural network
TM Thematic Mapper
TOA Top-of-atmospheric radiance
AICc Corrected Akaike Information Criterion
R2 Coefficient of determination
Moran’s I Moran’s Index
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