Supplementary Effects of Different Methods on the Comparison between Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany

Gourav Misra, Allan Buras and Annette Menzel

Equation (S1) Weighted Gaussian filter: The Gaussian filter used in this study was designed such that the weights of each value contributing to the local value followed a typical Gaussian distribution i.e., the weights were distributed symmetrically around the central value, their sum added up to 1, and their fractional weights W_i were calculated using the following equation:

$$W_{i} = \frac{1}{0.5 * k * \sqrt{pi}} * \exp(\frac{-W_{i}^{2}}{(0.5 * k)^{2}})$$
(S1)

With k being the size of the filter and w_i being the *i*th value in a sequence from -k to k. To achieve values which add up to 1, W_i has to be normalized by the sum of itself. For instance, when solving the equation for k = 1 and normalizing by its sum, we get weights of $W_{1:3} = 0.01766842$; 0.96466316; 0.01766842 which add up to exactly 1. For this study we used k = 5.

Figure S1. Gaussian smoothing results-I: An example of a few LSP-SOS obtained from different methods for various years indicates that each method corresponds to a particular part of the NDVI curve (time series is Gaussian smoothed). Methods such as 20% amplitude and 3rd derivative methods cover the early part of the growing season, whereas, 75% and 50% amplitudes, and 1st derivative cover the later part of the growing season.

Figure S2. Gaussian smoothing results-II: Mean of Spearman's rank correlation coefficients between GP and selected LSP-SOS extraction methods for broadleaf pixels in study area. Note: species on the x-axis are grouped according to traits and arranged in order of increasing mean SOS (see Supplement S.8 for complete details of species). Note: Figure 6 in paper shows the individual correlations at pixel level for selected species such as *Myosotis sylvatica, Lathyrus niger* and *Fagus sylvatica* with species ID/No. 12, 95 and 119 respectively.

Figure S3. Double Log smoothing results-I: Comparison of LSP-SOS from Double Log smoothed NDVI (as special symbols in black) and various species-specific ground phenophases—GP (as filled and colored circles). Note: Ground phenophases codes: HA (herbaceous annuals), HP (herbaceous perennials) and WP (woody perennials) are understory leaf unfolding dates; U (Conifers leaf unfolding); and LU (leaf unfolding) and G (greening) for broadleaf species (see Supplement S1 for complete details of species specific information).

Figure S4. Double Log smoothing results-II: Maps showing Spearman's rank correlations (p < 0.05, one-tailed positive) between LSP (from Double Log smoothing) and GP for selected understory and broadleaf species. (MS-*Myosotis sylvatica* (leaf unfolding), LN-*Lathyrus niger* (leaf unfolding) and FG(G)-Fagus sylvatica (greening) with mean SOS of 70.46, 102.69 and 120.85 day of year respectively).

Figure S5. Time series of GP-SOS-I: Species specific GP-SOS time series. Note: The years 2007, 2009 and 2011 in GP show relatively early mean starts of season in the 2001–2013 time series which match strongly with the LSP-SOS estimates. The GP-SOS for various species are colored differently.

Figure S6. Time series of GP-SOS-II: GP-SOS time series with dark filled circles as mean GP-SOS of species, one standard deviation as error bars and the species No. are grouped according to traits in x-axis (for species IDs see Table S1). The inter-annual variance of SOS for species decreases as the season progresses i.e. the early understory SOS has a larger variance than broadleaf SOS. This difference is also evident in the various LSP-SOS methods where the 20% amplitude and 3rd derivative corresponding to early understory SOS shows greater variance than the other LSP-SOS methods corresponding to late understory and broadleaf SOS.

Table S1. Table showing mean phenological onset dates (mean-SOS) and trends of species-specific GP and their ID numbers (No) for the period 2001–2013. Note: HA (herbaceous annuals), HP (herbaceous perennials) and WP (woody perennials) are understory leaf unfolding dates; U (Conifers leaf unfolding); and LU (leaf unfolding) and G (greening) for broad leaf species.

ID/No.	Species	Туре	Mean Sos (Doy)	Trend (Days/Year)	ID/No.	Species	Туре	Mean Sos (Doy)	Trend (Days/Year)
1	Galanthus nivalis	HP	35.15	0.68	62	Phyteuma spicatum	HP	88.46	1.12
2	Ficaria verna	HP	48.15	0.45	63	Galium odoratum	HP	89.15	0.79
3	Lamium purpureum	HA	52.15	2.09	64	Stachys sylvatica	HP	89.15	0.35
4	Leucojum vernum	HP	56.07	0.6	65	Ribes rubrum	WP	89.69	1.43
5	Aegopodium podagraria	HP	57.61	2	66	Stellaria nemorum	HP	90.23	0.42
6	Chelidonium majus	HP	59.3	2.63	67	Viburnum opulus	WP	90.23	0.73
7	Cirsium vulgare	HA	62	2.15	68	Scrophularia nodosa	HP	90.3	0.22
8	Geum urbanum	HP	64.3	2.05	69	Crataegus rhipidophylla	WP	90.3	1.07
9	Geranium robertianum	HA	66.3	1.4	70	Lathyrus linifolius	HP	90.61	0.57
10	Viola odorata	HP	66.76	1.78	71	Viburnum lantana	HP	90.61	1.23
11	Glechoma hederacea	HP	69	1.92	72	Deschampsia cespitosa	HP	90.69	0.96
12	Myosotis sylvatica	HP	70.46	1.08	73	Oxalis acetosella	HP	90.76	0.82
13	Stellaria holostea	HP	70.84	3.03	74	Ribes nigrum	WP	92.23	0.71
14	Pulmonaria officinalis	HP	70.92	1.56	75	Galium sylvaticum	HP	92.84	0.48
15	Gagea lutea	HP	72.3	1.39	76	Hieracium sylvaticum	HP	93.84	0.59
16	Alliaria petiolata	HP	72.69	1.8	77	Corylus avellana	WP	94.3	0.65
17	Polemonium caeruleum	HP	74.23	2.09	78	Hepatica nobilis	HP	95.07	0.78
18	Caltha palustris	HP	74.92	1.08	79	Rubus idaeus	WP	95.15	0.8
19	Milium effusum	HP	75	0.69	80	Lonicera xylosteum	WP	95.53	0.55

Remote Sens. 2016, 8, 753

20	Symphytum tuberosum	HP	75.1	1.63	81	Euonymus europaeus	WP	95.53	0.65
21	Galium aparine	HA	75.5	-1.09	82	Angelica sylvestris	HP	95.69	0.43
22	Lunaria rediviva	HP	75.76	2.03	83	Epilobium angustifolium	HP	96.69	0.71
23	Anemone nemorosa	HP	77.23	1.33	84	Campanula rapunculoides	HP	96.84	0.16
24	Corydalis solida	HP	77.76	1.49	85	Dactylis polygama Enilohium	HP	97.15	0.28
25	Urtica dioica	HP	77.92	1.18	86	montanum	HP	97.23	0.54
26	Digitalis purpurea	HA	78.3	1.17	87	Rubus fruticosus	WP	97.46	0.77
27	Corydalis cava	HP	78.38	1.18	88	Tussilago farfara	HP	98.38	0.84
28	Anthriscus sylvestris	HA	78.46	1.7	89	Cornus sanguinea	WP	98.76	1.14
29	Euphorbia stricta	HA	78.76	1.28	90	Vaccinium myrtillus	WP	99	0.24
30	Primula elatior	HP	78.84	1.15	91	Polygonatum multiflorum	HP	100.46	0.37
31	Luzula sylvatica	HP	79.07	1.08	92	Mentha piperita	HP	100.84	0.15
32	Euphorbia amygdaloides	HP	79.15	0.42	93	Crataegus monogyna	WP	101.84	0.29
33	Lonicera caprifolium	WP	79.53	1.07	94	Sorbus aucuparia	WP	102.07	0.26
34	Galeobdolon luteum	HP	79.53	2.19	95	Lathyrus niger	HP	102.69	0.32
35	Lamium maculatum	HP	79.76	1.36	96	cathartica	WP	104.53	0.12
36	Aconitum napellus	HP	80.15	1.86	97	Aruncus dioicus	HP	106.61	0.25
37	Sambucus nigra	WP	80.15	2.23	98	Albies alba	U	116.23	-0.12
38	Allium ursinum	HP	80.3	1.6	99	Picea albies	U	117.23	0.01
39	Scirpus sylvaticus	HP	80.53	0.68	100	Pinus mugo	U	124.23	-0.51
40	Sambucus racemosa	WP	80.84	0.47	101	Pinus sylvestris	U	125.15	-0.25
41	Viola riviniana	HP	80.92	0.31	102	Prunus padus	LU	94.69	1.42
42	Ribes uva-crispa	WP	80.92	1.23	103	Betula pendula	LU	100.53	0.71
43	Valeriana officinalis	HP	81.07	1.95	104	Carpinus betulus	LU	104.38	0.24
44	Euphorbia epithymoides	HP	81.23	0.84	105	Prunus avium	LU	104.38	0.36
45	Rumex sanguineus	HP	81.23	0.7	106	Quercus robur	LU	108.69	0.18
46	Daphne mezereum	WP	81.3	1.48	107	Acer platanoides	LU	109.3	0.26
47	Symphytum officinale	HP	82.76	1.42	108	Fagus sylvatica	LU	112.23	0.41
48	Fragaria vesca	HP	82.92	0.03	109	Tilia platyphyllos	LU	113.15	-0.19
49	Phalaris arundinacea	HA	83.15	0.93	110	Sorbus torminalis	LU	113.23	-0.26
50	Viola tricolor	HP	83.53	1.19	111	Populus tremula	LU	116	-0.07
51	Sanicula europaea	HP	83.92	0.53	112	Quercus petraea	LU	118	-0.03
52	Geranium pyrenaicum	HP	83.92	0.89	113	Tilia cordata	LU	118.3	-0.03
53	Ribes sanguineum	WP	84.38	1.47	114	Fraxinus excelsior	LU	122.61	0.38
54	Lathyrus vernus	HP	85	0.62	115	Prunus padus	G	105.76	0.08
55	Digitalis grandiflora	HP	85.92	0.79	116	Larix decidua	G	107.84	0.38
56	Lychnis viscaria	HP	86.23	0.69	117	Betula pendula	G	113.46	-0.2
57	Geum rivale	HP	86.53	0.75	118	Acer platinoides	G	115.61	-0.1
58	Campanula persicifolia	HP	87.23	0.53	119	Fagus sylvatica	G	120.84	-0.04
59	Cardamine amara	HP	87.38	0.72	120	Quercus robur	G	121.84	-0.38
60	Poa nemoralis	HP	88.15	0.79	121	Quercus rubra	G	126.384	-0.45
61	Vinca minor	HP	88.46	0.46	122	Quercus petraea	G	127.23	-0.14

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

S5 of S5