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Abstract: Spatial predictions of near-surface air temperature (Tair) in Antarctica are required as
baseline information for a variety of research disciplines. Since the network of weather stations
in Antarctica is sparse, remote sensing methods have large potential due to their capabilities and
accessibility. Based on the MODIS land surface temperature (LST) data, Tair at the exact time of
satellite overpass was modelled at a spatial resolution of 1 km using data from 32 weather stations.
The performance of a simple linear regression model to predict Tair from LST was compared to
the performance of three machine learning algorithms: Random Forest (RF), generalized boosted
regression models (GBM) and Cubist. In addition to LST, auxiliary predictor variables were tested
in these models. Their relevance was evaluated by a Cubist-based forward feature selection in
conjunction with leave-one-station-out cross-validation to reduce the impact of spatial overfitting.
GBM performed best to predict Tair using LST and the month of the year as predictor variables.
Using the trained model, Tair could be estimated with a leave-one-station-out cross-validated
R2 of 0.71 and a RMSE of 10.51 ◦C. However, the machine learning approaches only slightly
outperformed the simple linear estimation of Tair from LST (R2 of 0.64, RMSE of 11.02 ◦C). Using the
trained model allowed creating time series of Tair over Antarctica for 2013. Extending the training
data by including more years will allow developing time series of Tair from 2000 on.

Keywords: air temperature; Antarctica; feature selection; machine learning; MODIS LST

1. Introduction

Near-surface air temperature (Tair) plays an important role in ecological, glaciological and
climatological processes in Antarctica. Climate change further raises the need to study the
spatio-temporal trends in Tair and its induced regional feedback processes. Therefore, spatially
explicit Tair datasets are of high interest for the scientific community and research effort for its
construction is in high demand [1].

A common approach to obtain spatially explicit Tair datasets is spatial interpolation based on
station records [2–5]. However, interpolation methods rely on a sufficiently dense number of points.
Due to the remoteness of Antarctica, the network of weather stations is sparse [6] which makes simple
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interpolation approaches difficult. The applications of these methods to Antarctica are therefore
limited to a low temporal resolution of e.g. annual means [7], rather than aiming at daily products.
In order to obtain medium resolution datasets of Tair, remote sensing is a promising alternative: it
offers spatially explicit proxies for Tair, and is therefore suitable for areas with low weather station
density, such as Antarctica [8]. Though Tair cannot be directly measured from space, land surface
temperature (LST) is a widely used derived product from infrared bands and a proxy for Tair [9] due
to surface-atmosphere energy exchange processes.

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra and
Aqua spacecrafts acquires LST data four times per day (two during the day, two during the night)
with a spatial resolution of 1km. MODIS LST was successfully used to estimate Tair for various
regions of the world [10–17]. Kilibarda et al. [18] performed a kriging based spatio-temporal
interpolation of global daily temperatures including MODIS LST as predictor. However, since the
focus of this study was on a global Tair prediction, Antarctica was only marginally represented in the
training data. Applications of MODIS LST to predict Tair for Antarctica are limited to the study of
Wang et al. [19] who compared monthly averages of MODIS LST with Tair in the Lambert Glacier
Basin in East Antarctica.

The majority of the studies rely on linear regressions or simple bias corrections to estimate
Tair from LST alone. However, the linearity of the relation is questionable. Colombi et al. [11]
found differences in the performance of the linear model according to daytime and altitude.
Vancutsem et al. [10] noticed variations in the performance depending on region and season, while
Benali et al. [15] used several predictors and tested different model structures which included
auxiliary predictors. Also Xu et al. [20] included land cover type and altitude in their models
to improve the simple linear model between LST and Tair. Most recently, Janatian et al. [21]
tested the importance of 11 auxiliary variables in addition to LST in a stepwise regression analysis
and revealed julian day, altitude and solar zenith angle as effective additional predictors for Tair.
Emamifar et al. [22] used M5 regression trees to model daily Tair in Iran from MODIS LST and
auxiliary variables and highlighted the advantage of tree-based models for an operational monitoring
of Tair. Surprisingly, machine learning algorithms were only rarely applied in the context of
estimating Tair using LST [22,23]. However, those methods are good contenders to model Tair, since
they can handle non-linearity and highly correlated predictor variables [24,25].

The aim of this study is to create a medium resolution spatially explicit daily Tair product for
Antarctica. In this context, we have tested the performance of different machine learning algorithms
to estimate Tair from LST and auxiliary variables as an alternative to a simple linear approach.

2. Methods

2.1. Data and Preprocessing

2.1.1. MODIS LST

The daily LST data (version 5 [26]) based on the MODIS sensor onboard the Aqua and Terra
satellites are distributed as the MOD11A1 and MYD11A1 products [27]. The MODIS LST products
consist of daytime and nighttime measurements at 1 km resolution. Their calculation is based on
a split-window algorithm that uses the emissivities from MODIS bands 31 and 32 that were, in
turn, calculated using information about land cover type, atmospheric column water vapour and
lower boundary air surface [26]. The data are cloud-masked on the basis of the MODIS Cloud Mask
algorithm [28] that applies typical thresholds in the visible and infrared channels. The MODIS LST
data are stated to be very accurate with a deviation of mostly below 1K in the range between −10 ◦C
and 58 ◦C [26]. Regarding colder environments, Westermann et al. [29] validated MODIS LST for
Svalbard in Norway and found a bias of 3K. No decrease in performance could be observed with
decreasing temperatures of down to about −40 ◦C.
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In this study, the products were not used as temporal aggregates (e.g., 8-day composites) but
the instantaneous LST values at the respective time of satellite overpass were used. Aqua and Terra
pass Antarctica several times per day since the overlap of the orbits increases the closer you get to
the poles. The product consists of data from different overpass times. The overpass times of the
corresponding LST values are used for each pixel in full hours.

2.1.2. Station Records

Three sources of automatic weather station data were used as ground truth in this study.
The Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin [6] provides
data from weather stations distributed over the entire continent. Air temperature was measured 3 m
above ground level. The Long Term Ecological Research (LTER) programme [30] provides weather
station data from the McMurdo Dry Valleys where air temperature was measured 3 m above ground
level. With focus on soil climate, the United States Department of Agriculture (USDA) provides
data from weather stations in the Ross Sea Region [31]. Air temperature from the USDA sites
was measured at 1.6 m above ground. Temperature sensors of all providers were mounted within
radiation shields.

In total, 32 weather stations were used for model training and validation (Figure 1). All weather
stations provide data in 15 minutes to hourly temporal resolution and were, if necessary, aggregated
to one hour. Therefore, all measured Tair values that were recorded within each hour were averaged.

Figure 1. Map of weather stations used for model training and evaluation overlayed on a Landsat
composite image [32]. The McMurdo Dry Valleys are shown in detail.

2.1.3. Auxiliary Data

The Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM), version 2 [33],
was used as one of the auxiliary predictor variables. The 200 m resolution DEM was bilinearly
resampled to 1000 m to match the resolution of the MODIS LST data. Slope, aspect, and skyview
factor (which describes the fraction of visible sky) were derived from this DEM using SAGA GIS [34].
Aspect was classified into north, east, south and west and used as a categorical variable in the model.
The Bedmap2 data [35] were used to classify the landscape into ice covered or ice free areas according
to their ice surface elevation information. The month of the year (Jan-Dec), the season (Spring,
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Summer, Autumn, Winter) and time of day (1–24 h) were included as categorical variables, as well as
the sensor type (either Terra or Aqua) to account for potential sensor specific differences in LST.

2.1.4. Compilation of Model Training and Testing Data

MODIS LST data, as well as the auxiliary variables were extracted at the location of the
weather stations. The MODIS LST values at the respective overpass times were matched with
the corresponding station records. For model training, a subset of 40% of the data was used,
corresponding to 12280 data points. They were selected by stratified random sampling with respect
to the station. The remaining 60% were used as test subset to assess the model performance and the
problem of overfitting which will be explained in Section 2.2.2.

2.2. Modelling

2.2.1. Algorithms

A simple linear regression between LST and Tair was considered as a baseline model since it
is the most intuitive and widely used method to estimate Tair from MODIS LST. The three machine
learning algorithms Random Forest (RF), generalized boosted regression models (GBM), and Cubist
were considered as alternative models. These algorithms were chosen for two reasons. First,
they are able to deal with both continuous and categorical variables. Second, these algorithms
showed good performance in Tair interpolations using similar predictor and response variables
in other environments [2]. A major advantage of the machine learning algorithms is that,
according to the conceptual designs, they are able to account for different relationships between
predictor and response variables under different conditions (e.g., summer/winter). A split into
separate models which has been found advantageous in, e.g., Huang et al. [17] is therefore not
necessary. James et al. [25] and Kuhn & Johnson [24] provide a detailed description of the machine
learning algorithms.

The Caret package [36] for R was used as a wrapper package for the GBM [37], RF [38], and
Cubist [39] implementations in R. Models were trained in parallel on 16 cores using the R package
“doParallel” [40].

2.2.2. Cross-Validation Strategies and Feature Selection to Minimize Overfitting

Overfitting the time series of the training data is a common phenomenon in spatio-temporal
prediction models (e.g., [41]). This means that models can very well predict the time series of the
weather stations used for training, but fail in the prediction of “unknown” locations. The term
overfitting usually refers to a poor fit of the testing data due to inappropriate model parameters [24].
However, though it is rarely approached in literature, we hypothesize that overfitting can also be a
result of inappropriate predictor variables.

Overfitting due to inappropriate predictor variables becomes obvious in the difference of the
model performance estimated by a random test subset compared to the performance estimated
by a Leave-One-Station-Out Cross-Validation (LOSOCV). In order to train a model which is able
to successfully predict beyond the location of the training weather stations, a selection of robust
variables is required.

Wrapper feature selection methods, that evaluate multiple models, are an intuitive and effective
solution to reduce the number of variables to the most important ones [24,42]. However, the
most commonly used method for feature selection, recursive feature elimination, relies on variable
importance scores which are calculated using the training subset solely [24]. Thus, recursive feature
selection does not account for variable induced overfitting since the subsequent models are based on
the ranked variables from the training dataset. If a variable leads to considerable overfitting, it has a
high importance in the models. Therefore, this variable will be ranked as an important variable in the
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recursive feature selection process and is not removed in this process, regardless of a resulting high
LOSOCV error.

Therefore, a forward feature selection [42] in conjunction with LOSOCV was applied to remove
variables that lead to spatial overfitting. We first trained models using all possible 2-variable
combinations of predictor variables. The best model of these initial models was kept. The number of
predictor variables was then iteratively increased. The improvement of the model was tested for each
additional predictor using LOSOCV. We stopped increasing the number of variables when none of
the remaining variables decreased the LOSOCV Root Mean Square Error (RMSE) within one standard
deviation of the current best model.

Since the process requires considerable computation time, feature selection was only performed
using the fastest algorithm, Cubist, and it was assumed that the importance of the variables would
be similar for all three algorithms.

To estimate overfitting due to inappropriate predictor variables we compared the performance
of the full model (all predictor variables) with the performance of the model that based on the selected
variables. We estimated the performance using the LOSOCV predictions. Further, to assess the
ability of the model to predict on random test subsets of the data from weather stations used for
model training, we predicted on the held out 60% of the overall data set. Overfitting was estimated
by comparing the random test subset performance with the LOSOCV performance. RMSE and
coefficient of determination (R2) were used as evaluation scores.

2.2.3. Final Model Training, Evaluation and Prediction

The predictor variables retained in the feature selection process were used for training of the
final RF, GBM and Cubist models. During model training, the optimal hyperparameters were
identified (parameter tuning). Hyperparameters are algorithm specific parameters that cannot be
directly estimated from the data but must be specified prior to model training. A majority of the
hyperparameters control the model complexity [24]. Therefore they must be carefully chosen to avoid
overfitting due to highly complex model structures [24]. In contrast, a very low complexity might not
lead to an optimal fit of the data. To identify the optimal values, models were repeatedly trained
using different values for the hyperparameters and the performance was estimated using LOSOCV.
While tuning was kept to a minimum (3 different values per parameter) during the time consuming
feature selection, the final models were extensively tuned (Table 1). See [24,25] for a description of
the hyperparameters. The optimal values leading to the lowest RMSE based on LOSOCV were used
in the final models.

Models were evaluated according to their LOSOCV RMSE. Further, the final models were
applied on the overall dataset to assess differences in the performance depending on season
and location of the weather stations. Differences were assessed using t-tests. The Tair
predictions were further aggregated to daily, weekly and monthly estimates by simple averaging
of instantaneous predictions.

Table 1. Tested values for the hyperparameters of the different prediction models and the optimal
parameters revealed during parameter tuning. N is the number of predictor variables.

Algorithm Hyperparameter Tested Values Optimal Value

Random Forest mtry 2 to N with increment 1 2

Cubist committees 1 to 50 with increment 5 31
neighbors 0 to 9 with increment 1 0

GBM

number of trees 25 to 500 with increment 25 75
max depth of interactions 1 to N with increment 1 1

shrinkage 0.01, 0.1 0.01
min observations in terminal nodes 10 10
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3. Results

3.1. Selected Features

The variable importance scores of the full models that used all predictor variables revealed the
importance of LST to predict Tair (Figure 2a). Besides LST, terrain-related variables were important,
followed by month, season and time of the day. The sensor (Terra or Aqua), as well as the location of
the stations on either ice or no-ice had no relevance for the model outcome.

Using the forward feature selection method explained in Section 2.2.2, particularly the terrain
related variables were identified as leading to overfitting. During forward feature selection, the
number of predictor variables was reduced to only LST and month. However, LST was by far the
most important predictor in the model (Figure 2b). Within one standard deviation of this two-variable
model, no further variable could improve the performance.
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Figure 2. Relative variable importance revealed by Cubist for (a) the full model and (b) the model that
used variables selected during forward feature selection only. Variable importance was estimated as
the percentage of times each variable was used in the model [36].

Figure 3 visualizes the problem of spatial overfitting by showing the agreement between
measured and predicted Tair using two different validation strategies and two different models.
Figure 3a,b shows the agreement of the full model that uses all predictor variables. Figure 3c,d
shows the agreement of the model that uses only LST and month as predictor variables. The models
were validated using the 60% random subset (Figure 3a,c) or using LOSOCV (Figure 3b,d). When
the full model was applied to the random test subset, it showed a very good fit to the measured
Tair (RMSE = 6.00 ◦C, R2 = 0.78). However, when the model was validated by LOSOCV, the error
increased (RMSE = 13.00 ◦C, R2 = 0.65) which suggests overfitting. Regarding the 2-variable model,
the comparably good results of the full model validated by the random subset could not be kept
because the variables that led to overfitting were missing (RMSE = 9.00 ◦C, R2 = 0.71). When the
2-variable model was validated by LOSOCV, the differences to the random subset validation were
less striking (RMSE = 10.84 ◦C, R2 = 0.69). However, compared to the full model, the RMSE could
be decreased by 2.16 ◦C. This increase in the LOSOCV performance of the forward feature selection
based model, highlights the importance of the feature selection to avoid spatial overfitting caused by
inappropriate predictor variables.
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Figure 3. Agreement between measured Tair and predicted Tair using Cubist as modeling tool.
Models were first trained using the full set of predictor variables (FULL) and second using only LST
and month as predictors that were revealed during forward feature selection (FFS). Two different
validation strategies were used: Comparison to a 60% random subset of the total dataset (RSS), as well
as Leave-One-Station-Out Cross-Validation (LOSOCV). The problem of overfitting becomes obvious
by comparing the performance of the full model validated by RSS (a) with the performance of the
full model validated by LOSOCV (b). Using the 2-variable model, the performance validated by RSS
decreased (c) compared to the full model. Only slight differences between RSS and LOSOCV (c,d)
indicate that there is no considerable overfitting in the 2-variable model. The most important point is
that the 2-variable model could improve the LOSOCV performance (d) compared to the full model.
Data are represented as smoothed scatter plots where the intensity of the color represent the data
point density.

3.2. Model Comparison and Evaluation

The linear model has the form Tair = 0.66× LST − 3.99. The model was able to predict Tair with
a LOSOCV R2 of 0.64 and a RMSE of 11.02 ◦C. GBM was identified as the best performing algorithm
(Figure 4) with a R2 of 0.71 and a RMSE of 10.51 ◦C. The tuned and trained GBM model was therefore
chosen as the final model to create the Tair product. Cubist performed slightly worse than GBM
(RMSE = 10.85 ◦C, R2 = 0.69) and the differences to the linear model were small. RF showed the
lowest performance among the tested algorithms (RMSE = 11.95 ◦C, R2 = 0.56).

In the following, we focus on the GBM model, since this model was applied in the creation of the
final Tair product. In order to further assess characteristics of the model predictions, the model was
applied to the full dataset.

The interquartile ranges of the measured and predicted data were similar (Figure 5). However,
the model was not able to predict very high or very low values. Since low Tair values (<40 ◦C) were
still frequently measured by the weather stations, the main weakness of the model was the inability
to predict low temperatures.
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Figure 4. Correlation between measured and predicted Tair based on LOSOCV of (a) the linear model,
(b) RF, (c) Cubist and (d) GBM. The intensity of the color represent the data point density.
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Figure 5. Distribution of measured Tair compared to predicted Tair.

Figure 6 shows a comparison between the measured and predicted time series of example
weather stations (Figure 6a–c), as well as of the average time series of all 32 weather stations
(Figure 6d). The seasonal Tair patterns were generally well captured both by the LST and by the
predicted Tair time series. Compared to the linear model, the GBM model could differentiate between
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summer and winter months and was therefore closer to the measured time series of the McMurdo Dry
Valleys (Figure 6a,b), as well as of the average time series. During winter, no clear advantage of GBM
over the linear model could be observed for the McMurdo Dry Valleys (Figure 6a,b). Both models
fail in the prediction of the time series of “Harry” which is located on ice and has considerably lower
measured temperature values (Figure 6c). Regarding the average time series, GBM outperformed the
linear model during both, summer and winter.
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Figure 6. Time series of the three example weather stations (a) “Brownworth”, (b) “Bull pass”
and (c) “Harry”, as well as (d) the average time series of all 32 weather stations for the year 2013.
“Brownworth” and “Bull pass” are weather stations located in the McMurdo Dry Valleys. “Harry” is
located on ice. The lines represent the measured Tair (solid black), MODIS LST (dotted black), GBM
model predictions (orange), as well as linear model predictions (blue).

On average, the RMSE between measured and predicted values was significantly higher in the
winter months (e.g., Jul, Aug) than in the summer months (e.g., Jan, Dec) (Figure 7). This holds
especially true for the weather stations that are located on ice-free areas such as the McMurdo Dry
Valleys (Figure 7b). In general, the errors were significantly lower for the weather stations in ice-free
areas compared to the stations located on ice (p < 0.01) (Figures 7 and 8). Regarding the stations
located on ice, those in the west and south had the lowest RMSE. Apart from this observation, no
clear spatial patterns could be observed for these stations (Figure 8).
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Figure 7. Monthly RMSE of Tair predictions separately for (a) weather stations located on ice and
(b) weather stations located on ice-free areas.

Figure 8. Spatial distribution of RMSE of predicted Tair for the 32 weather station. The McMurdo Dry
Valleys are shown in detail. The weather stations are overlayed on a Landsat composite image [32].

When the product was aggregated to daily, weekly or monthly data the agreement between
measured and predicted Tair increased with the aggregation level (p < 0.01, Figure 9). Figure 10 shows
the final product aggregated to monthly data.
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Figure 10. Monthly aggregates of Tair as predicted by the GBM model.
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4. Discussion

GBM using LST and month as predictors was the best performing model. Nevertheless, the
simple linear estimation of Tair from LST is competitive in Antarctica where no considerable land
cover differences occur. However, the machine learning algorithms including the month as additional
predictor were better able to approximate the time series of the weather stations.

The weakness of the model was the prediction of very low temperatures (approx. below −35 ◦C),
where the accordance between measured and predicted Tair decreased. A direct comparison of the
performance of the Antarctica Tair product to other studies is difficult, not only due to differing
environments and temporal scales, but most particularly due to different validation methods being
used. Benali et al., Hengl et al. and Shi et al. [15,43,44] found considerably higher agreement
between measured and predicted Tair by including auxiliary variables in their models (RMSE usually
below 2.5 ◦C). However, their model training and validation strategies do not rely on LOSOCV.
Since LOSOCV is considered to be a stricter validation strategy [41], it is not surprising that the
agreement was better in these studies. Keeping in mind that the model performance in our study
was considerably higher without LOSOCV compared to the LOSOCV performance (Figure 3a,b), it is
likely that using a similar validation approach would lead to less divergent results.

Forward feature selection in conjunction with LOSOCV allowed removing variables that led
to overfitting. Particularly the terrain related variables caused this problem. One characteristic of
these variables is that they change in space but not in time which means that each weather station
has a unique combination of these variables. We assume that these “static variables” are prone to
overfitting since they are overrepresented in the predictor dataset. The weather station dependent
combination of unique properties is quasi-comparable to an ID of the stations which is then used as
predictor variable. Using an ID as predictor, the model would be able to fit general characteristics
of the individual time series which are, however, not valid for unknown locations. Therefore, these
variables need to be checked using feature selection in conjunction with LOSOCV and removed if
they are misleading.

Though the LOSOCV performance could be improved using selected predictor variables only,
the new Tair product is afflicted with considerable errors that need to be explained. A first explanation
comes from the characteristic of machine learning algorithms which are not able to predict extreme
values (i.e., very low and very high temperatures) [24]. However, since the model also showed high
errors in the Tair range that was well represented in the training data, this probably only slightly
contributed to the overall error.

It could be shown that the weather stations located in ice-free areas could be predicted with
much higher accuracy compared to the weather stations located on ice which could not be solved
by including the information of ice as predictor variable. Though the MODIS LST product is cloud
masked, we realized that cirrus clouds could not reliably be removed from the data. Due to the “white
on white” and “cold on cold” problem [45,46], cloud classification over Antarctica is challenging in
winter months and over snow or ice covered areas. This causes Tair predictions in winter months and
over snow and ice covered areas more prone to errors than in summer months and/or over ice-free
areas. Also Janatian et al. [21] reported a significant decrease of model performance to predict Tair in
low temperatures which might also be a result of inaccurate cloud masking in cold environments.

Another issue that likely affects the model performance is that, due to the remoteness of
Antarctica, the maintenance of weather stations is challenging, and the number of stations available
for ground truthing is very limited. Due to the difficulty of maintenance, the data are likely afflicted
with higher errors than those of less remote areas. Errors in the data used as ground truth can have a
high impact on the model outcome. An extensive quality check of the weather station data would be
important in future extensions of this study.

We found no systematic patterns of accuracy for the stations located on ice. This suggests that the
causes for the low performance are due to local influences rather than due to systematic errors in the
LST product. Very local microclimatic influences that cannot be captured by the 1km resolution are
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a potential explanation but also the suggested errors in the station data. Therefore, a station-specific
assessment of error sources is a future task in view to an improvement of the results.

Despite the errors, the Tair product is of high value for scientific studies in Antarctica.
The advantage is the high temporal (sub-daily to daily), as well as spatial resolution which could
only be achieved using remote sensing data. The estimates provide instantaneous Tair information at
the time of overpass of the Terra and Aqua satellites. These instantaneous estimates are useful to feed
models that require high temporal resolution Tair estimates. However, a variety of studies might be
more interested in temporal aggregates of the product, such as on weekly or monthly scales. In this
context it is of note that the simple averaging to daily composites, as performed in this study, could
be improved by considering the diurnal Tair cycle [47].

The product allows to monitor the spatio-temporal dynamics of Tair, not only on a continental
scale, but also in a regional scale for example for the McMurdo Dry Valleys. The Tair product can be
considered as a baseline dataset to understand the regional and local climate variability of Antarctica.
This especially applies to research areas requiring a spatially coherent gridded dataset for regional
climate model evaluation in terms of linking local meteorological processes, such as topographically
induced warming and cooling events, to non-local atmospheric circulation patterns (such as low
pressure systems). However, it is of note that the product is currently not suitable to analyse patterns
of small temperature changes. As an example, the estimated increase of Tair by 2.4 ± 1.2 ◦C over the
West Antarctic Ice Sheet since the 1950s [45] will most likely not be captured. Against the background
of the relevance of climate change, an improvement of the product will be required. However, a
variety of ecological studies focus on the ice-free areas of Antarctica and on the summer months
where organisms are active [48]. In this context, the product provides Tair estimates with acceptable
errors, especially when temporal aggregates (weekly, monthly) are considered.

The model was trained using data from 2013 only. To extend the model over the entire MODIS
lifespan (MODIS LST is available since 2000), it will be necessary to include a subset of data from
further years for model training to ensure that a wider range of inter-annual environmental conditions
is included. Since the month was revealed as the second important predictor variable, it is important
to include data from further years into training to avoid an overfitting to this specific year. At this
point, the advantage of the linear model is of note which has shown a comparable performance.
Since this model relied on LST solely, and we presume that the relation between LST and Tair is
not strongly affected between interannual changes (except for sensor degradation), it can directly be
applied beyond the training year 2013.

It is of note that the relationship between LST and Tair is influenced by various other parameters
that could not be employed in this study. Mean wind speed and direction could be responsible for
horizontal heat advection, while near-surface wind turbulence allows for surface-atmosphere energy
exchange through the sensible and latent heat flux. In further studies, it might be worth to combine
the LST data with regional climate model results that estimate parameters such as the surface energy
balance components (net surface radiation, sensible, latent and ground heat flux).

5. Conclusions

A methodology was presented to predict Tair from MODIS LST and auxiliary data using machine
learning algorithms. LST and month of the year were the most suitable and robust predictors for
Tair. Among the tested models, GBM was the most promising algorithm. However, the differences
to the commonly used simple linear approach were rather small. The main weakness of the model
was failing to predict extremely low temperatures (e.g., below −35 ◦C). The Tair estimates are in
1km spatial and daily temporal resolution for the entire continent for the year 2013. The product
is available from the authors on request. Future research needs to focus on on minimizing errors
followed by an extension of the product to the overall lifespan of the MODIS sensor.



Remote Sens. 2016, 8, 732 14 of 16

Acknowledgments: This research was supported by the Ross Sea Region Terrestrial Data Analysis research
program, funded by the Ministry of Business and Innovation, New Zealand, with contract number CO9X1413.
The authors would like to thank the anonymous reviewers for the their careful attention to this work, and the
New Zealand eScience Infrastructure (NeSI) for the computational resource support.

Author Contributions: H.M., M.K and T.A. designed the study; MODIS data were preprocessed by M.M and
P.R.; H.M. analyzed the data with contributions of T.A.,and T.N.; H.M. wrote the paper with contributions of
P.R., M.K. and T.A.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schneider, D.P.; Reusch, D.B. Antarctic and southern ocean surface temperatures in CMIP5 Models in the
context of the surface energy budget. J. Clim. 2016, 29, 1689–1716.

2. Appelhans, T.; Mwangomo, E.; Hardy, D.R.; Hemp, A.; Nauss, T. Evaluating machine learning approaches
for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat. 2015, 14A, 91–113.

3. Hofstra, N.; Haylock, M.; New, M.; Jones, P.; Frei, C. Comparison of six methods for the interpolation of
daily, European climate data. J. Geophys. Res.-Atmos. 2008, 113. D21110.

4. Jarvis, C.H.; Stuart, N. A Comparison among strategies for interpolating maximum and minimum daily air
temperatures. Part II: The interaction between number of guiding variables and the type of interpolation
method. J. Appl. Meteor. 2001, 40, 1075–1084.

5. Stahl, K.; Moore, R.; Floyer, J.; Asplin, M.; McKendry, I. Comparison of approaches for spatial interpolation
of daily air temperature in a large region with complex topography and highly variable station density.
Agric. For. Meteorol. 2006, 139, 224–236.

6. Lazzara, M.A.; Weidner, G.A.; Keller, L.M.; Thom, J.E.; Cassano, J.J. Antarctic automatic weather station
program: 30 years of polar observation. Bull. Amer. Meteor. Soc. 2012, 93, 1519–1537.

7. Wang, Y.; Hou, S. A new interpolation method for Antarctic surface temperature. Prog. Nat. Sci. 2009,
19, 1843–1849.

8. Rhee, J.; Im, J. Estimating high spatial resolution air temperature for regions with limited in situ data using
MODIS products. Remote Sens. 2014, 6, 7360–7378.

9. Gallo, K.; Hale, R.; Tarpley, D.; Yu, Y. Evaluation of the relationship between air and land surface
temperature under clear- and cloudy-sky conditions. J. Appl. Meteor. Climatol. 2011, 50, 767–775.

10. Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to
estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465.

11. Colombi, A.; De Michele, C.; Pepe, M.; Rampini, A. Estimation of daily mean air temperature from MODIS
LST in alpine areas. EARSeL eProced. 2007, 6, 38–46.

12. Zhu, W.; Lü, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land
surface temperature products. Remote Sens. Environ. 2013, 130, 62–73.

13. Sohrabinia, M.; Zawar-Reza, P.; Rack, W. Spatio-temporal analysis of the relationship between LST from
MODIS and air temperature in New Zealand. Theor. Appl. Climatol. 2014, 119, 567–583.

14. Mostovoy, G.V.; King, R.L.; Reddy, K.R.; Kakani, V.G.; Filippova, M.G. Statistical estimation of
daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi.
GISci. Remote Sens. 2006, 43, 78–110.

15. Benali, A.; Carvalho, A.; Nunes, J.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal
using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121.

16. Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed
MODIS LST Data. Remote Sens. 2010, 2, 333–351.

17. Huang, R.; Zhang, C.; Huang, J.; Zhu, D.; Wang, L.; Liu, J. Mapping of daily mean air temperature in
agricultural regions using daytime and nighttime land surface temperatures derived from TERRA and
AQUA MODIS data. Remote Sens. 2015, 7, 8728–8756.

18. Kilibarda, M.; Hengl, T.; Heuvelink, G.B.M.; Gräler, B.; Pebesma, E.; Perčec Tadić, M.; Bajat, B.
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