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Abstract: The accurate estimation of individual tree level aboveground biomass (AGB) is critical for
understanding the carbon cycle, detecting potential biofuels and managing forest ecosystems. In this
study, we assessed the capability of the metrics of point clouds, extracted from the full-waveform
Airborne Laser Scanning (ALS) data, and of composite waveforms, calculated based on a voxel-based
approach, for estimating tree level AGB individually and in combination, over a planted forest
in the coastal region of east China. To do so, we investigated the importance of point cloud and
waveform metrics for estimating tree-level AGB by all subsets models and relative weight indices.
We also assessed the capability of the point cloud and waveform metrics based models and combo
model (including the combination of both point cloud and waveform metrics) for tree-level AGB
estimation and evaluated the accuracies of these models. The results demonstrated that most of the
waveform metrics have relatively low correlation coefficients (<0.60) with other metrics. The combo
models (Adjusted R? = 0.78-0.89), including both point cloud and waveform metrics, have a relatively
higher performance than the models fitted by point cloud metrics-only (Adjusted R? = 0.74-0.86)
and waveform metrics-only (Adjusted R? = 0.72-0.84), with the mostly selected metrics of the 95th
percentile height (Hgs), mean of height of median energy (HOME,,) and mean of the height/median
ratio (HTMR,). Based on the relative weights (i.e., the percentage of contribution for R?) of the
mostly selected metrics for all subsets, the metric of 95th percentile height (Hogs) has the highest
relative importance for AGB estimation (19.23%), followed by 75th percentile height (Hys) (18.02%)
and coefficient of variation of heights (Hcy) (15.18%) in the point cloud metrics based models. For the
waveform metrics based models, the metric of mean of height of median energy (HOME,) has the
highest relative importance for AGB estimation (17.86%), followed by mean of the height/median
ratio (HTMR|,) (16.23%) and standard deviation of height of median energy (HOME,) (14.78%). This
study demonstrated benefits of using full-waveform ALS data for estimating biomass at tree level,
for sustainable forest management and mitigating climate change by planted forest, as China has the
largest area of planted forest in the world, and these forests contribute to a large amount of carbon
sequestration in terrestrial ecosystems.
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1. Introduction

Forests play a key role in global carbon (C) cycle as they contain 85%-90% of total living terrestrial
biomass, and annually exchange up to 90% of total terrestrial ecosystem C with the atmosphere
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through photosynthesis and respiration [1,2]. China has the largest area of planted forests in the
world (71 million ha, approximately 27% of world’s planted forests) [3]. The increase of planted
forest biomass in China contributed to approximately 30% of carbon sinks in China’s terrestrial
ecosystems [4]. Previous studies indicated that these forests play an important role in C sequestration
to mitigate anthropogenic C emission [4-6]. Thus, accurately assessing forest biomass (i.e., C sinks) of
the planted forests in China is important to maintain regional and global carbon balance and mitigate
climate change.

Airborne Laser Scanning (ALS) is an active remote sensing technology, which provides
an advantage over most other remote sensing technologies in its ability of providing detailed
three-dimensional information of forest canopy structure [7,8]. The laser pulses can penetrate through
the forest canopy and characterize the vertical distribution of the canopy. Previous studies have found
ecological and biomechanical links between biomass and vertical structure, and as a result, a strong
correlation between ALS metrics and biomass can be expected [9-11]. Generally, methodological
approaches for estimating forest biomass can be classified into two categories, i.e., area-based (ABA)
and individual tree crown (ITC) approaches [12]. Most of these studies used the ABA approach to
predict biomass at plot, stand or regional level, e.g., Cao et al. (2014) [13], Li et al. (2008) [14] and
Neesset et al. (2008) [15], etc., whereas some studies implemented the ITC approach to estimate biomass
at individual tree level, e.g., Popescu 2007 [16], Gleason and Im 2012 [17], Hauglin et al. (2013) [18],
and Kankare et al. (2013) [19], etc. The advantages of the ITC approach for biomass estimation (over
the ABA approach) include the following: First, the ITC approach estimates biomass in minimal
scale (in practical forest management), thus biomass mapping at other scales (above tree-level) can
be immediately available by summing tree-level estimations up to desired scales [16,20]. Second, the
ITC approach can take the advantage of existed species-specific allometric models from the literature.
In other words, in ABA analysis, the relationship between plot-level biomass (per unit area) and ALS
metrics has no practical meaning [20]. However, it should be noted that, in ITC approach, the errors of
tree detection will be transferred into the AGB summaries at plot or stand level, and can result in the
estimation of AGB with considerable systematic errors.

For the past decade, most ALS systems produced point cloud (or discrete-return) data [21].
These systems record multiple returns (n < 5) per transmitted pulse with each return representing
the 3D position and intensity of the reflected light. These point cloud-based approaches have
been successfully used to estimate a wide range of forest characteristics [22]. For instance, point
cloud data estimated tree heights were found to be of similar or better accuracy than corresponding
field-based measurements [23]. Additional attributes, such as leaf area index [24], volume [25] and
biomass [13], are also well characterized with point cloud ALS metrics at plot scale. However, the
discrete return ALS systems can only distinguish surfaces that are sufficiently spaced apart, due to
limitations in the electronics [26]. Furthermore, since the returned signal is interpreted internally, the
recorded information from these systems is limited for each pulse [27]. In contrast, small-footprint
full-waveform ALS systems have become available commercially since 2004 [28]; these systems
provide new opportunities for forestry studies. The full-waveform systems digitize and record the
entire backscattered signal of each emitted pulse, and allow the recording of geometric and physical
properties of intercepted objects [29]. The FWF systems have advantages with regard to not limiting
the number of returns for each laser pulse; providing additional investigation possibilities, e.g., point
cloud density can be enhanced by processing the FWF return signal; and additional metrics can be
extracted by modeling the received waveforms [30]. The analysis of full-waveform data has improved
the urban area classification [31], and the estimations of forest structural variables, e.g., DBH [32],
canopy height [33], number of stems [34], stem volume [21] and biomass [35].

To date, most of the studies related to ALS data-based biomass estimation used the ABA
approach. Published studies focused on tree-level biomass estimation by exploring ALS data (especially
full-waveform data) are few. Allouis et al. (2013) [36] assessed the capability of full-waveform data
to improve the estimation of individual tree-based biomass in a black pine forest in southern France.
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They found that the accuracy of biomass estimation (adjusted R? = 0.90-0.91) was improved compared
with models developed using Canopy Height Model (CHM)-only (adjusted R? = 0.87) or CHM + Point
cloud (adjusted R? = 0.87-0.88) metrics. They also found that when including the waveform metric
(i.e., the integral of the cumulative signal, which related to the vertical structure of a tree as a whole),
the accuracy of biomass estimation was enhanced [36]. Wu et al. (2009) [37] extracted structural
metrics (i.e., crown length and canopy height) from waveforms for estimating woody and foliar
biomass in a wooded savanna in South Africa. The results showed that waveform metrics have strong
potential for estimating woody (R? = 0.71) and foliar biomass (R? = 0.73) at the tree-level in a savanna
environment [37].

In this study, the capability of point cloud (extracted from the full-waveform data) and waveform
(calculated based on a voxel-based composite waveform approach) metrics for estimating tree level
aboveground biomass (AGB), was assessed individually and in combination, over a planted forest
in the coastal region of east China. The specific objectives of this study are: (1) to investigate the
importance of point cloud and waveform metrics for estimating tree-level AGB; and (2) to assess the
capability of the point cloud and waveform metrics based models and combo model (including the
combination of both point cloud and waveform metrics) for tree-level AGB estimation and evaluate
the accuracies of these models.

2. Methods

An overview of the workflow for individual tree based AGB estimation is shown in Figure 1, and it
provides general methodologies applied in this study. First, a digital terrain model (DTM) was created
based on the classified ground point clouds which were extracted from the pre-processed waveforms
using the Gaussian decomposition. Second, a local maxima algorithm was applied for tree detection
based on the Canopy Height Model (CHM), created by the highest points from the normalized point
clouds. Third, the individual tree based point clouds and composite waveforms were extracted by
the delineated crowns, and then used for calculating metrics. Fourth, the estimation capability of
point cloud and waveform metrics based models were examined in tree level, for predicting AGB
individually and in combination. Finally, the accuracies of the models were evaluated by comparing
with field-estimated tree level AGB.
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Figure 1. An overview of the workflow for tree level aboveground biomass estimation. DTM: Digital
Terrain Model; CHM: Canopy Height Model.
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2.1. Study Area and Field Data

This study was undertaken in Dongtai Forest, a state-operated forest located in the coastal Jiangsu
Province, close to the southern Yellow Sea (Figure 2). It is situated in the northern subtropical region
of east China (120°49'32.2”E, 32°52/20.6”N), with an annual mean temperature of 14.6 °C and annual
mean precipitation of 1050 mm [38]. The study area is approximately 2239 ha, with an elevation range
of 11-14 m above sea level, covered with planted forests in various developmental stages. The main
planted tree species include Dawn redwood (Metasequoia glyptostroboides), Poplar (Populus deltoids) and
Ginkgo (Ginkgo biloba).
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Figure 2. The orthophoto of Dongtai Forest study site and the locations of sample plots. Hemispherical
photos of two plots are shown, and the map of Jiangsu Province and the location of the site are shown
in the lower-right sub-figure.

A total of 16 circular plots (with a radius of 16.93 m, i.e., an area of 900 m?) of Dawn redwood
were measured within the study site during 19-23 November 2014. These plots were designed to cover
a range of stand developmental stages, and guided by a GIS-based forest inventory map (2008). The
centers of each plot were located using Trimble GeoXH6000 GPS units, corrected with high precision
real-time differential signals received from the Jiangsu Continuously Operating Reference Stations
(JSCORS), resulting in a submeter accuracy [39]. The positions of trees within plots were measured
using an ultrasound-based Haglof PosTex® positioning instrument (Langsele, Sweden). For all trees
with a diameter at breast height (DBH) over 5 cm, tree top height, height to crown base, and crown
width in both cardinal directions were measured. DBH was measured for all trees using a diameter tape.
Tree top heights were measured using a Vertex IV® hypsometer (Langsele, Sweden). Crown widths
were determined as the average of two values measured along two perpendicular directions from
the location of the tree top. Crown class, i.e., dominant, co-dominant, intermediate and overtopped,
were also recorded [16]. Small trees (DBH < 5 cm) and dead wood were also tallied within the plots,
but not used in analysis. The aboveground biomass components (i.e., stem, branch and foliage) were
calculated for individual trees within each plot based on the field measured DBH and height, using
species specific allometric equations developed by Ji et al. (Table 1) [40], and then summed to obtain
AGB. The descriptive statistics of the characteristics of the sample plots and trees within the plots are
summarized in Table 2.
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Table 1. The allometric equations of Dawn redwood (Metasequoia glyptostroboides) used in this study.

Biomass Components Equations (kg) R?

Stem biomass (Wg) In Wg = —3.09 + 0.83-In(DBH?-H) 0.98
Branch biomass (Wg) In Wg = —3.21 + 0.68-In(DBH2-H) 0.97
Foliage biomass (WF) In Wg = —2.90 + 0.54-In(DBH?-H) 091

H: tree height. The allometric equations in the table were developed by Ji et al. [40].

Table 2. Description of the characteristics of the sample plots (plot characteristics) and trees within
the plots (Individual tree characteristics). Mean and standard deviation values are given for tree
level statistics.

Individual Tree Characteristics Plot Characteristics
Plot ID DBH h CW WA—T N GB hL WA_[)
(cm) (£SD)  (m) (£SD) (m) (+SD) (kg) (£SD) (hay) (@*ha) (m)  (Mghal)
1 19.68 + 3.11 17.29 +2.18 4.56 + 0.43 126.97 + 41.87 411 16.91 18.19 51.42
2 20.36 + 1.81 17.77 £ 1.27 4.69 + 0.47 122.72 + 19.60 456 21.77 19.66 70.34
3 21.78 £2.57 1877 £1.81 4.64 +0.38 164.09 + 55.16 522 26.20 19.73 86.50
4 21.62 + 1.60 18.66 + 1.13 4.62 + 0.45 140.24 + 19.73 372 18.53 18.26 57.20
5 2327 +£2.05 19.82 +1.44 4.95 + 0.40 196.22 + 57.96 378 23.58 21.08 84.26
6 23.03 +2.23  19.65 +£1.57 5.19 + 0.51 163.06 + 28.97 456 27.40 19.44 91.14
7 2546 +1.63 2136 +1.15 4.36 £+ 0.55 202.59 + 24.46 598 20.03 21.68 68.99
8 25.83 +1.60 21.62+1.12 451 +0.27 229.05 + 46.46 356 26.20 23.06 97.92
9 26.63 £2.09 2218 +1.47 4.81 +0.36 231.18 + 44.39 389 27.24 23.07 103.25
10 2687 +1.74 2234 +1.22 4.83 £0.32 227.12 +50.23 442 29.20 22.27 106.31
11 2683 +1.69 2232 +1.19 523 £ 048 129.01 + 26.99 778 30.78 20.38 102.63
12 27.52 +1.80 22.80 + 1.27 4.76 + 0.48 210.69 + 48.42 706 36.38 21.42 127.21
13 2742 +155 2273 +1.09 4.38 +£0.70 240.48 £+ 25.02 512 28.98 20.43 99.16
14 26.84 296  22.33 +2.08 4.92 4+ 0.56 231.54 4+ 42.47 744 33.55 22.34 121.00
15 2842 +1.93 23,58 +1.53 4.87 +0.59 262.71 + 32.53 543 34.20 23.28 129.69
16 3243 +1.82 2626 +1.28 494 + 0.57 352.79 + 36.79 556 37.61 26.83 156.88

DBH: Diameter at breast height; h: Individual tree height; Cyy: Crown width; Wa_t: Tree level aboveground
biomass; Wa_p: Plot level aboveground biomass; N: Stem density; Gp: Basal area; iy: Lorey’s mean height; SD:
standard deviation.

2.2. ALS Data

Full-waveform airborne laser scanning (ALS) data were acquired on 5 November 2014 using a
Riegl LMS-Q680i scanner (wavelength = 1550 nm). The sensor was integrated in the LIDAR, CCD and
Hyperspectral (LiCHy) Airborne Observation System on a Cessna 208B fixed-wing aircraft [41]. The
wall-to-wall ALS data were acquired by the system operated at 600 m, 900 m and 1200 m aboveground
level, with a flight speed of 65 m-s~!. The 600 m and 1200 m datasets were used for waveform
calibration, and only the 600 m dataset was used for biomass estimation. The beam divergence was
0.5 mrad, with a beam footprint size of 0.3 m (nadir) in diameter for the 600 m dataset. The returned
waveforms were recorded with a temporal sample spacing of 1 ns (approximately 15 cm). The pulse
repetition frequency was 200 kHz and the scan frequency was 80 Hz, with a maximum scanning angle
of £30° from nadir. Only pulses transmitted at scan angles within +15° were used for analysis to
relieve the negative effects of off-nadir pointing on the waveform. The average ground point distances
of the 600 m dataset is 0.48 m for each strip.

Point cloud was extracted from the full-waveform data using decomposition algorithms.
A returned waveform can be decomposed into its Gaussian components in this form:

n
f(x) = b Y me bt /2t 1)
i=1

where f(x) represents the received power, b is the noise, and # is the number of Gaussian components.
The parameters of g;, t;, and o; are the pulse amplitude, round-trip time (from sensor to the pulse),
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and the pulse width (expressed as standard deviation), respectively [27]. Note that “intensity” is
physically the pulse energy, expressed as the integral of returned signal. In comparison, “amplitude”
is the maximum (peak) value of the returned pulse [28,42]. A non-linear least-squares method with
the Levenberg-Marquardt algorithm was then used to fit multiple Gaussian pulses to the waveform
data [43,44]. The extracted point cloud (with the point density of 9.2 pts-m 2 within the sample plots)
and associated waveforms were stored in LAS 1.3 format (American Society for Photogrammetry and
Remote Sensing, Bethesda, MD, USA).

2.3. ALS Data Pre-Processing

To match the average point spacing, a 0.5 m digital terrain model (DTM) was created in two steps
from the point cloud data: first, the data were classified as ground points and aboveground points
(The pre-processing was implemented by several modules of the LAStools software [45]); then,
the DTM was created by calculating the average elevation from the ground points within each cell.
Cells that contain no points are interpolated by neighboring cells. The point cloud was then normalized
against the ground surface height and extracted for each plot.

The background noise of each waveform was first suppressed by a de-noising process and then
smoothed by a Gaussian filter. The kernel size of Gaussian filter was determined by the full width at
half-maximum (FWHM) (see details in Doung, 2010) [33]. Next, a local maxima peak detection filter
(similar to that of Vaughn et al. (2012)) [46] was used to extract each peak to obtain their locations and
amplitudes. Finally, each returned pulse was decomposed into its Gaussian components using the
pulse width (W') and intensity (I") [47].

Precious studies have proved that radiometric calibration is necessary to perform for fully utilizing
the potential of the waveform data [27,48,49]. In this study, the values of W' and I" were calibrated by
pulse width (W*€) and intensity (W¢) of the emitted pulses, and I* was corrected by the distance (D;)
between the scanner and the reflecting object and a nominal distance (D) [42]:

Wr
C __ 1
W= e @
I’ D;i \*
i1 () ©

where W€ is the calibrated pulse width and I€ is the calibrated intensity. The exponent k in Equation (3)
was set to value of 1.932, determined from calibration flights using the 600 m and 1200 m ALS datasets
over a field (bare ground) at the center of the study site:

k

E(2) "
Ir D;

where i and j are two tracks with the flight heights of 600 m and 1200 m, respectively. The mean
intensity I" of the returned pulses and mean transmitted distance D were calculated in five circular
homogeneous areas (with a radius of 3 m) within the field for track i and j. In order to reduce the impact
of the scan angle, only pulses with scan angles smaller than 10° were used in calculation [42]. A detailed
description of the calibration method can be found in Hofle and Pfeifer (2007) and Reitberger et al.
(2009) [42,49].

Previous studies have demonstrated that the waveform is stretched as off-nadir angle
increases [50]. The waveforms for specific locations may be recorded from several flight trajectories,
because the acquisition of ALS data is usually a composition of many overlapping strips [51,52].
To avoid the effects of off-nadir pointing on the waveform and to integrate non-vertical waveforms
from different flight trajectories, a voxel-based approach was applied to the calibrated full-waveform
data (see Hermosilla et al., 2014 for more details) [51]. This approach synthesizes multiple raw
waveforms into composite waveforms through the vertical space partitioning of forest canopies by
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voxels, and uses the maximum amplitude value to construct new composite waveforms. The voxel
resolutions were set to 0.3 x 0.3 x 0.15 m3, according to the footprint size and temporal sample
spacing (Figure 3). The maximum amplitude was used to preserve the significance of the major
returns of the observed waveforms. Each pre-processed waveform was then spatially located in the

three-dimensional space and normalized by subtracting the derived DTM height from height of each
bin in the corresponding positions.
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Figure 3. Three sample trees with different (smaller, medium and larger) sizes were used to
demonstrate the processes of point cloud extraction and voxelization, and to show the amplitude profile
(summarized from composite waveforms) of each sample tree. (a) Sample tree 1 (Crown diameter =
3.6 m, Height = 21.3 m); (b) Sample tree 2 (Crown diameter = 4.3 m, Height = 23.2 m); (c) Sample tree 3
(Crown diameter = 6.1 m, Height = 25.3 m).

2.4. Individual Tree Detection

An approach similar to that of Popescu et al. (2002) and Popescu and Wynne (2004) was applied
to detect individual trees [53,54]. First, the raw point clouds was normalized by the Digital Terrain
Model (DTM), then a 0.5 m canopy height model (CHM) was built from the normalized point clouds
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by assigning the highest returns within the grid cells. Then, the CHM was smoothed by a 3 x 3 median
filter to remove the noise in the canopy upper surface. Second, individual trees were detected from
the smoothed CHM using a local maxima algorithm, which identifies high values with a variable-size
circular window. The appropriate window size is determined by a quadratic model fitted by the height
of the trees and their crown widths [55]:

Crown width = Bo+ B x h? (5)

where £ is the tree height (m), and Sy and B are the model parameters. Thus, locally measured tree
heights and crown widths (a total of 652 trees) were used to derive the relationship, and to determine
appropriate window sizes. Finally, the crown extent was determined by analyzing 16 radial crown
profiles of the CHM centered on the tree top, with a sampling point spacing of half a pixel. The crown
radius along each profile is calculated by the horizontal distance to a local minimum or to the second
point, and the crown widths are the average of the horizontal distances of 16 radius. The detection of
individual trees was processed using FUSION software [56]. For each detected tree, the tree position,
height and crown diameter were estimated and linked to the closest field-measured trees. If a detected
tree was located within a threshold of a field-measured tree crown and vice versa, it was designated as
correctly detected.

2.5. Point Cloud Metrics Calculation

The metrics based on point clouds (extracted from the waveforms) were used to describe the
crown structural characteristics of the detected trees. In this study, three sets of point cloud metrics
were calculated including: (i) selected height measures, i.e., percentile height (Hjs5, Hs9, H75 and Hos),
canopy return density (D;, D4, Dg and Dg), coefficient of variation of heights (Hcy) and the skewness
(Hskewness) and kurtosis (Hyyrtosis) Of the height distribution [15]; (ii) the Weibull fitted parameters
(« and B) derived from the apparent foliage density profile (see details in Coops et al. (2007)) [25];
and (iii) the classes of crown volume zones (i.e., Open, Closed, Euphotic and Oligophotic zones of crown
volume model) (see details in Lefsky et al. (1999)) [9]. A summary of these metrics with corresponding
descriptions is shown in Table 3.

In this study, the Weibull fitted parameters were derived from the apparent foliage density profile
by linking Weibull cumulative density function to cumulative projected foliage area index:

1— 2 B
L(z)=1- [e(wH) ] 6)

where « and B are fitted parameters, z is the height and H is the maximum height (i.e., the highest
return). The fitted parameters « (refers to a vertical scaling and positioning factor for movement of the
distribution) and B (explains the capacity to increase or decrease the breadth of the distribution) in
Equation (6) were used to characterize the distribution [57,58].

Three-dimensional crown volume zones (i.e., Open, Closed, Euphotic and Oligophotic zones of
crown volume model) were calculated as additional point cloud metrics. These metrics characterized
the total volume, spatial organization of the vegetative material, and the empty space within each tree
crown [25]. The crown spaces were first organized as a matrix composed of voxels (0.5 x 0.5 x 0.3 md);
these voxels were classified as either “filled” or “empty” depending on whether there was energy
returned from that space; then the “filled” voxels were classified as “euphotic” (if they are located in
the uppermost 65% of all filled voxels) or “oligophotic” (if they are located below the point) [9].

2.6. Waveform Metrics Calculation

In this study, 16 individual tree-level full-waveform (FWF) metrics were incorporated into the
composite waveform analysis based on their success in previous studies [10,59—-62]. These metrics
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include height of median energy (HOME), height/median ratio (HTMR), number of peaks (NP),
roughness of outermost canopy (ROUGH), front slope angle (FS), return waveform energy (RWE),
mean of the standard deviation (GaussStd) and intensity (Intensity) of Gaussian components within
each waveform.

HOME is calculated as the distance from waveform centroid to the ground (i.e., corresponding
DTM height), and has been found to be sensitive to canopy openness and the vertical arrangement
of canopy elements [10]. HTMR, which is the HOME divided by the distance from waveform begin
to the ground, was used to depict the change of HOME relative to the canopy height [10]. NP is the
number of detected peaks within each composite waveform. ROUGH, which is the distance from the
waveform beginning to the first peak, was applied to describe the roughness of the upper-most canopy
and the spatial arrangement of plant surfaces [33]. FS, which is the vertical angle from waveform
beginning to the peak of canopy return energy, provides the variability of the upper canopy [60]. RWE
represents the total received energy [33]. These metrics were summarized as the mean and standard
deviation of all the waveform metrics (for each composite waveform) within the delineated tree crown.
A summary of these metrics with corresponding descriptions is shown in Table 3, and the formation of
a typical composite waveform and the derivation of the waveform metric are illustrated in Figure 4.

Table 3. Description of the metrics (including point cloud and waveform metrics) derived from
full-waveform ALS data.

Metrics Description

Point cloud metrics @

The percentiles of the canopy height distributions
(25th, 50th, 75th and 95th).

The proportion of points above the quantiles
(20th, 40th, 60th and 80th) to total number of points.

Percentile heights (Hps, Hsg, H75 and Hogs)

Canopy return density (Dy, D4, Dg and Dg)

Coefficient of variation of heights (Hcy) Coefficient of variation of heights of all points.

Skewness and Kurtosis of heights

. The skewness and kurtosis of the heights of all points.
(i-e., Hskewness and Hiriosis) & P

« and B parameter of Weibull distribution The a and 8 parameter of the Weibull distribution
(i.e., Weibull  and Weibullg) fitted to foliage density profile.

Open and Closed gap zones of Canopy volume models ~ The empty voxels located above and below the
(CVM) (i.e., Open and Closed) canopy respectively.

The voxels located within an uppermost percentile
(65%) of all filled grid cells of that column, and voxels
located below the point in the profile.

b

Euphotic and Oligophotic zones of CVM
(i.e., Euphotic and Oligophotic)

Waveform metrics

Height of median energy (HOME) The distance from waveform centroid to the ground.

HOME divided by the distances from waveform

Height to median ratio (HTMR) beginning to the ground.

Number of peaks (NP) The number of detected peaks within each waveform.

The distance from the waveform beginning to the

Roughness of outermost canopy (ROUGH) first peak

The vertical angles from waveform beginning to the

Front slope angle (FS) first peak of canopy return energies.

The total received energy, i.e., the area below the

Return waveform energy (RIWE) waveform between beginning and end.

Mean of the standard deviation of Gaussian

Standard deviation of Gaussian component (GaussStd) 1
components within one waveform.

Mean of the intensity of Gaussian components within

Intensity of Gaussian component (Intensity) one waveform

2 These metrics were calculated based on points clouds derived from full-waveform data; ® The waveform-based
metrics were calculated based on pre-processed and calibrated waveforms, and were summarized as the mean
() and standard deviation (0) of all the waveform metrics within each delineated tree crown. See text for details.
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Figure 4. Illustration of a sample composite waveform (within a simulated tree crown), and the metrics
derived from the waveform. HOME: height of median energy; HTMR: height/median ratio; NP:
number of peaks; ROUGH: roughness of outermost canopy; FS: front slope angle; and RWE: return
waveform energy.

2.7. Metrics Selection and Regression Analysis

Metrics selection can reduce the dimensionality of input variables, which is important for creating
highly efficient, stable and transferable predictive models. Previous study also demonstrated that the
selection of specific candidate metrics could reduce redundant information and maintain biological
relevance [14]. As a result, all of the ALS metrics were analyzed for collinearity, only metrics with
relatively low correlations (Pearson’s correlation coefficient < 0.60) with any other metrics were used
in the regression analysis.

Linear regression models were fitted separately to predict AGB, using point cloud and waveform
metrics individually and in combination, by the statistical software R. All of the dependent variables
(field-estimated tree level AGB) and independent variables (ALS metrics) were transformed using the
natural logarithm because such transformations were found to be effective for biomass estimation by
others [13,63,64]. Then, the AGB was back-transformed from natural logarithms to arithmetic units
using a bias correction factor (BCF) [65]. Using the “regsubsets” function from the “Leaps” package,
an “all subsets” regression was performed where all possible independent variable combinations are
considered and the best single independent variable model is reported, then the best two-variable
model, the best three variable model, and so on [66]. Using the “relweights” function in R, we
calculated the average increase in R-square obtained by adding each independent variable across all
possible submodels, to quantify the contribution of each independent variable makes to R-square
(see more information in Johnson 2000 and LeBreton et al. (2008)) [67,68]. Finally, Akaike Information
Criterion (AIC) was used to select the best models to predict AGB [69].

Prediction models of the AGB were assessed using the adjusted R-squared (adjusted R?), root
mean squared error (RMSE) and relative root mean squared error (relative RMSE), defined as the
percentage of the ratio of RMSE and the observed mean values. Leave-one-out cross-validation was
used to evaluate prediction accuracies of the models.
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3. Results

In total, 563 (=85.6% of field measured trees) were correctly detected in the plots, with an error
of omission (i.e., the number of the trees which were not detected) of 95 (=14.4% of field measured
trees) and an error of commission (the number of detected trees which do not exist in the field) of 53
(=8.1% of field measured trees) (Table 4). The location of ALS-detected trees, crown boundaries and
their related ground trees, and the canopy height model (CHM) of three sample plots (with different
stem densities) can be seen in Figure 5. The correlation of the metrics is shown in Figure 6. Compared
with point cloud metrics, waveform metrics have relatively lower correlation coefficients with other
metrics. Both point cloud and waveform metrics with low correlation coefficients (<0.60) (with any
other metrics) were then used in regression analysis.

Table 4. The accuracy assessment of individual tree detection.

Num. of Trees 2 Correct n (%) Omission 7 (%) Commission n (%)
658 563 (85.6%) 95 (14.4%) 53 (8.1%)

@ Number of field-measured trees for the plots.

Canopy Helght Model Canopy Height Model @ Field located tree top
o High p High + LIDAR detected tree top
- = [IDelineated crown boundary
DBH(cm) ; ‘

20 25 20 35 40

16 18 20 2 24

Crownwidth(m) .

30 35 40 45 50 55 60 65

AGB(kg) ;

50 100 150 200 250 300 350

Figure 5. The canopy height model (CHM) of three sample plots with different stem densities, and
the location of ALS-detected trees, crown boundaries and their related ground trees within the plots.
The distributions of DBH, height, crown width and aboveground biomass (AGB) of the trees within
the plots are also shown. (a) Sample plot 1; (b) Sample plot 2; (c) Sample plot 3.

All possible independent variable combinations (size = 3, i.e., from one to three independent
variables; best four models are provided for each size based on Adjusted R?) of the AGB estimation
models, fitted by point cloud and waveform metrics individually and in combination, are shown in
Figure 7. Overall, the individual tree level AGB is generally well predicted (Adjusted R? = 0.84-0.89).
The combo models (Adjusted R? = 0.78-0.89), including both point cloud and waveform metrics,
have a relatively higher performance than the models fitted by point cloud based metrics (Adjusted
R? = 0.74-0.86) and waveform based metrics (Adjusted R? = 0.72-0.84) individually. For AGB predictive
models based on point cloud metrics (Figure 7a), the mostly selected metric is the 95th percentile height
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(Hos). For AGB predictive models based on waveform metrics (Figure 7b), the mostly selected metric is
the mean of height of median energy (HOME,,). For AGB predictive models based on both point cloud
and waveform metrics (Figure 7c), the most frequently selected metrics are the 95th percentile height
(Hos), mean of height of median energy (HOME,) and mean of the height/median ratio (HTMR,,).
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Figure 6. The correlation of metrics within the delineated tree crowns for the correctly detected trees.
The color, transparency and size of the points demonstrate the strength of correlations. (a) point cloud

metrics; and (b) waveform metrics.
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Figure 7. Best four aboveground biomass predictive models for each subset size (from one to three
independent variables) based on Adjusted RZ: (a) point cloud metrics based models; (b) waveform
metrics based models; and (c) models with point cloud and waveform metrics. Note: See Table 3 for

codes of the metrics.
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The total amount of variance of the AGB estimation models, fitted by point cloud and waveform
metrics individually and in combination, have been divided among the independent variables as
relative weights in Figure 8. Based on the relative weights (i.e., the percentage of contribution for R?)
of the mostly selected metrics for all subsets, the metric of 95th percentile height (Hos) has the highest
relative importance for AGB estimation (19.23%), followed by 75th percentile height (H7s) (18.02%)
and coefficient of variation of heights (Hcy) (15.18%) in the point cloud metrics based models. For the
waveform metrics based models, the metric of mean of height of median energy (HOME,,) has the
highest relative importance for AGB estimation (17.86%), followed by mean of the height/median ratio
(HTMR,,) (16.23%) and standard deviation of height of median energy (HOME) (14.78%). Similarly,
for the combo model (including both point cloud and waveform based metrics), the metrics with
highest importance are Hys (15.12%), Hos (19.42%), HOME,, (17.83%) and HTMR, (12.47%).

(a) (b) (©)

25 25 25
20 20 20

15 15 15

10 10 10

S —

relative importances (%)
o w

Hov  —

H25 e—

H50 I

H75
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Int | ———
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Figure 8. Bar graph of relative importance (weights) of the mostly selected metrics for all subsets of
aboveground biomass estimation models: (a) point cloud metrics based models; (b) waveform metrics
based models; and (c) models with point cloud and waveform metrics. Note: See Table 3 for codes of
the metrics.

The best models for AGB estimation at individual tree level, based on point cloud metrics,
waveform metrics and the combination of point cloud and waveform metrics are shown in Table 5.
In general, the combo model (Adjusted R? = 0.89, rRMSE = 5.66%), including both point cloud and
waveform based metrics, has a relatively higher accuracy than the model fitted by point cloud metrics
(Adjusted R? = 0.86, rRMSE = 6.01%) and waveform metrics (Adjusted R? = 0.84, rRMSE = 9.75%).
For the AGB estimations of the correctly detected trees using the selected models, their relationships
are close to the 1:1 line, according to the scatterplots of AGB between the field-estimated and
model-predicted results for cross-validation (Figure 9). The widths of the confidence intervals in
the combo model are relatively narrow, indicating better quality of model fitting. In general, all the
models did not have significant mean differences between field-estimated and model-predicted AGB
(Table 6). AGB predicted by the combo model (cross-validation R? = 0.86, rRMSE = 6.23%) has higher
accuracy than point cloud metrics based model (cross-validation R? = 0.83, rRMSE = 6.63%) and
waveform metrics based model (cross-validation R? = 0.81, rRMSE = 10.37%).
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Figure 9. Scatterplots of Aboveground biomass between the field-estimated and model-predicted
results for cross-validation, i.e., models based on: (a) point cloud metrics; (b) waveform metrics; and
(c) the combination of point cloud and waveform metrics at individual tree level.

Table 5. The best models for aboveground biomass estimation at individual tree level, based on point
cloud metrics, waveform metrics and the combination of point cloud and waveform metrics, as well as

the accuracy assessments of the models.

Models Parameters and Coefficients Adj-R*? RMSE  rRMSE (%)

Models with point cloud metrics
Wa.p exp (—3.20 + 2.78InHgs + 0.07InHcy) x 1.027 0.86 *** 12.13 6.01

Models with waveform metrics
exp (—2.08 + 243InHOME, — 0.91InHTMR, +

Waw 0.16lnHOME,) x 1.033 0.84 19.69 975
Models with point cloud and waveform metrics
W exp (—3.24 + 2.86InHgs + 0.06InH, — 0.89 *+* 11.81 566

0.08InHOME|, + 0.02InHTMR,) x 1.026

Wa-p: Aboveground biomass predicted by point cloud metrics model; Wa.w: Aboveground biomass predicted
by waveform metrics model; Wa.c: Aboveground biomass predicted by combo model with point cloud and
waveform based metrics; Adj-R?: Adjusted R?; rRMSE: the percentage of RMSE divided by the ground estimated
mean. Note: See Table 3 for codes of the metrics. # Level of significance: NS = not significant (>0.05); *** p < 0.001.
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Table 6. Statistics for the cross-validation results of the aboveground biomass predictive models.

Differences in Cross-Validation

Variables R2 RMSE

Mean ? Std. Dev. Range
Wa-F 0.83 11.17 0.12 NS 12.57 —51.14-28.51
Wa-w 0.81 17.46 0.05 NS 20.46 —64.82-76.08
Wa-c 0.86 10.49 0.19 NS 11.91 —43.60-29.22

Wa-p: Aboveground biomass predicted by point cloud metrics model; Wa.w: Aboveground biomass predicted
by waveform metrics model; Wa.c: Aboveground biomass predicted by combo model with point cloud and
waveform metrics; Std. Dev. = standard deviation. # Level of significance: NS = not significant (>0.05).

4. Discussion

To support sustainable forest management, high spatial resolution forest structure information is
required to accurately assess the structure, composition and distribution of tree species with forest
stands that, in turn, can be used as base information for management decisions across a range of spatial
and temporal scales [22]. ALS has emerged as one of the most promising remote sensing technologies,
providing detailed, spatially explicit, three-dimensional information on forest structure, for operational
applications in a wide range of disciplines related to the management of forest ecosystems [70]. With
increasing availability of ALS data, forest managers have seen opportunities for using ALS to meet a
wider range of forest information needs [71]. For instance, this study has shown promising results
that FWF ALS data can be effectively used to estimate tree level AGB with relatively high accuracy
in the study site. The ITC approach provides minimal scaling effects for investigating AGB, and
the tree level AGB information (predicted by ALS data) can provide better understanding of the
sources of uncertainties and errors when scaling-up (i.e., estimating AGB at larger scales using remote
sensing) [16]. This information can also be helpful for forest management, because the development
and use of species-specific forest growth models or to inform a range of forest treatment schedules
that are highly dependent on tree-level information. As there is no significant difference in the
acquisition costs between discrete and FWF data, more contractors are promoting FWF data because of
its perceived additional benefits [12]. In previous studies, these additional information from FWF data
has shown significant potential to forest management in the estimation of forest structure parameters
at plot or stand scale [34]. This study has also shown that the point cloud and waveform metrics
extracted from full-waveform ALS data have strong capabilities for tree level AGB estimation in the
coastal planted forests.

As reported in previous literature, the performances of ALS data based tree detection vary under
different forest canopy conditions. In this research, a method similar to that of Popescu et al. (2002)
and Popescu and Wynne (2004) was used to detect individual trees by the CHM, and to delineate tree
crowns by fitting radius profiles and analyzing the critical points [53,54]. The detection rate of trees in
this study was 85.6%, which is higher than that of 78.5% in a subtropical secondary forest [72]. This
is likely due to: (1) the crown shape of the coniferous trees in the study site tends to be conical and
relatively isolated, which are likely to be detected by the local maxima algorithm used in this study,
whereas trees in other studies may have more rounded crowns (e.g., broadleaved tree species) that are
likely to overlap, or suppressed under the dominant canopies that may not be successfully detected;
(2) the local maxima algorithm was applied on a CHM created from a relatively high density point
clouds (approximate 9.2 pts-m 2 in the study site) extracted from full-waveform data by decomposition
algorithms; and (3) the size of the search window was determined by a model fitted by the locally
collected field measurements, which may enhance the performances of tree top identification. In this
study, as most of the dominant trees were correctly detected by the tree detection algorithm, the ITC
approach can be effective because dominant trees are usually the main contributors to AGB in forest
stands [73]. However, it should be noted that the errors in tree identification will be transferred into
the AGB summaries at plot or stand level, and can result in the estimation of AGB with considerable
systematic errors. The semi-ITC approach (or tree crown approach (TCA)) [74], which indicates that
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an ALS detected tree crown can be a cluster that may contain no, one, or several field-measured trees,
has shown potential to reduce the systematic errors, and can be used an alternative approach in the
future to help reducing the systematic errors caused by errors from tree detection in the study site.

In this study, AGB is generally well predicted at tree level by the best regression models using
point cloud and waveform metrics derived from the full-waveform ALS data. In previous studies,
the discrete return data based metrics of multiple height quantiles have been commonly used for
estimating forest biomass. However, these metrics could be highly correlated, especially if the data have
a symmetric distribution [75]. We found the tree level waveform-based metrics have low correlations
among independent variables (Figure 4), which agreed with the finding of Muss et al. (2011) [76]
that waveform metrics are less correlated and easier to be explained on the physical structure of the
forests [76].

Compared to the individual point cloud and waveform based models, the combo models
performed the best, explaining a large amount of variability for AGB (Table 5), and indicating significant
synergies in point cloud and waveform metrics for estimating tree level AGB in the planted forests.
Point cloud metrics allow the estimation of the 3-D structural characteristics of the forest canopy, which
provides a good foundation for strong relationships between the metrics and forest biomass. Since most
ALS point clouds are from upper tree crowns, the ALS upper percentile heights (e.g., Hos) (Figure 8)
likely represent the tree top heights. The inclusion of the variable that describes variations (e.g., Hey)
accounts for the height variations of tree crowns, especially in the over- and mid-story, therefore
potentially improves the characterization of vertical structure (Table 5). The most important waveform
metrics selected by the relative weight are: mean of height of median energy (HOME,,), mean of
the height/median ratio (HTMR,) and standard deviation of height of median energy (HOME)
(see Figure 8 and Table 5). The selection results of these metrics agreed with Drake et al. (2002) [10]
that the height-related metrics are the most sensitive, and highly correlated with forest age, basal
area, and biomass [10]. The metric of HOME,, appears to have the strongest capability for biomass
estimation, and metric of HOME (can be interpreted as the variations of the vertical woody materials
and foliage density within each tree crown) also appears to be sensitive to biomass as the third rank
metric (Figure 8). Drake et al. (2002) reported that HOME is sensitive to canopy openness and the
vertical arrangement of canopy elements footprint (0.05 ha) and plot (0.25-0.5 ha) level of the Laser
Vegetation Imaging Sensor (LVIS) full-waveform data [10]. In this study, we found similar principles
at the tree level by using small-footprint (0.3 m) full-waveform ALS data. Tree crowns with densely
packed woody materials and foliage reduce the number of laser pulses that can penetrate and reach
the ground, thereby increasing HOME. Conversely, for more transparent crowns, more laser pulses
can pass through, thus, reducing HOME. HOME is sensitive to these differences and as a result
makes it a potentially good indicator for biomass estimation in tree level as well. The second ranked
metric is HTMR,,, describes the change of HOME relative to the canopy height. Drake et al. (2002) [10]
demonstrated that HTMR (i.e., HTRT in their study) is sensitive to changes in forest structure, especially
to plot-level basal area (with R? = 0.72) as the best single-term predictor [10]. Neuenschwander et al.
(2012) [59] reported that the metric of vertical distribution ratio (VDR, indicates height differences
through the canopy which are likely related to energy distributed in the canopy, can be directly
calculated from HTMR as: 1-HTMR) is sensitive to variations of forest canopy structures (i.e., what
height the energy is distributed in the canopy), and is evenly distributed throughout the entire height
profile of the forest [59]. Their findings agreed with results of metrics selection in this study.

Tree-level AGB estimation has previously been studied by Popescu 2007 [16] and Hauglin et al.
(2013) [18] using discrete return ALS data, and assessed by Allouis et al. (2013) [36] and Wu et al.
(2009) [37] using full-waveform ALS data [16-19,36,37]. Popescu (2007) used ALS data to estimate
the AGB and biomass component for loblolly pine (Pinus taeda L.) in southeastern United States.
ALS-derived single tree-level height and crown diameter were used to estimate tree DBH, AGB
and component biomass using regression models. The results showed that 93% of the variability
of individual tree biomass, 90% of DBH, and 79%—-80% of components biomass could be explained
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by the predictive models. Compared to their results, the accuracy of AGB (adjusted R? = 0.84-0.89)
estimations in the present study was relatively lower. Potential sources of error could include field
estimates of biomass components (including errors in filed measurements of DBH and height, and
errors in allometric equations), identification of individual trees, statistical error associated with
estimating coefficients, and data processing errors [16]. Allouis et al. (2013) [36] assessed the capability
of full-waveform data to improve the estimation of individual tree-based biomass in a black pine forest
in southern France. They found that including the full-waveform metrics improved the accuracy of
biomass estimation [36]. The results showed that CHM (generated from point clouds) + FWF metrics
models (adjusted R? = 0.90-0.91) has higher accuracy than CHM-only model (adjusted R? = 0.87), which
has a general agreement of our results that the combo model (Adjusted R? = 0.89, rRMSE = 5.66%),
including both point cloud (similar to the CHM that it also characterizes the 3-D structure of the tree
crown) and waveform based metrics, has a relatively higher accuracy than the point cloud-only model
(Adjusted R? = 0.86).

In this study, composite waveforms were constructed by directly georeferecing each bin of the
raw waveform within the voxels. As a result, incomplete composite waveforms could be created
if they were located around the edge of tree boundaries. Although these incomplete composite
waveforms were not used for calculating final metrics, future work could focus on how to improve the
waveform synthesis approach in order to construct improved composite waveforms. Nevertheless, the
exploration of spectral, textural or shape metrics from hyperspectral and high-resolution data might
further extend the range of preferred metrics and enhance the capability of tree level AGB estimation
in planted forests. Building links between the inherent architectural differences of tree crown and how
they are manifested in waveform metrics remains a critical endeavor for remote sensing scientists
and ecologists. In small footprint ALS studies, one footprint (e.g., diameter = 30 cm) only describes a
portion of the tree structure. As a result, gathering field measurements (potentially, terrestrial laser
scanning (TLS) data that can be used as a precise and efficient tool to directly measure detailed 3D
models of vegetation elements) and developing relationships between crown structural characteristics
and waveform metrics (aggregated or calculated variability within tree crown) is important to improve
the direct interpretability of the waveform metrics [59].

5. Conclusions

This study contributes to the research community for assessing the capability of the metrics of
point clouds, extracted from the full-waveform Airborne Laser Scanning (ALS) data, and of composite
waveforms, calculated based on a voxel-based approach, for estimating tree level Aboveground
biomass (AGB) individually and in combination, over a planted forest in the coastal region of east
China. The importance of point cloud and waveform metrics for estimating tree-level AGB were
investigated by all subsets models and relative weight indices. The capability of the point cloud and
waveform metrics based models and combo model (including the combination of both point cloud
and waveform metrics) for tree-level AGB estimation was assessed and the accuracies of these models
were evaluated.

The results demonstrated that most of the waveform metrics have relatively low correlation
coefficients (<0.60) with other metrics. The combo models (Adjusted R? =0.78-0.89), including both
point cloud and waveform metrics, have a relatively higher performance than the models fitted by point
cloud metrics-only (Adjusted R? = 0.74-0.86) and waveform metrics-only (Adjusted R? =0.72-0.84),
with the mostly selected metrics of the 95th percentile height (Hgs), mean of height of median energy
(HOME,,) and mean of the height/median ratio (HTMR,,). Based on the relative weights (i.e., the
percentage of contribution for R?) of the mostly selected metrics for all subsets, the metric of 95th
percentile height (Hogs) has the highest relative importance for AGB estimation (19.23%), followed by
75th percentile height (H7s) (18.02%) and coefficient of variation of heights (Hcy) (15.18%) in the point
cloud metrics based models. For the waveform metrics based models, the metric of mean of height of
median energy (HOME,) has the highest relative importance for AGB estimation (17.86%), followed
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by mean of the height/median ratio (HTMR) (16.23%) and standard deviation of height of median
energy (HOME) (14.78%).

However, although this study showed significant synergies in point cloud and waveform metrics
for estimating tree level AGB in planted forests, future works should focus on building links between
the inherent architectural differences of tree crown and how they are manifested in waveform metrics,
to improve the direct interpretability of these metrics. China has the largest area of planted forest in the
world, and these forests contribute to a large amount of carbon sequestration in terrestrial ecosystems.
Thus, this study demonstrated benefits of using full-waveform ALS data for estimating biomass at tree
level, for sustainable forest management and mitigating climate change by planted forest.
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