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Abstract: Reliable and fine resolution estimates of surface net-radiation are required for estimating
latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine
resolution estimates of net-radiation are not available and consequently it is challenging to develop
multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and
are relevant for policy and decision-making. We developed and evaluated a global net-radiation
product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data
from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with
net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET
and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed
well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged
from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and
measured net-radiation ranged from 38.0 ± 1.8 W·m−2 in boreal to 72.0 ± 4.1 W·m−2 in the tropical
climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of
the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental,
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temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader
spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with
the net-radiation estimates from the coarse spatial (1◦ × 1◦) but high temporal resolution gridded
net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates
agreed closely with the net-radiation estimates from the CERES. Difference between the two was less
than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource
for the science community studying turbulent fluxes and energy budget at the Earth’s surface.

Keywords: surface net-radiation; MODIS; FLUXNET; SURFRAD; modeling; validation

1. Introduction

Surface net-radiation is a critical component of the global water and energy cycle [1]. It couples
the land surface to the lower atmosphere and exerts a dominant control on the terrestrial hydrological
cycle [2–4]. Fine scale, error-quantified estimates of net-radiation are required to understand and
model nonlinear, heterogeneous land–atmosphere interactions [5] and estimate evapotranspiration (ET)
and sensible heat flux. However, currently, remote sensing-based surface net-radiation estimates are
available at moderate spatial resolution [6–8]. Similarly, modeled-data assimilated reanalysis products
such as Modern-Era Retrospective Analysis for Research and Applications (MERRA) and ERA40 [9,10]
are also available at coarse spatial resolution. Both remote sensing and reanalysis-based products have
high temporal resolution, but because of their coarse spatial resolution are not suitable for developing
global and continental scale estimates of ET at fine spatial resolution. Although the MODIS ET product
(MOD16) [11] is available at 1 km resolution, it, in fact, uses net-radiation derived from reanalysis at
coarse spatial resolution (0.66◦ or higher). In a recent study, Jiang et al. [12] developed a high resolution
net-radiation product using non-linear empirical methods. In this study, we develop and evaluate
a global daily net-radiation product at 5 km, derived from mutually consistent land and atmosphere
data from the Moderate Resolution Imaging Spectroradiometer (MODIS) following an approach based
on physical principles. Several studies [5,13–16] have used MODIS data to estimate net-radiation
from local to regional scales. In this study, we build on previous efforts and derive net-radiation as
an independent seamless product at 5 km spatial resolution and eight-day time step for the entire
global land area by combining an atmospheric radiative transfer model [17] with land and atmosphere
data from MODIS for 2001 to 2009. We rigorously evaluate our product using high-quality, field
measurements from 154 field sites (414 site-years) spread all across the globe.

Amongst polar-orbiting sensors, MODIS provides consistent, daily, near-global observations of
land and atmosphere in 36 different bands, and has been employed for estimating net-radiation at
local and landscape scale [13,14,18]. These estimates showed good agreement with field measurements
at local [14] and landscape scale [19]. Recently, Hendrix et al. [20] developed an effective, end-to-end
system to reproject daily MODIS L2 swath products to the MODIS sinusoidal grid at the Lawrence
Berkeley National Laboratory (LBNL). These reprojected and re-gridded MODIS products include
the aerosol (MOD04) [21], precipitable water (MOD05) [22], cloud (MOD060 [23], atmospheric
profile (MOD07) [24], and land surface temperature (LST; MOD11_L2) [25], and are available online
(https://portal.nersc.gov/MODIS/) from 2000 to 2009. We make use of these datasets and combine
three atmosphere and three land products and generate daily net-radiation at 5 km in all sky conditions.
To evaluate the accuracy of our net-radiation estimates we compare them with field measurements
from the “La Thuile” data of FLUXNET (147 sites) and Surface Radiation (SURFRAD; 7 sites) [26]
network. The 154 FLUXNET and SURFRAD sites record net-radiation and its components at 30- and
3-min resolution, respectively, and are spread across different climate types. Thus, these sites provide
the best available, high quality reference measurements for the evaluation of our global estimates
from MODIS.

https://portal.nersc.gov/MODIS/
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After quantifying the errors and uncertainty in the MODIS net-radiation product with the high
spatial resolution field data, we upscale our product and compare it with the net-radiation estimates
from the gridded net-radiation product from the Clouds and Earth’s Radiant Energy System—Energy
Balanced and Filled (CERES-EBAF) [6]. CERES is one of the high priority missions of the National
Aeronautics and Space Administration (NASA) and provides high quality estimates of the various
components of the Earth’s energy cycle. The CERES net-radiation has coarse spatial resolution
(1◦ × 1◦), but is estimated at sub-daily temporal resolution and provides a high-quality reference to
compare large-scale patterns modeled by the MODIS product.

The rest of this manuscript is organized as follows. In Section 2, we describe how MODIS and
other ancillary data are combined to estimate the four components of surface net-radiation. We also
provide details of the field measurements of surface net-radiation obtained from the FLUXNET and
SURFRAD networks, share the characteristics of the CERES product, and describe the statistical
methods and metrics used in evaluating the accuracy and reliability of our net-radiation product while
taking uncertainty into account. In Section 3, we share results from our analyses about the accuracy
and reliability of our product and also quantify errors and uncertainty in our estimates in different
climate types. In Section 4, we discuss our results connecting them with the current state of knowledge.
Finally, in Section 5, we discuss the main conclusions from the study.

2. Materials and Methods

2.1. Estimation of Instantaneous Net-Radiation at Satellite Overpass Time

Instantaneous net-radiation at the Earth’s surface is defined as follows:

Rn = (1− a)× SWin + LWin − LWout (1)

Here, Rn, a, SWin, LWin, and LWout are net-radiation, surface albedo, downwelling shortwave,
downwelling longwave, and upwelling longwave radiation, respectively.

We computed downwelling shortwave radiation by the Forest Light Environmental Simulator
(FLiES) [17], an atmosphere and plant canopy radiative transfer model. FLiES has a one dimensional
atmospheric radiative transfer module, which is a simplified version of the three dimensional Monte
Carlo Atmospheric Radiative Transfer Simulator (MCARaTS) [27]. FLiES integrates the optical effects
of aerosols and clouds [28] and determine the atmospheric temperature, pressure, and water vapor
profiles. We simulated the radiative transfer model in forward mode for all possible combination of
input variables and generated a look-up table to reduce the computation time. For simulations, we
discretized solar zenith angle at 5◦ step from 5◦ to 85◦ and aerosol optical thickness at 550 nm at 0.2 step
from 0.1 to 0.9. We used 10 different discrete values of cloud optical thickness at 0.1, 0.5, 1, 5, 10, 20, 40,
60, 80, and 110, and 3 different values of land surface albedo at 0.1, 0.4, 0.7. We prescribed standard
atmospheric profiles, aerosol, and cloud types following Hess et al. [28] and used Köppen-Geiger
climate classification to demarcate climate types. We input cloud optical thickness, cloud top altitude,
and solar zenith angle information from the MODIS cloud product (MOD06, 5 km, daily), aerosol
optical thickness at 550 nm from the aerosol product (MOD04, 10 km, daily), shortwave albedo from
the MODIS albedo product (MCD43B, 500 m, eight-day) [29], and land cover from the MODIS land
surface dynamics product (MCD12, 500 m, yearly) [30,31]. We utilized the look-up table to compute
the ratio of direct and diffuse radiation and estimated blue-sky albedo. We filled missing values in
albedo and aerosol optical thickness using nearest neighbor interpolation from the nearby values in
space. We searched for good quality data in the neighborhood of pixels with missing values and
progressively enlarged the search window until we found sufficient good-quality similar pixels within
the same MODIS tile. If a sufficient number of nearby values were not available in space, we assigned
mean values based on the climate or land cover of a pixel.

We used emissivity and LST and computed upwelling longwave radiation according to the
Stephen-Boltzmann law. For clear-sky days, we obtained emissivity in Band 31 (10.78–11.28 µm)
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and 32 (11.77–12.27 µm), and land surface temperature from MOD11. Following [32], we estimated
broadband surface emissivity as in Equation (2) below.

εs = 0.273 + 1.778× ε31 − 1.807× ε31 × ε32 − 1.307× ε32 + 1.774× ε2
32 (2)

Here, εs, ε31, and ε32 are broadband surface emissivity, and emissivity in Band 31 and 32,
respectively. For cloudy days, we assigned broadband emissivity based on the land cover of each pixel,
and used temperature from National Centers for Environmental Prediction (NCEP) along with spatial
averaging to fill the gaps. Note that even for clear days, emissivity values in the MOD11 product are
prescribed and are estimated via a classification-based method [33].

The magnitude of downwelling longwave radiation depends on the emissivity and temperature
of near surface air [2,34]. The MOD07 product provides atmospheric data at 20 different pressure
levels ranging from 5 to 1000 hPa. The temperature and moisture profiles in MOD07 are retrieved
using data from MODIS channels 25 (4.482–4.549 µm), 27 to 29 (6.535 to 8.579 µm), and from 30 to
36 (9.580 to 14.385 µm). The algorithms are based on the International TOVS Processing Package
(ITPP), which retrieves the parameters in 4 steps: cloud detection, bias adjustment, regression retrieval,
and nonlinear iterative physical retrieval [35,36]. The MODIS cloud mask (MOD35_L2) is used for
cloud screening. The algorithm also requires NCEP analysis of surface pressure. Assuming that
near-surface temperature is equal to the temperature at the maximum pressure level is likely to result
in errors [5,37]. Thus, we first calculated the height difference between the two pressure-levels nearest
to the surface using (3).

dz =
R× Tz1

g0
log(

p1
p2

) (3)

Here, dz, R, Tz1, g0, p1, and p2 are height difference between two successive pressure levels in the
MOD07 product, dry gas constant, temperature, acceleration due to gravity, and pressures, respectively.
The value of dz showed variation in space and over season with the typical values around 400 m.
Combining this information with temperatures at the corresponding levels, we calculated the lapse
rate, and extrapolated air and dew point temperature to the near-surface level. For cloudy days, when
information from the MOD07 product was not available, we substituted near-surface air temperature
from the NCEP reanalysis datasets.

We calculated vapor pressure using dew point temperature as follows:

Ea = 2.1718× 1010×e
−4157

Td−33.91 (4)

We then estimated air emissivity as follows [34].

εa = 1−
(

1 + 0.465
Ea

Ta

)
× e−(1.2+3× 0.465×Ea

Ta )
0.5

(5)

Here, Ea, Ta, and εa are vapor pressure, air temperature, and air emissivity, respectively. Unlike
other studies that estimate cloudy and clear fraction in a pixel [38], we assumed that a pixel is
completely cloudy or clear. This is a reasonable assumption given the fine spatial resolution of MODIS.

Several different empirical formulations have been suggested to estimate downwelling longwave
radiation in cloudy conditions [39]. Each of these first calculates downwelling radiation for clear sky
and then enhances it with empirical functions to account for additional radiation from clouds [40,41].
Alternatively, clear sky radiation is enhanced using cloud emissivity and cloud top temperature [5].
The empirical functions that account for additional radiation from cloudy sky often require local
calibration and thus are unlikely to be valid at a global scale. Similarly, cloud top temperature is likely
to be a poor proxy of cloud bottom temperature, which is required to calculate the actual downwelling
radiation from clouds. For this study, we tested two different approaches. In the first, to enhance the
radiation in cloudy sky we simply assumed that the atmosphere in cloudy conditions has an emissivity
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of a blackbody. In the second approach, we developed and calibrated empirical formulations specific
to land cover based on FLUXNET data. We did not find any significant difference in the accuracy of
estimated net-radiation between the two approaches, and hence in this study we are reporting our
estimates based on the first approach, shown in Equations (6) and (7).

LWd = σ× T4
a (6)

LWc = εa × σ× T4
a (7)

Here LWcl and LWc are incoming longwave radiation in cloudy and clear sky, respectively, σ is
Stephen–Boltzman’s constant, εa is clear sky emissivity from Equation (4), and Ta is near-surface
air temperature. Table 1 summarizes different MODIS products used in the estimation of the four
components of net-radiation.

Table 1. Different data products used in calculating the four components of net-radiation in clear and
cloudy days.

Component of Net-Radiation Data Products Used in Calculation

Downwelling shortwave

Cloud optical thickness, cloud top altitude, and solar zenith angle from the MODIS cloud
product (MOD06, 5 km, daily)

Aerosol optical thickness at 550 nm from the aerosol product (MOD04, 10 km, daily)

Radiative transfer model

Upwelling shortwave

For clear days, shortwave albedo from the MODIS albedo product (MCD43B,
500 m, eight-day)

Ratio of direct and diffuse radiation from a look-up table

For cloudy days, albedo based on land cover

Land cover from the MODIS land surface dynamics product (MCD12, 500 m, yearly)

Downwelling longwave
Atmospheric profile from MOD07 for clear days

Estimation of the emissivity of near surface atmosphere from temperature and moisture

For cloudy days near surface temperature and humidity from NCEP

Upwelling longwave

Land surface temperature for clear days from MOD11

Estimates of broadband emissivity from the emissivity in Band 31 (10.78–11.28 µm) and
32 (11.77–12.27 µm) from MOD11

For cloudy days, emissivity based on land cover and temperature from NCEP

Spatial averaging to fill gaps

2.2. Instantaneous to Daily Net-Radiation

We computed instantaneous net-radiation at the MODIS Terra overpass time by combining
downwelling and upwelling components of shortwave and longwave radiation as described in
Equation (1). Following Bisht et al. [13,19], we used a sinusoidal curve to integrate instantaneous
net-radiation to mean daytime (sunrise to sunset) values.

Rndaytime =
K× Rins

π × sin(π × Overpass time − Sunrise time
Sunrise time − Sunset time )

(8)

Here, Rndaytime is the integrated daytime net-radiation and Rnins is the instantaneous net-radiation
at the satellite overpass time. In Bisht et al. [19], K is equal to 2 and sunrise and sunset time are set
to an hour after the actual sunrise and an hour before the actual sunset time, respectively. Although
Equation (8) is based on theoretical considerations, the sunrise and sunset times were modified to
suit the landscape covered by Bisht et al. [19]. We used Equation (8) with two minor modifications:
we input the actual sunrise and sunset time and found a K of 1.6 to be more appropriate for our
global product.
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2.3. MODIS Data

We obtained the required MODIS data from a variety of sources and at different resolutions.
The reprojected daily MODIS products developed by Hendrix et al. [20] were downloaded from the
data portal of the National Energy Research Scientific Computing Center (https://portal.nersc.gov/
MODIS/) and included MOD04, MOD05, MOD06, MOD07 at 5 km and MOD11 at 1 km resolution.
We downloaded MCD12Q1 (500 m, annual), MCD43B2 (1 km, 16 day), MCD43B3 (1 km, 16 day),
MOD13A1 (500 m, 16 day), and MOD15A2 (1 km, 8 day) from the Land Process Distributed Active
Archive Center (LP-DAAC, https://lpdaac.usgs.gov/products/MODIS_products_table), and acquired
gridded NCEP datasets for temperature and specific humidity from the National Oceanic and
Atmospheric Administration’s (NOAA) Earth System Research Laboratory (ESRL; http://www.esrl.
noaa.gov/psd/data/reanalysis/reanalysis.shtml). In all, this represented approximately 14 terabytes
of data from 2001 to 2009.

A significant amount of time was spent in downloading MODIS data for local availability. Global
net-radiation calculations were performed in a parallel computing environment using institutional
facilities of California Institute of Technology, Jet Propulsion Laboratory (JPL). We downloaded all
of the MODIS data and indexed it for fast retrieval via an abstracted Python interface, which was
invoked from within the MATLAB distributed computing environment on JPL’s SGI Altix cluster.
Where necessary, resampling to 5 km was done on the fly, and all intermediate and final data products
were stored on the local Lustre-based high performance parallel file system.

2.4. Net Radiation Measurements from FLUXNET and SURFRAD

We employed net-radiation measurements from the “La Thuile” data of FLUXNET (www.fluxdata.
org) and SURFRAD (http://www.esrl.noaa.gov/gmd/grad/surfrad/) to evaluate the accuracy and
reliability of MODIS net-radiation. The “La Thuile” data contains 30-min measurements of radiative
fluxes from more than 250 sites between the early 1990s and 2007. We used data from 2001 to 2007,
which overlaps with the availability of MODIS data. We downloaded daily and 30-min net-radiation,
the four components of net-radiation, and associated quality flags. We found sufficiently dense data
that overlapped with the availability of MODIS net-radiation for 147 sites for ~250 site years (Figure 1;
Supplementary Table S1).
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Figure 1. Location of the FLUXNET and Surface Radiation budget network (SURFRAD) sites used
in this study.

The SURFRAD network consists of seven stations located in different climatic regimes in the US
(Supplementary Table S1). These stations record net-radiation, its components, and associated quality
flags every three minutes. We downloaded data from 2001 to 2007 for six stations and from 2003 to

https://portal.nersc.gov/MODIS/
https://portal.nersc.gov/MODIS/
https://lpdaac.usgs.gov/products/MODIS_products_table
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2007 for Sioux Falls, South Dakota. To be consistent with the FLUXNET measurements, we aggregated
ten 3-min observations to calculate 30-min radiation at the satellite overpass time and aggregated
3-min data to calculate daily net-radiation and its components. We combined 3-min quality flags to
arrive at the quality information for the 30-min and daily data.

Because of soil moisture and land surface heterogeneity, albedo and LST can vary within
a MODIS pixel and can potentially produce a mismatch between estimated and measured upwelling
shortwave and longwave radiation. However, even for heterogeneous patches within a MODIS pixel,
the seasonal evolution of albedo and LST is likely to be synchronous and significantly larger than the
difference amongst patches. We therefore focused more on data quality and assumed that land surface
heterogeneity only has minor effects on the MODIS net-radiation.

The FLUXNET stations record observations in local time and the SURFRAD stations in Universal
Time. We converted these to solar time and extracted instantaneous measurements at the MODIS Terra
overpass time. The selected sites are located in different climate and land cover regimes, albeit with
a bias towards northern latitudes (Figure 1; Supplementary Table S1).

2.5. CERES Net-Radiation

We downloaded gridded net-radiation EBAF-SURFACE data from the CERES (http://ceres.larc.
nasa.gov/) website. The CERES is one of the highest priority satellite mission developed by NASA
for developing high quality estimates of different components of Earth’s energy budget. The CERES
algorithm uses cloud information from MODIS onboard both Terra and Aqua platforms and combines
it with information from geostationary satellites to accurately capture the diurnal cycles of clouds.
The radiative transfer model outputs are constrained to match observed outgoing top-of-atmosphere
radiation [42]. It also utilizes information from the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) and CloudSat to improve the estimates of downwelling longwave
radiation. We downloaded the CERES monthly estimates at 1◦ × 1◦ resolution.

2.6. Statistical Analyses

2.6.1. Evaluation of MODIS Net-Radiation

In the first part, using measured net-radiation as ground-truth, we assessed how well the
instantaneous and daytime (sunrise to sunset, computed every eight-day) MODIS net-radiation
agreed with measurements in boreal, temperate-continental, temperate, Mediterranean, semi-arid,
and tropical climates. It is increasingly advocated that measurement uncertainties [43–45] should be
factored in model evaluation. Random uncertainty in measured net-radiation at the daily time scale
can be more than what is claimed by manufacturers [46]. Since we used net-radiation measurements
for validation, we adopted a conservative approach and assumed that the random uncertainty in
measured daily net-radiation in field conditions is 10% of the measurements, as claimed by one of the
main instrument manufacturers (http://www.campbellsci.com/), and has a Gaussian distribution.
Then, following Harmel and Smith [43], we used Equation (9) below to calculate difference between
modeled and observed values.

ei =
c fi
0.5

(Oi − Pi) (9)

where ei, cfi, Oi, and Pi are the deviation between observed and predicted net-radiation, correction
factor, observed net-radiation, and predicted net-radiation, respectively, for the ith pair. For a predicted
value that is more than 3.9 σ away from the observed value, the correction factor is 0.5 and ei = Oi − Pi.
On the other hand, when the predicted value is equal to the observed, the correction factor is zero.
For other situations, when predicted value lies between observed value and ±3.9 σ, the correction
factor is cfi = p (|Oi| < Z < |Pi|) and is calculated as the area under the normal curve bounded by Oi

and Pi with Oi as the mean of the distribution (see Figure 2 in Harmel and Smith [38]).
Using Equation (9), we first calculated weighted Willmott’s index of agreement (IoAs) [47], mean

absolute error (MAEs), and mean bias (Biass) between daily modeled and tower net-radiation for each

http://ceres.larc.nasa.gov/
http://ceres.larc.nasa.gov/
http://www.campbellsci.com/
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site-year (labeled “s”) (Equation (10)–(12)). We weighted each net-radiation measurement with its
quality-flag “wi”.

IoAs = 1− ∑n
i=1 wi(

c fi
0.5 |Oi − Pi|)

∑n
i=1 wi(|Pi −O|+ |Oi −O|)

(10)

MAEs =
∑n

i=1 wi(
c fi
0.5 |Oi − Pi|)

∑n
i=1 wi

(11)

Biass =
∑n

i=1 wi(
c fi
0.5 (Oi − Pi))

∑n
i=1 wi

(12)

Here, “n” is the number of observations (usually 46 for eight-day estimates) in a site-year.
Next, taking IoAs, MAEs, and Biass as variables distributed over space, we calculated climate specific
across-site mean and standard errors for each of the three metrics. IoA can be sensitive to large errors.
Therefore, we used absolute deviation instead of squared deviation. Both IoA and Nash–Sutcliffe
coefficient have been widely used to compare model prediction with observations. We preferred
IoA because it is bounded from both above and below (varies between zero and one) and is thus
easier to interpret and compare across different categories. Generally, a value of IoA above 0.6 is
considered above average, more than 0.7 shows good agreement, and above 0.8 and 0.9 reflect very
strong agreement.
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Figure 2. Agreement between instantaneous MODIS and measured net-radiation at satellite overpass
time. Temperate-C denotes Temperate-Continental. The numbers atop the bars in the upper panel
show the number of sites in each of the six climate types.

2.6.2. Comparison with Net-Radiation from CERES

We first compared monthly CERES net-radiation with tower data. To ensure a reasonable spatial
sampling within 1◦ × 1◦ cells of the CERES product, we only selected cells that had 3 or more tower
sites within their boundary. There were a total 53 CERES pixels with 3 or more (maximum 7) tower
sites. The tower sites were located between 30◦ and 64◦ N latitude and 145◦ W and 122◦ E longitude.
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After validating CERES product, we compared mean daily (24-h) net-radiation from MODIS with
the corresponding estimates from CERES. To do this, we converted daily daytime (sunrise to sunset)
MODIS net-radiation to daily (24-h) net-radiation. Simple parameterizations have been suggested to
compute nighttime upwelling and downwelling long wave radiation [48]. We instead used tower data
to calibrate a simple globally constant relationship between mean daily (24-h) and daytime (sunrise to
sunset) net-radiation and used this empirical relationship to convert mean daytime net-radiation from
MODIS to daily values.

Before comparing MODIS net-radiation we used results from the analysis in Section 2.6.1,
and adjusted the MODIS net-radiation for the bias and marked the error bounds in bias-corrected
MODIS net-radiation based on the climate type of a pixel. We then estimated the mean random error
(MEc) in each climate type “c” as follows.

MEc =
1.5×MAEc − Biasc

2
(13)

where MAEc and Biasc are the mean absolute error and the absolute value of mean bias, respectively,
in climate type “c” from the analysis in Section 2.6.1. Thus, we assumed that the bias in daily
net-radiation is the same as in daytime net-radiation, but the random error in daily net-radiation is
higher (1.5 times) than in daytime net-radiation. We also assumed that as we aggregate the daily
MODIS data to coarser temporal resolution (monthly) the random error goes down to half.

We re-sampled MODIS net-radiation to match the resolution of CERES net-radiation. We assumed
that the random errors “MEc” in MODIS net-radiation are uniformly distributed and calculated
net-radiation and error bounds of resampled MODIS pixels as follows.

nrrs =
1
n

n

∑
i=1

nri (14)

ub_nrrs =
1
n

n

∑
i=1

nri + mei (15)

lb_nrrs =
1
n

n

∑
i=1

nri −mei (16)

Here, nrrs, ub_nrrs, and lb_nrrs are estimated net-radiation, and upper- and lower-bound on
net-radiation, respectively, of the coarse resolution resampled pixel. The other three variables nri, mei,
and n are the net-radiation and mean error of the ith fine resolution pixel, and the total number of fine
resolution pixels contained in the coarse resolution resampled pixel, respectively. We assigned mei to
each fine resolution pixel based on its climate type. We obtained the information of climate type at 0.1◦

from Peel et al. [49].
After estimating the net-radiation and error bounds in re-sampled pixels, we compared

mean MODIS net-radiation with corresponding estimates from the CERES net-radiation product.
We calculated paired deviations “ei” between the MODIS (taken as reference data in this part) and the
CERES net-radiation as follows [43].

ei = 0 i f lb_nrrs ≤ Pi ≤ ub_nrrs (17)

ei = lb_nrrs − Pi i f Pi ≤ lb_nrrs (18)

ei = Pi − ub_nrrs i f Pi ≥ ub_nrrs (19)

Here, Pi is the predicted net-radiation from the coarse resolution gridded net radiation products.
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3. Results

This section is divided into two subsections. First, we present the evaluation of the fine
resolution MODIS estimates with measured net-radiation at the site level. Next, we share results about
spatiotemporal agreements between the MODIS and CERES net-radiation.

3.1. Agreement between Instantaneous MODIS and Measured Net-Radiation at Satellite Overpass Time

Instantaneous MODIS net-radiation showed good agreement with measured net-radiation in extra
tropics (Figures 2 and 3). In five out of six climate types (boreal, temperate-Continental, temperate,
semi-arid, and Mediterranean), the IoA between the MODIS and measured net-radiation was close
to 0.73 and MAE was approximately 70 W·m−2 (Figure 2). In tropics, however, discrepancy between
the modeled and measured net-radiation was relatively more with a low IoA (≈0.35) and high mean
error (≈180 W·m−2). The instantaneous MODIS net-radiation was positively biased in all but semi-arid
zone where it had a small negative bias (Figures 2 and 3). The positive bias was highest (≈165 W·m−2)
in the tropics and was 90% of the MAE (Figure 3). In all six climate types, mean peak instantaneous
net-radiation varied between 600 and 700 W·m−2.
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Figure 3. Comparison between MODIS and measured instantaneous net-radiation at Terra overpass
time in six different climate types. MAE denotes mean absolute error estimate in W·m−2.

3.2. Agreement between Integrated Daytime MODIS and Measured Net-Radiation

The daytime (sunrise to sunset) MODIS net-radiation agreed well (0.63 < IoA < 0.74) with
tower net-radiation in extra tropics (Figures 4 and 5). MODIS net-radiation agreed the best with
measured net-radiation at boreal (n = 28) and Mediterranean (n = 40) sites with the highest mean IoA
(≈0.74 ± 0.01), and low MAE (≈38.0 ± 1.8, 42.0 ± 1.4 W·m−2, respectively) and mean bias (≈4 ± 3,
0 ± 2 W·m−2, respectively; Figure 4). Predicted net-radiation also agreed very well with measurements
at the temperate-continental (n = 38) and temperate (n = 32) sites (Figure 4).
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Figure 4. Agreement between daytime (sunrise to sunset, eight-day time scale) MODIS and measured
net-radiation in six different climate types. Temperate-C denotes Temperate-Continental. Number of
field sites are shown atop the bars in the upper panel.
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There was indistinguishable difference in model performance at temperate-continental and
temperate sites (IoA ≈ 0.72 ± 0.01; MAE ≈ 47.0 ± 1.7 W·m−2, and bias ≈ −3 W·m−2). The
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MODIS net-radiation agreed moderately well with measured net-radiation at the semi-arid sites
(n = 9; IoA ≈ 0.63 ± 0.02, MAE ≈ 49 ± 2 W·m−2, and mean bias ≈ −6 ± 4 W·m−2).

As expected, due to relatively low seasonal variability in net-radiation, the agreement between
the MODIS net-radiation and measurements was the lowest at tropical sites (n = 7; IoA ≈ 0.47 ± 0.05,
MAE ≈ 72 ± 4 W·m−2, and mean bias ≈ 3.9 ± 10.2 W·m−2).

In all six climate types the mean bias was small and constituted only 11.0%, 0.7%, 8.4%, 4.2%,
13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean,
temperate-continental, temperate, semi-arid, and tropical climate, respectively (Figures 4 and 5).
After correcting for positive bias, the mean absolute error in daytime net-radiation was 33, 41, 42, 45,
42, and 68 W·m−2 in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical
climates, respectively.

3.3. Agreement between MODIS and the CERES Net-Radiation

3.3.1. Validation of CERES with Tower Data

Monthly CERES output agreed very well with the tower data (Figure 6; MAE = 18 W·m−2).
Net-radiation from CERES matched the seasonality of measured net-radiation very closely both in
magnitude and temporal variation and was within the margin of uncertainty in measured net-radiation.
These results confirmed the high quality of CERES estimates shown in previous studies [42] and justifies
its use as reference data for validating large scale pattern in our net-radiation product.
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3.3.2. Comparison of MODIS with CERES

Measurements from across sites showed that mean annual daytime net-radiation was strongly
related with the daily net-radiation (Figure 7). We used this relationship and converted MODIS
daytime to daily net-radiation. Figure 8 shows the estimated global daily (24-h) net-radiation from
MODIS averaged over 2001 to 2007 and confirms that it captures the broad patterns of spatial variability
very well.

We compared the broader spatiotemporal patterns in mean daily net-radiation with the
corresponding estimates from the CERES. Mean annual daily global terrestrial net-radiation from
MODIS and CERES was 71 and 68 W·m−2, respectively. Mean net-radiation from MDOIS agreed very
well with the corresponding estimates from the CERES product (Figure 9). In 94% of the total 1◦ × 1◦

grid cells, the difference between the mean MODIS net-radiation and the CERES net-radiation was less
than 10 W·m−2. The difference between the two products was evident in northern Africa (Figure 5).
In these areas, the CERES values were usually lower than the corresponding estimates from MODIS.
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As the Hovmoller diagram shows the MODIS estimate also agreed well with the estimates from the
CERES over time (Figure 8).
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Figure 7. Relationship between mean annual daytime (sunrise to sunset) net-radiation and daily (24-h)
net-radiation from measurements.
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Figure 9. Comparison of MODIS net-radiation with corresponding estimates from CERES: (left) the
difference between mean daily net-radiation from MODIS and CERES; and (right) (Hovmoller diagram)
the monthly latitudinal distribution of difference between mean net-radiation from MODIS and CERES.
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4. Discussion

4.1. Reliability and Accuracy of MODIS Net-Radiation

Seasonal variation in daytime MODIS net-radiation agreed well with in situ measurements, albeit
with some bias. The magnitude of bias varied across different climate types from a minimum of
0.3 W·m−2 (1% of total error) in Mediterranean to a maximum of −6.5 W·m−2 (13% of total error)
in semi-arid climate. We used sinusoidal integration to compute mean daytime net-radiation from
instantaneous net-radiation. Developing a suitable method that can be applied across climate and
land cover types for integrating instantaneous quantities to daily values remains a challenge and is
an active area of research [50–52].

However, it appears that sinusoidal integration does a reasonably good job and, in fact, reduces
the bias in instantaneous net-radiation without adversely affecting the correlation between the modeled
and tower net-radiation (Figures 3 and 5). The index of agreement between MODIS and measured
net-radiation is almost identical for the instantaneous and daytime net-radiation. But, the proportion of
bias relative to mean absolute error decreased for daytime net-radiation in each of the six climate types.
Estimated instantaneous values varied within the range of measurements and also agreed well with
values reported in other studies. For example, it has been observed in a continental Mediterranean
area (42◦1′N; 4◦32′W and 732 m above sea level) that minimum measured net-radiation values varied
between 87 and 90 W·m−2 and the maximum between 570 and 585 W·m−2 in July 1995 [53,54].

Observations from the FLUXNET and SURFRAD stations showed that of the four components,
incoming shortwave radiation was most strongly correlated with net-radiation across all six climate
types, and was the main driver of seasonal variations in instantaneous net-radiation [1,55,56]. Mean R2

(across site) between incoming shortwave radiation and net-radiation was 0.89, 0.86, 0.91, 0.91, 0.82,
and 0.80 in boreal, temperate-continental, temperate, Mediterranean, semi-arid, and tropical climates,
respectively. Thus, accurately modeling downwelling shortwave net-radiation is necessary, though not
sufficient, for capturing seasonal variability in net-radiation [19]. The modeled incoming shortwave
radiation tracked the instantaneous measured incoming shortwave radiation well in the extra-tropics
(e.g., see Figure 10 for temperate-continental sites). However, in tropical areas the seasonal amplitude
of incoming shortwave radiation was relatively small and the discrepancy between measured and
MODIS instantaneous shortwave radiation was large (Figure 11). In fact, discrepancy between the
MODIS and measured values was evident in the tropics for the other three components as well
(Figure 11). In the tropics, burning biomass, aerosols, and cloudy skies can corrupt reflected [57]
and emitted radiation [58] and make it difficult to get accurate, temporally frequent estimates of the
variables such as land surface temperature, near surface pressure and temperature, and albedo from
MODIS. In the humid tropics, high atmospheric moisture adds to the difficulty of retrieving land
surface temperature from thermal infrared radiation. Moreover, in tropical areas the diurnal profile of
clouds and atmospheric vapor varies significantly [59] and presents extra challenges in converting
instantaneous measurements at the satellite overpass time to integrated daily values. We assumed
a pixel to be either cloudy or clear. However, in tropics, 5 km2 area can have significant sub-pixel
heterogeneity in cloud cover, which can affect the accuracy of the retrievals.



Remote Sens. 2016, 8, 739 15 of 20
Remote Sens. 2016, 8, x FOR PEER  15 of 20 

 

Figure 10. Comparison between the four components of net-radiation from MODIS and 
corresponding measurements at Terra overpass time at 38 temperate-continental sites. Note that the 
Y-axis scales are different in different subplots. 

  

Figure 11. Comparison between the four components of net-radiation from MODIS and 
corresponding measurements at Terra overpass time at 7 tropical sites. Note that the Y-axis scales are 
different in different subplots. 

Figure 10. Comparison between the four components of net-radiation from MODIS and corresponding
measurements at Terra overpass time at 38 temperate-continental sites. Note that the Y-axis scales are
different in different subplots.

Remote Sens. 2016, 8, x FOR PEER  15 of 20 

 

Figure 10. Comparison between the four components of net-radiation from MODIS and 
corresponding measurements at Terra overpass time at 38 temperate-continental sites. Note that the 
Y-axis scales are different in different subplots. 

  

Figure 11. Comparison between the four components of net-radiation from MODIS and 
corresponding measurements at Terra overpass time at 7 tropical sites. Note that the Y-axis scales are 
different in different subplots. 

Figure 11. Comparison between the four components of net-radiation from MODIS and corresponding
measurements at Terra overpass time at 7 tropical sites. Note that the Y-axis scales are different in
different subplots.



Remote Sens. 2016, 8, 739 16 of 20

The components that contributed to the bias and error in other climate types varied. The accuracy
of estimated components is partly dependent on the accuracy of input data [60]. For example, MODIS
albedo is known to be biased in snow or partially snow covered situations [61]. Although, daily
net-radiation is not very sensitive to albedo [1], over seasonal time scale variations in albedo in
higher latitudes can influence net-radiation through its effect on outgoing shortwave radiation [55].
To calculate outgoing longwave radiation we used prescribed emissivity in band 31 and 32 from the
MOD11 product and used a simple formulation to estimate broadband emissivity. These average
prescribed values are unlikely to capture fine-scale, real-time spatiotemporal variations in emissivity
and its effect on retrieved land surface temperature [62], and can cause bias and errors in estimated
instantaneous outgoing longwave radiation. Similarly, the LST of a pixel is the effective value of the
temperatures and emissivities of different end-members such as vegetation and soil that make up
a pixel. In 5 km2 area variation in soil and vegetation proportion can nonlinearly affect the emitted
radiation and introduce errors in estimated mean LST. We deal with downwelling longwave radiation
in cloudy sky be assuming that it behaves like a black body with a perfect emissivity. As explained
earlier in Material and Methods, we made this choice because the alternatives demand more data that
is not available. However, this method is likely to lead to an overestimation because in reality clouds
do not behave like perfect blackbody and their effective emissivity depends on several factors such as
cloud optical thickness and effective radius of ice particles.

The close agreement between daily MODIS and CERES net-radiation over time and space
(Figure 9) validates the overall accuracy of the broad patterns in the MODIS estimates. Although
both the CERES and our algorithms rely on inputs from MODIS, they differ significantly in terms
of detailed calculations and other sources of input data. The CERES algorithm uses a variety of
other input data, is run at a finer 3-h resolution, uses more sophisticated models, but has coarse
spatial resolution [42]. Except for the incoming shortwave component, our algorithm relies on simple
parameterized formulations, but has fine spatial resolution. Despite these differences, the two estimates
agreed well with each other over both space and time.

4.2. Sensitivity of Estimated Net-Radiation to Gap Filling and NCEP Data

For days that are cloudy at the satellite overpass time, some of the MODIS data (such as LST,
atmospheric profile, and albedo) were not available. Thus, in cloudy days we used spatial interpolation
or land cover based mean values and employed data from NCEP. To investigate the effect of these
steps we compared how well do instantaneous and daytime net-radiation in clear and cloudy sky
agree with corresponding measurements.

At instantaneous time scale the IoA between MODIS and measured net-radiation in cloudy sky
was 0.71, 0.67, 0.67, 0.70, 0.51, and 0.46 in boreal, Mediterranean, temperate-continental, temperate,
semi-arid, and tropical climates, respectively. For clear sky, the IoA was 0.75, 0.72, 0.73, 0.73, 0.70,
and 0.43 for the six respective climate types. For daytime (sunrise to sunset) the IoA between
MODIS and measured net-radiation was 0.74, 0.72, 0.70, 0.71, 0.52, and 0.42 in boreal, Mediterranean,
temperate-continental, temperate, semi-arid, and tropical climates, respectively, in cloudy sky, whereas,
for clear sky, the IoA in the six climate types was 0.76, 0.76, 0.74, 0.71, 0.69, and 0.52, respectively.
Thus, although the estimated net-radiation from MODIS agreed better with measurements in clear
than cloudy days at both instantaneous and daily time scale, the performance of MODIS net-radiation
in cloudy days was also very good. In all but semi-arid climate, the difference in IoA for clear and
cloudy days was small.

5. Conclusions

We produced the global daily surface net-radiation at 5 km by combining 11 variables from six
different MODIS land and atmosphere products with a radiative transfer model and ancillary datasets
from NCEP. Our algorithm estimates the four components of net-radiation—downwelling shortwave,
upwelling shortwave, downwelling longwave, and upwelling longwave radiation—globally in all-sky
conditions. We rigorously evaluated the accuracy and reliability of our net-radiation estimates using
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direct measurements from 154 globally distributed sites. Our net-radiation product performed well
and agreed closely with in situ measurements in extratropics. However, in tropical areas, the agreement
with measurements was relatively weaker. Some of the key challenges in modeling net-radiation in
the tropics are to account for the effects of aerosols, atmospheric moisture, and frequently changing
clouds. High frequency changes in these factors coupled with relatively low seasonal variability in
net-radiation makes it difficult to accurately capture the four components of net-radiation. Validating
remote sensing-based estimates of net-radiation also remains a challenge due to the paucity of
in-situ measurements in tropics. Although the two ground networks included many stations in
the extra-tropics, there were only seven sites in the tropics. Given that the reliability of modeled
net-radiation was the least in the tropics there is a need to expand ground coverage in tropical area
and generate adequate samples in space and time.

Polar orbiting satellites such as MODIS cannot capture the diurnal variation of clouds. However,
sub-daily changes in clouds can cause the diurnal profile of net-radiation to deviate away from
the idealized sinusoidal trajectory, causing discrepancy between the modeled and actual integrated
net-radiation. In the future versions of our products, we will integrate information about the diurnal
variability in the different components using data from MODIS Aqua and other sources such as
geostationary satellites. We used atmospheric variables and land surface temperature from Terra in
this study. Currently, re-gridded data from Aqua is not available. Together, Aqua (1:30 p.m. overpass
time at equator) and Terra (10:30 a.m. overpass time at equator) data will provide better constraint
for integrating instantaneous net-radiation to daily values. Following Hendrix et al. [20], we plan to
re-project Aqua data on the sinusoidal grid and integrate it in the next version of our product. In the
next version of our product we will also downscale the MOD04, MOD06, and MOD07 products at
1 km. Since MODIS albedo and land-cover data are already available at 500 m and MODIS land surface
temperature at 1 km the downscaling will allow us to improve the spatial resolution of our product to
1 km. Downloading global, multiple year MODIS data for several products, and checking it for data
integrity and error is a time-consuming operation. Addressing dataflow efficiencies in data downloads
will also be an area of emphasis in the next version of our product.

The uncertainty-quantified MODIS net-radiation product is available to the global science
community and will be a valuable resource for a variety of investigations such as estimation of
evapotranspiration at continental and global scale, validation of climate and land surface model
outputs, and understanding and estimating the strength of land–atmosphere coupling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/8/9/739/s1,
Table S1: Sites from FLUXENT and Surface Radiation (SURFRAD) network used in this study.
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