
remote sensing  

Article

A Novel Tri-Training Technique for Semi-Supervised
Classification of Hyperspectral Images Based on
Diversity Measurement

Kun Tan 1,†, Jishuai Zhu 1,†, Qian Du 2,*, Lixin Wu 1 and Peijun Du 3,*
1 Jiangsu Key laboratory of Resources and Environment Information Engineering,

China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; tankun@cumt.edu.cn (K.T.);
zhujishuai2012@126.com (J.Z.); awulixin@263.net (L.W.)

2 Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA
3 Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying,

Mapping and Geoinformation of China, Nanjing University, Nanjing 210023, China
* Correspondence: du@ece.msstate.edu (Q.D.); dupjrs@126.com (P.D.); Tel./Fax: +86-0516-8359-1320 (P.D.)
† These authors contributed equally to this work.

Academic Editors: András Jung, Lenio Soares Galvao and Prasad S. Thenkabail
Received: 27 June 2016; Accepted: 4 September 2016; Published: 12 September 2016

Abstract: This paper introduces a novel semi-supervised tri-training classification algorithm based
on diversity measurement for hyperspectral imagery. In this algorithm, three measures of diversity,
i.e., double-fault measure, disagreement metric and correlation coefficient, are applied to select
the optimal classifier combination from different classifiers, e.g., support vector machine (SVM),
multinomial logistic regression (MLR), extreme learning machine (ELM) and k-nearest neighbor
(KNN). Then, unlabeled samples are selected using an active learning (AL) method, and consistent
results of any other two classifiers combined with a spatial neighborhood information extraction
strategy are employed to predict their labels. Moreover, a multi-scale homogeneity (MSH) method
is utilized to refine the classification result with the highest accuracy in the classifier combination,
generating the final classification result. Experiments on three real hyperspectral data indicate that
the proposed approach can effectively improve classification performance.

Keywords: classifier diversity; active learning; multi-scale homogeneity (MSH); hyperspectral imagery

1. Introduction

Conventional supervised classification algorithms (e.g., decision tree (DT) [1], naive Bayesian
(NB) [2] and back propagation neural network (BPNN) [3]) can provide satisfying classification
performance and have been widely used in traditional data classification, such as web page
classification [4,5], medical image classification [6,7] and face recognition [8]. However, performance
strongly depends on the quantity and quality of training samples. Labeled samples are often difficult,
costly or time consuming to obtain, and they may not perform well on hyperspectral imagery due to the
Hughes phenomenon when the number of training samples is limited [9,10]. Therefore, semi-supervised
learning attempts to use unlabeled samples to improve classification [11–13]. Common semi-supervised
learning algorithms include multi-view learning [14,15], self-learning [16,17], co-training [18,19],
graph-based approaches [20,21], transductive support vector machines (TSVM) [22,23], etc.

Semi-supervised learning has been of great interest to hyperspectral remote sensing image
analysis. In [24], semi-supervised probabilistic principal component analysis, semi-supervised local
fisher discriminant analysis and semi-supervised dimensionality reduction with pairwise constraints
were extended to extract features in a hyperspectral image. In [25], a new classification methodology
based on spatial-spectral label propagation was proposed. Dopido and Li developed a new
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framework for semi-supervised learning, which exploits active learning (AL) for unlabeled samples’
selection [26]. In [27], a new semi-supervised algorithm combined spatial neighborhood information
in determining class labels of selected unlabeled samples. Tan proposed a semi-supervised SVM with
a segmentation-based ensemble algorithm to use spatial information extracted by a segmentation
algorithm for unlabeled samples’ selection in [28].

Meanwhile, Blum and Mitchell proposed a prominent approach called co-training, which has
become popular in semi-supervised learning [19]. This algorithm requires two sufficient and redundant
views, but this requirement cannot be met for hyperspectral imagery. Then, Gold and Zhou proposed
a new co-training method called statistical co-training [29], which employed two different learning
algorithms based on a single view. In [30], another new co-training method called democratic
co-training was proposed. However, the aforementioned algorithms employ a time-consuming
cross-validation technique to determine how to label the selected unlabeled samples and how to
produce the final hypothesis. Therefore, Zhou and Li developed tri-training in [31]. It neither requires
the instance space to be described with sufficient and redundant views nor imposes any constraints
on supervised learning algorithms, and its applicability is broader than previous co-training style
algorithms. However, tri-training has some drawbacks in three aspects: (1) selecting a complementary
classifier may be difficult; (2) unlabeled samples may have error labels that are added to the
training set during semi-supervised learning; (3) the final classification map may be contaminated
by salt and pepper noise. In this paper, a novel tri-training algorithm is proposed. We use three
measures of diversity, i.e., the double-fault measure, the disagreement metric and the correlation
coefficient, to determine the optimal classifier combination, then unlabeled samples are selected using
an active learning (AL) method and consistent results of any two classifiers combined with a spatial
neighborhood information extraction strategy to predict the labels of unlabeled samples. Moreover,
a multi-scale homogeneity (MSH) method is utilized to refine the classification result.

The remainder of this paper is organized as follows. Section 2 briefly introduces the standard
tri-training algorithm, then describes the proposed approach. Section 3 presents experiments on three
real hyperspectral datasets with a comparative study. Finally, Section 4 concludes the paper.

2. Methodology

2.1. Tri-Training

In the standard tri-training algorithm, three classifiers are initially trained by a dataset generated
via bootstrap sampling from the original labeled data. Then, for any classifier, an unlabeled sample
can be labeled as long as another two classifiers agree on the labeling of this sample. This training
process will stop when the results of the three classifiers reach consistency. The final predication is
produced with a variant of majority voting among all of the classifiers.

2.2. The Proposed Approach

2.2.1. Classifier Selection

The principle of classifier selection is that classifiers should be different from each other and
their performance should be complementary; otherwise, the overall decision will not be better than
each individual decision. Three measures of diversity are implemented to select three classifiers
from SVM [32–34], multinomial logistic regression (MLR) [35,36], KNN [27,37] and extreme learning
machine (ELM) [38,39]. The three measures of diversity are the double-fault measure, the disagreement
metric and the correlation coefficient [40], which are described as below.



Remote Sens. 2016, 8, 749 3 of 16

(1) The correlation coefficient (ρ):

Let Z = [z1, . . . , zn] be a labeled dataset, K be the number of classifiers, Di, {i = 1. . . K} be
the classifier and yi = [y1i, . . . , yni] be the output of Di. If Di recognizes correctly zo, yoi = 1,
otherwise, yoi = 0.

ρ =
2

K× (K− 1)

K−1

∑
i=1

K

∑
j=i+1

N11
ij × N00

ij − N01
ij × N10

ij√
(N11

ij + N10
ij )× (N01

ij + N00
ij )× (N11

ij + N01
ij )× (N10

ij + N00
ij )

(1)

where Nab
ij is the number of samples zo of Z for which yoi = a and yoj = b (see Table 1). With the

increase of ρ, the diversity of classifiers becomes smaller.

Table 1. The relationship between a pair of classifiers.

Dj Correct (1) Dj Wrong (0)

Di correct (1) N11
ij N10

ij
Di wrong (0) N01

ij N00
ij

(2) Disagreement metric (D):

The disagreement between classifier outputs (correct/wrong) can be measured as:

D =
2

K× (K− 1)

K−1

∑
i=1

K

∑
j=i+1

N01
ij + N10

ij

N11
ij × N00

ij + N01
ij × N10

ij
(2)

where Nab
ij is the number of samples zo of Z for which yoi = a and yoj = b (see Table 1). With the

increase of D, the diversity of classifiers becomes larger.

(3) Double-fault measure (DF):

The double-fault between classifier outputs (correct/wrong) can be measured as:

DF =
2

K× (K− 1)

K−1

∑
i=1

K

∑
j=i+1

N00
ij

N11
ij + N00

ij + N01
ij + N10

ij
(3)

where Nab
ij is the number of samples zo of Z for which yoi = a and yoj = b (see Table 1). With the

increase of DF, the diversity of classifiers becomes larger.

2.2.2. Unlabeled Sample Selection

In the standard tri-training algorithm, for any classifier, an unlabeled sample can be labeled when
another two classifiers agree on the labeling of this sample. However, the training set may be small;
the label of unlabeled samples that two classifiers agree on may be wrong. Therefore, for any classifier,
we use a spatial neighborhood information extraction strategy with an AL algorithm to select the
most useful spatial neighbors as the new training set on the condition that two classifiers agree on the
labeling of these samples.

Figure 1 illustrates how to select unlabeled samples, and the selection process includes two key
steps, i.e., the construction of the candidate set and active learning.
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Figure 1. The process of selecting unlabeled samples. 

(1) The construction of the candidate set: 

For any classifier, we consider spatial neighborhood information with the consistent results of 
two classifiers to build the candidate set. Firstly, unlabeled samples are selected based on the 
consistency of two classifiers’ outputs, and those samples are considered reliable according to the 
standard tri-training algorithm. With a local similarity assumption, the neighbors of labeled training 
samples are identified using a second-order spatial connectivity, and the candidate set is built by 
analyzing the spectral similarity of these spatial neighbors. Since the output of a classifier is based on 
spectral information, the candidate set is obtained based on spectral and spatial information. Thus, 
these samples are more reliable. 

(2) Active learning: 

In semi-supervised learning, the main objective is to select the most useful and informative 
samples from the candidate set. However, some of the samples in the candidate set may not be useful 
for training the third classifier, because they may be too similar to the labeled samples. To prevent 
the introduction of such redundant information, the breaking ties (BT) [17] algorithm is adopted to 
select the most informative samples. 
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Figure 1. The process of selecting unlabeled samples.

(1) The construction of the candidate set:

For any classifier, we consider spatial neighborhood information with the consistent results
of two classifiers to build the candidate set. Firstly, unlabeled samples are selected based on the
consistency of two classifiers’ outputs, and those samples are considered reliable according to the
standard tri-training algorithm. With a local similarity assumption, the neighbors of labeled training
samples are identified using a second-order spatial connectivity, and the candidate set is built by
analyzing the spectral similarity of these spatial neighbors. Since the output of a classifier is based
on spectral information, the candidate set is obtained based on spectral and spatial information.
Thus, these samples are more reliable.

(2) Active learning:

In semi-supervised learning, the main objective is to select the most useful and informative
samples from the candidate set. However, some of the samples in the candidate set may not be useful
for training the third classifier, because they may be too similar to the labeled samples. To prevent the
introduction of such redundant information, the breaking ties (BT) [17] algorithm is adopted to select
the most informative samples.

The decision criterion of BT is:

x′BT
m = arg min{max

k∈K
p(yi = k|x′m)− max

k∈K\{k+}
p(ym = k|x′m)} (4)

where k+ = arg max
k∈K

p(ym = k|x′m) is the most probable class for sample x′m, p(ym = k|x′m) is the

probability when the label of sample x′m is k and K is the number of classes.

2.2.3. Multi-Scale Homogeneity Method

Some of the existing hyperspectral image classification algorithms produce classification results
with salt and pepper noise. To solve this problem, we use the multi-scale homogeneity method. Let S
be the initial classification result, α, β, γ(α < β < γ) be the scale of a homogeneous region, θi(i = 1, 2, 3)
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be the threshold of those homogeneous regions and ρ be the number of the samples that have the same
label in a homogeneous region.

(1) An α× α homogeneous region is built in the initial classification result. If ρ ≥ θ1, the samples in
this region will have the same label; otherwise, the label of the samples does not change. Let this
new result be the second classification result.

(2) A β× β homogeneous region is built in the second classification result. If ρ ≥ θ2, the samples in
this region will have the same label; otherwise, the label of the samples does not change. Let this
new result be the third classification result.

(3) A γ× γ homogeneous region is built in the third classification result. If ρ ≥ θ3, the samples in
the homogeneity region will have the same label; otherwise, the label of the samples does not
change. This new result will be the final classification result.

2.3. Semi-Supervised Classification Framework

Let L = [(ym, xm), xm ∈ Rd, m = 1, 2, · · · , n] be the initial training set, U = [x1
′, x2

′, · · · , xu
′] be

the unlabeled set, Di(i = 1, 2, 3) be the classifiers and Si(i = 1, 2, 3) be the classification results.
The procedure of the proposed method is summarized as follows.

(1) Train the classifier Di with L and obtain the predicted classification result Si;
(2) For the classifier Di, select another two classifiers agreeing on the labeling of these samples to

build the first candidate set;
(3) For xm ∈ L, the neighbors of xm (using second-order spatial connectivity) will be labeled based

on Tobler’s first law, and build the second candidate set;
(4) Conduct comparative analysis of the first and the second candidate set, and select these samples

that have the same label to build the third candidate set;
(5) Use the BT method to select the most useful and information samples L′ from the third candidate

set, L = L ∪ L′, U = U − L′;
(6) Train the classifier Di with the new L and obtain the predicted classification result Si;
(7) Terminate if the final condition is met; otherwise, go to Step (2);
(8) Obtain Si that has the highest classification accuracy in these three classifiers and use the

multi-scale homogeneity method to process Si to obtain the final classification result.

3. Experiments

3.1. Data Used in the Experiments

In this study, three real hyperspectral images are used to evaluate the proposed approach.

(1) The first hyperspectral image was collected by the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) sensor over the Indian Pines region in Northwestern Indiana in 1992. This datum
has a spatial size of 145 × 145 pixels. It comprises 224 spectral channels in the wave-length range
from 0.4 to 2.5 um at 10-nm intervals with a spatial resolution of 20 m, and 202 channels were
used in the experiment after noise and water absorption bands were removed. For illustrative
purposes, the image scene in pseudocolor is shown in Figure 2a. The ground truth map available
for the scene with 16 mutually-exclusive ground-truth classes is shown in Figure 2b.

(2) The second hyperspectral image was collected by the ROSIS (Reflective Optics System Imaging
Spectrometer) sensor over the urban area of the University of Pavia, Italy. This datum has
a spatial size of 610 × 340 pixels. It comprises 115 spectral channels in the wave-length range
from 0.43 to 0.68 um with a spatial resolution of 1.3 m, and 103 channels were used in the
experiment after noise and water absorption bands were removed. For illustrative purposes,
the image scene in pseudocolor is shown in Figure 3a. The ground truth map available for the
scene with 9 mutually-exclusive ground-truth classes is showed in Figure 3b [41].
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(3) The third hyperspectral image was collected by the AVIRIS sensor over Salinas Valley,
Southern California, in 1998. This datum has a spatial size of 512 × 217 pixels. It comprises
224 spectral channels in the wave-length range from 0.4 to 2.5 um with a spatial resolution of
3.7 m, and 204 channels were used in the experiment after noisy and water absorption bands
were removed. For illustrative purposes, the image scene in pseudocolor is shown in Figure 4a.
The ground truth map available for the scene with 16 mutually-exclusive ground-truth classes is
shown in Figure 4b.
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3.2. Parameter Setting

In our experiments, the involved parameters were set as follows.

(1) Classifier parameter: k = 3 for KNN; the number of hidden neurons is 50; and the activation
function is ‘sigmoid’ in the ELM; the parameter of MLR uses the default value.

(2) Multi-scale homogeneity: α = 2, β = 3, γ = 4, θ1 = 3, θ2 = 5, θ3 = 9. The parameter α is set to
follow Tobler’s first law, and the parameter β is set through many experiments to ascertain the
optimum value.

(3) Training sets: L = 5, 10, 15. We select 5, 10 and 15 samples per class as the initial labeled
training sets.

(4) Other sets: The number of the most useful and informative samples L′ in one iteration is 100.
All experiments are carried out 10 times, and the averaged results are reported.

It is noteworthy that TT_AL_MSH denotes the proposed approach, and TT is the standard
tri-training methods. Additionally, the performance of those approaches is objectively evaluated in
terms of global accuracy (GA), which includes the overall accuracy (OA), average accuracy (AA)
and the kappa coefficient (kappa). SVM and MLR have been widely used for hyperspectral image
classification. ELM is a recently-developed simple and fast neural network classifier, and KNN is the
traditional classifier whose kernel algorithm is the distance operation. The formation mechanisms of
those classifiers are different. Therefore, we choose four base classifiers from a classifier pool, which are
SVM(1), MLR(2), KNN(3) and ELM(4). In addition, three measures are used to compute their diversity
(as shown in Table 2) by using the AVIRIS Indian Pines dataset. From Table 2, the same combination is
selected by the D and ρ diversity measures, which contain MLR, KNN and ELM. The combination
of SVM, KNN and ELM is selected by DF. In order to select the optimal combination, we selected
the TT algorithm to test the performance of different classifier combination. As shown in Table 3,
the combination of MLR, KNN and ELM is the optimal one.

Table 2. The diversity value (in terms of D, DF and ρ). The greatest diversity is marked in bold italics.

Classifiers Combination D DF ρ

1,2,3 0.1745 0.1133 0.4729
1,2,4 0.1873 0.1296 0.4999
1,3,4 0.2160 0.1495 0.4548
2,3,4 0.2275 0.1311 0.4170

Table 3. The optimal combination selected by the diversity measures and tri-training (TT)
(overall accuracy).

Classifiers Combination
AVIRIS Indian Pines ROSIS Pavia University

5 10 15 5 10 15

1,3,4 58.34% 65.29% 69.76% 66.47% 71.32% 75.89%
2,3,4 60.46% 64.89% 71.42% 66.86% 75.77% 78.82%

For two methods to be compared, let f11 denote the number of samples that both methods can
correctly classify, f22 the number of samples that both cannot, f12 the number of samples misclassified
by Method 1, but not Method 2, and f21 the number of samples misclassified by Method 2, but not
Method 1 [42]. Then, the decision criterion of McNemar’s test statistic is:

Z =
f12 − f21√

f12 + f21
(5)
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For a 5% level of significance, the corresponding |z| value is 1.96; a |z| value greater than this
quantity means that two methods have significant performance discrepancy.

Table 4 shows that the significance level of TT_MKE (i.e., MKE is the combination of MLR,
KNN and ELM) compares against TT_AL_MSH_MKE, with 5, 10 and 15 initial training samples
per class. Obviously, the performance of the proposed TT_AL_MSH_MKE is statistically different
from TT_MKE.

Table 4. The value of Z-test in the different dataset. AL, active learning.

TT_MKE
TT_AL_MSH_MKE

|Z| Significant?

Salinas
5 samples 36.28 Yes
10 samples 31.28 Yes
15 samples 44.39 Yes

Indian Pine
5 samples 26.27 Yes
10 samples 36.82 Yes
15 samples 32.45 Yes

Pavia university
5 samples 64.55 Yes
10 samples 57.05 Yes
15 samples 53.51 Yes

3.3. Experiment on the Indian Pine Dataset

Table 5 shows the OA statistical results of TT_AL_MSH_MKE, TT_AL_MSH_SKE (i.e., SKE is
the combination of SVM, KNN and ELM), TT_MKE and TT_SKE. It can be obviously seen that the
proposed TT_AL_MSH_MKE produces higher classification accuracy than the standard TT_MKE.
With 5, 10 and 15 initial training samples per class, the OA of TT_AL_MSH_MKE increases by 17.09%,
20.14% and 17.09%, respectively, compared with TT_MKE. Figure 5 shows that the OA greatly increases
with the number of unlabeled samples. When the number of unlabeled samples reaches 700, the OA
becomes stable. For illustrative purposes, the classification maps of AVRIS data are provided in
Figure 6. Observed from these maps, the proposed methods can effectively reduce the salt and
pepper noise.

Table 5. Overall accuracy using two different techniques for the AVIRIS Indian Pines data, with 5,
10 and 15 initial training samples per class. The best OA results of each table are marked in bold italics.

Iteration Method 1 2 3 4 5 6 7 8 9 10

TT_AL_MSH_MKE

L = 5
OA (%) 51.66 62.93 68.91 71.42 73.42 74.95 75.81 76.65 77.19 77.55

Kappa (%) 47.57 59.20 65.51 68.23 70.35 72.00 72.93 73.83 74.42 74.79
AA (%) 65.79 74.59 78.48 80.81 82.35 83.52 84.24 84.78 85.09 85.16

L = 10
OA (%) 62.26 71.51 77.32 80.16 81.50 82.76 83.81 84.42 84.86 85.03

Kappa (%) 58.74 68.51 74.72 77.83 79.30 80.68 81.81 82.48 82.96 83.14
AA (%) 74.36 80.85 84.78 86.93 88.29 89.18 89.70 89.92 90.08 90.39

L = 15
OA (%) 70.08 77.82 81.61 83.36 84.48 85.98 86.77 87.68 88.06 88.51

Kappa (%) 67.05 75.29 79.41 81.32 82.56 84.20 85.08 86.09 86.52 87.02
AA (%) 80.58 85.72 88.25 89.65 90.11 90.90 91.57 92.03 92.38 92.58

TT_MKE

L = 5
OA (%) 50.29 50.47 55.69 57.66 58.75 59.61 60.08 60.19 60.25 60.46

Kappa (%) 45.79 45.98 51.48 53.55 54.68 55.57 56.05 56.18 56.24 56.48
AA (%) 62.68 62.79 67.38 68.67 69.69 70.41 70.74 71.02 71.12 71.36

L = 10
OA (%) 56.00 57.90 59.13 60.74 61.19 62.51 63.67 64.44 64.78 64.89

Kappa (%) 51.54 53.62 55.04 56.39 56.48 58.06 59.48 59.76 60.18 60.53
AA (%) 67.35 68.84 69.79 70.69 70.99 72.37 73.23 73.91 74.12 74.21

L = 15
OA (%) 62.98 63.63 64.38 65.17 66.65 68.00 69.74 70.05 71.20 71.42

Kappa (%) 59.15 59.79 60.61 61.48 62.93 64.36 66.30 66.63 67.85 68.09
AA (%) 74.62 75.07 75.60 75.91 76.51 77.26 78.92 78.87 79.48 80.25
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3.4. Experiment on the University of Pavia Dataset

Table 6 shows the OA of TT_AL_MSH_MKE and TT_MKE. The proposed TT_AL_MSH_MKE
can produce higher accuracy than the standard TT_MKE. With 5, 10 and 15 initial training samples per
class, the OA of TT_AL_MSH_MKE increases by 15.69%, 12.84% and 13.31%, respectively, compared
with TT_MKE. Figure 7 shows that the OA greatly increases with the number of unlabeled samples,
and the performance of TT_AL_MSH_MKE is obviously superior to the performance of TT_MKE.
However, the performance of TT_MKE is not stable, which is because unlabeled samples that are
mislabeled are introduced into the training process. The classification maps of ROSIS Pavia University
data are shown in Figure 8, where the proposed methods can produce smoother maps.
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Table 6. Overall accuracy using two different techniques for ROSIS Pavia University data, with 5,
10 and 15 initial training samples per class. The best OA results of each table are marked in bold italics.

Iteration Method 1 2 3 4 5 6 7 8 9 10

TT_AL_MSH_MKE

L = 5
OA (%) 71.02 73.99 76.74 78.56 80.27 81.33 81.49 82.00 82.42 82.55

Kappa (%) 63.31 67.45 71.03 73.28 75.26 76.52 76.74 77.36 77.85 78.01
AA (%) 77.05 81.56 85.07 86.58 87.40 88.14 88.26 88.54 88.57 88.69

L = 10
OA (%) 78.79 82.83 85.44 86.32 86.69 87.66 87.65 87.83 88.18 88.61

Kappa (%) 72.85 78.05 81.36 82.46 82.92 84.12 84.15 84.39 84.84 85.35
AA (%) 83.01 87.30 89.49 90.34 90.51 91.03 91.28 91.41 91.72 91.89

L = 15
OA (%) 84.26 87.69 89.47 90.40 90.85 91.33 91.85 91.95 92.11 92.04

Kappa (%) 79.70 84.01 86.27 87.47 88.07 88.70 89.36 89.49 89.70 89.61
AA (%) 87.56 90.35 91.64 92.28 92.66 93.11 93.43 93.45 93.55 93.56

TT_MKE

L = 5
OA (%) 63.86 62.67 64.81 65.26 66.38 66.78 66.01 65.80 65.76 66.86

Kappa (%) 54.76 53.52 55.84 56.24 57.41 57.86 57.13 57.07 56.97 58.32
AA (%) 70.94 70.77 71.95 71.92 72.54 73.09 73.24 73.79 73.77 74.84

L = 10
OA (%) 72.12 73.10 73.56 74.23 74.45 74.26 75.50 75.11 75.77 75.21

Kappa (%) 64.55 65.72 66.22 66.90 67.22 67.07 68.53 68.07 68.82 68.27
AA (%) 78.37 79.03 79.21 79.33 79.86 79.97 80.57 80.45 80.56 80.67

L = 15
OA (%) 76.98 77.85 76.56 78.09 77.08 78.22 77.89 78.01 78.16 78.82

Kappa (%) 70.33 71.21 69.93 71.73 70.57 71.77 71.50 71.58 71.73 72.51
AA (%) 81.05 80.93 81.59 82.14 81.92 82.28 82.60 82.32 82.38 82.41
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Figure 8. Classification maps for all of the methods with the ROSIS Pavia University dataset using 5,
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(c) TT_AL_MSH_MKE (L = 15); (d) TT_MKE (L = 5); (e) TT_MKE (L = 10); (f) TT_MKE (L = 15).

3.5. Experiment on the Salinas Valley Dataset

Table 7 shows the OA of TT_AL_MSH_MKE and TT_MKE. The proposed TT_AL_MSH_MKE
can produce higher accuracy than the standard TT_MKE. With 5, 10 and 15 initial training samples
per class, the OA of TT_AL_MSH_MKE increases by 7.24%, 6.04% and 6.68%, respectively, compared
with TT_MKE. Figure 9 shows that the OA greatly increases with the number of unlabeled samples,
and the performance of TT_AL_MSH_MKE is obviously superior to the performance of TT_MKE.
However, the performance of TT_MKE is not stable when the initial training samples per class is 5,
which is because unlabeled samples that are mislabeled are introduced into the training process.
The classification maps of Salinas data are shown in Figure 10, where the proposed methods can
produce smoother maps.

Table 7. Overall accuracy using two different techniques for AVIRIS Salinas Valley data, with 5, 10 and
15 initial training samples per class. The best OA results of each table are marked in bold italics.

Iteration Method 1 2 3 4 5 6 7 8 9 10

TT_AL_MSH_MKE

L = 5
OA (%) 83.87 88.49 89.45 89.79 89.76 90.13 90.25 90.32 90.49 90.68

Kappa (%) 82.09 87.22 88.29 88.66 88.63 89.04 89.17 89.25 89.43 89.65
AA (%) 90.87 93.54 93.79 94.15 94.16 94.37 94.39 94.41 94.50 94.63

L = 10
OA (%) 87.10 89.81 90.90 90.91 91.12 91.24 91.35 91.50 91.59 91.64

Kappa (%) 85.66 88.68 89.88 89.89 90.13 90.26 90.39 90.56 90.65 90.71
AA (%) 92.77 94.27 94.92 94.90 95.04 95.06 95.18 95.24 95.26 95.27

L = 15
OA (%) 90.03 91.21 92.13 92.42 92.59 92.82 92.93 92.99 93.10 93.17

Kappa (%) 88.92 90.23 91.25 91.57 91.75 92.01 92.13 92.21 92.33 92.40
AA (%) 94.59 95.06 95.52 95.68 95.80 95.94 95.96 95.97 96.04 96.09

TT_MKE

L = 5
OA (%) 81.60 81.50 82.28 82.51 82.01 83.11 82.87 82.76 83.14 83.44

Kappa (%) 79.57 79.45 80.32 80.58 80.05 81.26 80.99 80.88 81.28 81.61
AA (%) 88.32 88.15 88.79 89.06 89.19 89.70 89.58 89.70 89.77 89.94

L = 10
OA (%) 83.77 83.79 84.30 84.50 85.34 85.54 85.58 85.64 85.63 85.60

Kappa (%) 82.01 82.03 82.61 82.83 83.74 83.96 84.01 84.07 84.07 84.04
AA (%) 91.02 90.72 91.30 91.43 91.62 91.98 92.14 92.04 92.11 92.30

L = 15
OA (%) 84.64 85.03 85.82 86.11 86.05 86.07 86.15 86.02 86.09 86.49

Kappa (%) 83.00 83.42 84.30 84.60 84.55 84.57 84.67 84.52 84.61 85.04
AA (%) 92.30 92.34 92.90 92.86 93.01 93.00 93.13 93.14 93.19 93.33
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Figure 10. Classification maps for all of the methods with the AVIRIS Salinas Valley dataset using 5,
10 and 15 labeled samples per class. (a) TT_AL_MSH_MKE (L = 5); (b) TT_AL_MSH_MKE (L = 10);
(c) TT_AL_MSH_MKE (L = 15); (d) TT_MKE (L = 5); (e) TT_MKE (L = 10); (f) TT_MKE (L = 15).
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4. Discussion

In order to further assess the performance of the proposed method, we select some methods
that combine semi-supervised spectral-spatial classification with active learning for comparison
in this section. Reference results were provided in [25] for the spatial-spectral label propagation
based on the support vector machine (SS-LPSVM), the transductive SVM, MLR + AL proposed
in [25]. Additionally, the best reported accuracy from [27] for the MLR + KNN + SNI (i.e., SNI is the
spatial neighbor information) method and from [43] for the semi-supervised classification algorithm
based on spatial-spectral cluster (C-S2C) and the semi-supervised classification algorithm based on
spectral cluster (SC-SC) is shown. Tables 8 and 9 illustrate the classification overall accuracy of
TT_AL_MSH_MKE in comparison with the above methods for the AVIRIS Indian Pines dataset and
ROSIS Pavia University dataset. With the number of initial labeled samples increasing, the OA values
of all methods are increased. When L = 5, the best OA is obtained by TT_AL_MSH_MKE. For the
AVIRIS Indian Pines dataset, the OA of TT_AL_MSH_MKE is 6.56% higher than MLR + KNN + SNI,
respectively. For the ROSIS Pavia University dataset, the OA of TT_AL_MSH_MKE is 6.09%, 3.14%
and 4.03% higher than MLR + KNN + SNI, respectively. The reason is that we select classifiers that are
different from each other; their performances are complementary; and the classification performances
are improved greatly, in particular for the small training datasets with 10 initial samples/class or less.

Table 8. Comparison of the methods, denoted as TT_AL_MSH_MKE, with the results reported in
(1) [43], (2) [16], (3) [25] and (4) [27], for the AVIRIS Indian Pines dataset. The best OA results of each
table are marked in bold italics. SC-SC, semi-supervised classification algorithm based on spectral
cluster; TSVM, transductive support vector machine; SS-LPSVM, spatial-spectral label propagation
based on the support vector machine.

Method
Training Samples

5 10 15

(1) SC-SC 68.79 72.84 73.11
(1) SC-S2C 68.32 75.43 77.63

(2) MLR + AL 75.00 ± 1.28 80.04 ± 1.28 81.00 ± 1.28
(3) TSVM 62.57 ± 0.23 63.45 ± 0.17 65.42 ± 0.02

(3) SS-LPSVM 69.60 ± 2.30 75.88 ± 0.22 80.67 ± 1.21
(4) MLR + KNN + SNI 70.99 86.01 90.44

TT_AL_MSH_MKE 77.55 85.03 88.51

Table 9. Comparison of methods, denoted as TT_AL_MSH_MKE, with results reported in (1) [43],
(2) [16], (3) [25] and (4) [27], for the ROSIS Pavia University dataset. The best OA results of each table
are marked in bold italics.

Method
Training Samples

5 10 15

(1) SC-SC 72.02 72.90 75.21
(1) SC-S2C 71.09 72.00 79.48

(2) MLR + AL 63.00 ± 1.86 83.73 ± 1.86 85.63 ± 1.86
(3) TSVM 63.43 ± 1.22 63.73 ± 0.45 68.45 ± 1.07

(3) SS-LPSVM 56.95 ± 0.95 64.74 ± 0.39 78.76 ± 0.04
(4) MLR + KNN + SNI 76.46 85.47 88.08

TT_AL_MSH_MKE 82.55 88.61 92.11

5. Conclusions

In this paper, a novel semi-supervised tri-training algorithm for hyperspectral image classification
was proposed. In the proposed algorithm, three measures of diversity, i.e., double-fault measure,
disagreement metric and correlation coefficient, are used to select the optimal classifier combination.
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Then, unlabeled samples were selected using the AL method and the consistent results of another
two classifiers combined with spatial neighborhood information to predict the labels of unlabeled
samples. Moreover, we utilize the multi-scale homogeneity method to refine the final classification
result. To confirm the effectiveness of the proposed TT_AL_MSH_MKE, experiments were conducted
on three real hyperspectral data, in comparison with the standard TT_MKE. Moreover, some methods
that combine semi-supervised spectral-spatial classification with active learning are selected to
validate the performance of the proposed method. Experiment results demonstrate that the OA of the
proposed approaches is improved more than 10% compared with TT_MKE, and the proposed method
outperforms other methods in particular for the small training datasets with 10 initial samples/class
or less. Meanwhile, the proposed method can effectively reduce the salt and pepper noise in the
classification maps.
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