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Abstract: Supervised land-use/land-cover (LULC) classifications are typically conducted using class
assignment rules derived from a set of multiclass training samples. Consequently, classification
accuracy varies with the training data set and is thus associated with uncertainty. In this study,
we propose a bootstrap resampling and reclassification approach that can be applied for assessing
not only the uncertainty in classification results of the bootstrap-training data sets, but also the
classification uncertainty of individual pixels in the study area. Two measures of pixel-specific
classification uncertainty, namely the maximum class probability and Shannon entropy, were derived
from the class probability vector of individual pixels and used for the identification of unclassified
pixels. Unclassified pixels that are identified using the traditional chi-square threshold technique
represent outliers of individual LULC classes, but they are not necessarily associated with higher
classification uncertainty. By contrast, unclassified pixels identified using the equal-likelihood
technique are associated with higher classification uncertainty and they mostly occur on or near the
borders of different land-cover.

Keywords: land-use/land-cover (LULC); uncertainty; bootstrap resampling; chi-square threshold;
class probability vector (CPV); entropy

1. Introduction

Remote sensing images have been widely used for earth surface monitoring [1–8], environmental
change detection [9–14], and water resource management [15–22]. Many of these applications require
land-use/land-cover (LULC) classifications derived from multispectral images. Well-documented
methods for supervised LULC classification include maximum likelihood classification, Bayes
classification, and nearest neighbor classification. New methods involving geostatistics [7], artificial
neural networks [23,24], support vector machines [25–27], and random forest algorithms [28,29]
are also emerging. All supervised classification methods involve using a set of training data to
establish class assignment rules for pixels of unknown classes. A confusion matrix (or error matrix),
which summarizes the classification results of the training data or an independent set of reference data,
can then be used to assess the classification accuracy of individual classes. However, the classification
accuracies, which include the user’s accuracy (UA), producer’s accuracy (PA), and overall accuracy
(OA), of the training or reference data presented in the confusion matrix are estimates of the true and
unknown classification accuracies of the population; that is, all the pixels of the individual LULC
classes. The training data are samples of individual classes and the class assignment rules are derived
from the training data; thus, classification accuracy is inherently associated with uncertainty. Whether
the classification accuracies presented in a confusion matrix are representative of the entire study
area is dependent on many factors including ground data collection, the classification scheme, spatial
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autocorrelation, the sample size, and the sampling scheme [30]. In remote sensing applications,
there are also needs to compare classification accuracies of different images to evaluate the relative
suitability of different classification techniques for mapping. Ideally, a comparison of thematic map
accuracies should address the statistical significance of differences in classification accuracy [31].
It has been suggested to fit confidence intervals to the estimates of classification accuracies and
consider these intervals when evaluating the thematic map [32]. However, the confidence intervals of
classification accuracies are often calculated under the assumptions that training data are normally
distributed and they represent random samples of individual LULC classes. In reality, training data
may be non-Gaussian and data independency is not guaranteed because of the spatial autocorrelation
of reflectance of individual land-cover types. For example, ground data collection is frequently
constrained because physical access to some sites is impractical; thus, the collection is restricted either
to sites of opportunity (where obtaining ground data is possible) or sites for which high-quality fine
spatial resolution images acquired at an appropriate date are available as a surrogate for actual ground
observations [33]. Such sampling practices further complicate the statistical assessment of LULC
classification accuracy. In addition to the training data uncertainty, other factors, such as errors in
georeferencing, the existence of mixed pixels, and the selection of probability distribution models,
can also affect the LULC classification accuracy.

In most applications of LULC classification, each individual pixel is assigned to one of the
reference classes. If a pixel falls near the tail of the multivariate distribution established by the training
data, it may be desirable to assign that pixel as unclassified. Assuming multivariate Gaussian (normal)
distributions for reflectance-vectors of individual LULC classes, class-dependent thresholds for labeling
unclassified pixels can be determined on the basis of a chi-square distribution [34]. Unclassified
pixels identified using the chi-square threshold technique represent the outliers of individual LULC
classes, but they do not necessarily represent pixels with nearly identical likelihoods of belonging
to different LULC classes. These situations are illustrated in Figure 1 by using a one-dimensional
classification feature. However, in practice, pixels with nearly identical likelihoods of belonging
to different LULC classes may need to be designated as unclassified pixels. Hereafter, we refer to
such pixels as pixels of equal likelihood. Because the joint probability densities of the classification
features of different LULC classes are estimated using the selected training data, the aforementioned
training data uncertainty eventually leads to uncertainty in the estimated joint probability densities of
the classification features of individual LULC classes and decision rules of the LULC classification.
Consequently, the identification of pixels of equal likelihood is further complicated by the uncertainty
in the joint probability density estimates of the classification features.
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This study has two objectives: (1) to propose an approach for assessing the uncertainty in LULC
classification results resulting from uncertainty in the training data; and (2) to comparatively investigate
the characteristics of unclassified pixels that are identified using the chi-square threshold technique
and an equal-likelihood technique proposed in this study. In Section 2, we describe the study area and
data used in this study. In Section 3, we detail the Bayes classification, bootstrap resampling technique,
application of bootstrap resampling to multispectral remote sensing images, and the assessment of
LULC classification uncertainty. In Section 4, we present the LULC classification results derived from
the original training data and reclassification results derived from the bootstrap-training samples.
Detailed discussions on the uncertainty of various classification accuracies and the characteristics of
unclassified pixels that are identified using the chi-square threshold technique and equal-likelihood
technique are also included in Section 4. A summary of the findings and concluding remarks are
presented in Section 5.

2. Study Area and Data

The Greater Taipei area was selected as the study area. It encompasses approximately 360 km2

and has a highly populated urban area, a national park in the northeast corner, and mountains in
the southeast corner. The confluence of three major rivers in northern Taiwan is in the northwest
corner of the Taipei City. Advanced Land Observing Satellite (ALOS) multispectral images of the study
area (acquired on 5 April 2008, by the AVNIR2 sensor) were collected. The AVNIR2 sensor acquires
images in four spectral bands, namely blue (0.42–0.50 µm), green (0.52–0.60 µm), red (0.61–0.69 µm),
and near infrared (NIR, 0.76–0.89 µm), at a spatial resolution of 10 × 10 m. All of these satellite
images are preprocessed for radiometric and geometric corrections by the Japan Aerospace Exploration
Agency [35]. Thus, all images were georeferenced to map-projection coordinates. A true-color image
of the study area and an official land-use map obtained from the Ministry of Interior of Taiwan [36] are
presented in Figure 2.
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Figure 2. (a) True-color Advanced Land Observing Satellite (ALOS) image of the study area;
and (b) land-use map for the year 2009 (Ministry of Interior, Taiwan). The purple-circled area, the
Beitou Depot of the Taipei mass rapid transit (MRT), is identified as unclassified by the chi-square
threshold technique (see details in Section 4.2.3). The coordinates of the lower-left corner of panel
(a) are 121◦25′50′′E, 24◦59′12′′N.

Eleven land-use types namely transportation, residential, industrial, business, educational and
cultural, water, forests, parks and green spaces, agriculture, Yang Ming Shan National Park, and others,
are presented in the land-use map, which was prepared through interpreting aerial photographs and
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many other ancillary data. Such detailed LULC classification cannot be achieved using only remote
sensing images because of the spectral similarities between LULC classes. Thus, five LULC classes,
namely forest, water, grass (including shrubs), buildings, and roads (including areas with paved
surfaces), were adopted for LULC classification in our study. Training data of the five LULC classes
were chosen by conducting field visits and referring to the land-use map. The number of training pixels
for each individual LULC class is listed in Table 1. These numbers approximate the areal percentages
for individual LULC classes in the study area. To illustrate the scattering of different LULC classes in
a three-dimensional feature space, digital numbers of the green, red, and near infrared (NIR) bands
were selected as classification features in this study.

Table 1. Numbers and proportions of training pixels of individual land-use/land-cover (LULC) classes.

LULC Classes Forest Water Buildings Grass Roads

Number of training pixels 7005 2771 5956 2445 3924
Proportions (%) 31.70 12.54 26.95 11.06 17.75

Figure 3 is a scatter plot of training pixels of different LULC classes in the three-dimensional
green–red–NIR feature space. In the figure, the training pixels of the forest and water land-cover types
are more concentrated than the other land-cover types. By contrast, the training pixels of buildings
and roads are widely dispersed and mutually mixed.
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3. Methods

The supervised Bayes classification method was chosen for the LULC classification task in
this study. The bootstrap resampling technique was also applied to the original training data set
described in Section 2 to generate resampled training data sets that were used in the subsequent Bayes
classification task.

3.1. Bayes Classification

In the Bayes classification method, the a priori probabilities of individual land-cover types in the
study area are considered. The a priori probability of a particular class represents the probability of
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a randomly selected pixel belonging to that class. Although not necessary, most LULC applications
assume multivariate Gaussian distributions for the classification features of different LULC types. Let
X = (x1, . . . , xk)

T be a k-dimensional feature vector of a particular pixel and let p(ωi)(i = 1, . . . , N)

be the a priori probabilities of N LULC classes. The joint Gaussian density of the ith class (ωi) is
expressed by

f (X|ωi) =
1

√
2π

k |Σi|1/2
exp

[
−1

2
(X− µi)

T Σ−1
i (X− µi)

]
(1)

where µi and Σi are, respectively, the mean vector and covariance matrix of the classification features of
the i-th class. The class-dependent discriminant function of the Bayes classification method is defined
as follows:

di(X) = lnp(ωi)−
1
2

ln |Σi| −
1
2
(X− µi)

T Σ−1
i (X− µi) , i = 1, 2, . . . , N. (2)

A pixel with feature vector X is assigned to the i-th class if di(X) is the highest of all
class-dependent discriminant functions; that is,

di(X) > dj(X), for every j 6= i. (3)

The work of LULC classification by using multispectral remote sensing images can be perceived
as the partitioning of a k-dimensional feature space into different regions associated with different
LULC classes. Pixels with equal values of discriminant functions form the class boundaries in the
feature space. An example of the three-class partitioning of a two-dimensional feature space by using
the Bayes classification method is illustrated in Figure 4. The classification features of the individual
classes in Figure 4a,b, are assumed to follow bivariate Gaussian distributions with the parameters
listed in Table 2.
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Figure 4. Exemplary illustration of the three-class partitioning of a two-dimensional feature space
derived from the Bayes classification method. The classification features (X1 and X2) of individual
classes in Panels (a) and (b) are characterized by multivariate Gaussian distributions with the
parameters listed in Table 2. The ellipses represent the 95% probability contours of individual classes,
and the dashed lines are the boundaries of different classes. Regions belonging to different classes
are shown in different colors. A sample point (marked by N) is classified into different classes under
different distribution parameters.

Changes in the parameters of individual classes result in changes in the class boundaries, as
shown in Figure 4. In LULC classification, the parameters of the multivariate Gaussian distributions
of the individual classes were estimated from the training data. Thus, uncertainty in the selection of
the training data (i.e., training data uncertainty) leads to parameter uncertainty in the multivariate
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Gaussian distribution, which inevitably gives rise to the uncertainty in the classification results of the
training data as well as all other non-training pixels in the study area. In this study, the bootstrap
resampling technique was used to tackle the problem of training data uncertainty.

Table 2. Parameters of the bivariate Gaussian distributions of the individual classes in Figure 4.

Parameters for Figure 4a Parameters for Figure 4b

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Mean vector
[

80
120

] [
140
150

] [
190
85

] [
70
130

] [
148
160

] [
188
95

]
Covariance matrix

[
1225 −525
−525 400

] [
900 390
390 400

] [
100 −112.5
−112.5 225

] [
784 −546
−546 900

][
484 285.1

285.1 324

][
225 −108
−108 144

]
A priori probability 0.25 0.45 0.3 0.25 0.45 0.3

3.2. Bootstrap Resampling and Its Application to Multispectral Remote Sensing Images

Bootstrapping, which was first introduced by Efron [37], is a statistical technique of generating
random samples and estimating the distribution of an estimator of a population by sampling with
replacement from a random sample or a model estimated from a random sample of that population.
It amounts to treating the data as if they were the population for the purpose of evaluating the
distribution of interest. Bootstrapping provides a means to substitute computation for mathematical
analysis when calculating the asymptotic distribution of an estimator or statistic is difficult [38].
Bootstrap resampling has been applied to LULC classification using remote sensing images to improve
the characterization of classification errors, determine the uncertainty resulting from sample site
variability, and calculate the confidence limits of classification errors [39].

Let X1, · · · , Xn be a random sample of size n from a probability distribution whose cumulative
distribution function (CDF) is F0. The empirical CDF of X1, · · · , Xn is denoted as Fn. Let F0 belong
to a finite- or infinite-dimensional family of distribution functions, F . If F is a finite-dimensional
family indexed by the parameter θ, whose population value is θ0, we write F0(x, θ0) for P(X ≤ x)
and F(x, θ) for a general member of the parametric family. Let Tn = t(X1, · · · , Xn) be a statistic and
Gn(τ, F0) ≡ P(Tn ≤ τ) denote the exact, finite-sample CDF of Tn. In addition, let Gn(·, F) denote the
exact CDF of Tn when the data are sampled from the distribution whose CDF is F. The bootstrap
estimator of Gn(·, F0) is Gn(·, Fn) which can be estimated through the following Monte Carlo simulation
procedure, in which random samples are drawn from X1, · · · , Xn [38]:

1. Generate a bootstrap sample of size n, X∗1 , · · · , X∗n by sampling with replacement from the random
sample X1, · · · , Xn. Note that using an asterisk to indicate bootstrap samples is customary.

2. Calculate T∗n = t(X∗1 , · · · , X∗n).
3. Repeat Steps 1 and 2 many times and use the resultant T∗in , i = 1, · · · , B to derive the empirical

CDF of T∗n ; that is,
Gn(τ, Fn) = P(T∗n ≤ τ). (4)

When the bootstrap resampling technique is applied to remote sensing LULC classification, the
training data of a particular LULC class are considered as the original sample X1, · · · , Xn, and the
bootstrap samples (X∗)j = (X∗1 , · · · , X∗n)j (j = 1, · · · , B) are generated by resampling from X1, · · · , Xn.
This process is detailed as follows.

Suppose N land-cover classes (ωi, i = 1, · · · , N) are present in the study area. Let S(i)
1 , · · · , S(i)

ni ,
i = 1, · · · , N represent the training pixels of the i-th class, where ni (i = 1, · · · , N) is the number of
training pixels. Each training pixel, for example, S(i)

1 , corresponds to a k-dimensional feature vector

X(i)
1 = (X1, · · · , Xk)

(i)
1 . The following simulation and calculation steps are performed to generate

multispectral and multiclass bootstrap training samples:
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1. Obtain the bootstrap training samples S∗(i)1 , · · · , S∗(i)ni , i = 1, · · · , N by sampling with replacement

from the original training samples of the individual land-cover classes (i.e., S(i)
1 , · · · , S(i)

ni ,
i = 1, · · · , N).

2. Collect the corresponding multispectral feature vectors X∗(i) = (X∗(i)1 , · · · , X∗(i)ni ), i = 1, · · · , N

with X∗(i)1 = (X1, · · · , Xk)
∗(i)
1 . Note that X∗(i), i = 1, · · · , N represents feature vectors of one set

of multispectral and multiclass bootstrap training samples.
3. Repeat Steps 1 and 2 to obtain B sets of multispectral and multiclass feature vectors of bootstrap

training samples; that is,
(

X∗(i)
)

j
= (X∗(i)1 , · · · , X∗(i)ni )j, i = 1, · · · , N; j = 1, · · · , B.

4. Estimate the parameters of the multivariate Gaussian distribution for every set of multispectral
and multiclass feature vectors of the bootstrap training samples. Let estimates of the mean vector
and covariance matrix of the multispectral and multiclass feature vectors be represented by(

µ̂∗(i)
)

j
and

[
Σ̂∗(i)

]
j
, i = 1, · · · , N; j = 1, · · · , B, respectively.

5. For every set of multispectral and multiclass bootstrap training samples, calculate the
class-dependent discriminant functions (Equation (2)) of the individual land-cover classes by
using the parameters estimates from Step 4 and perform LULC classification for all pixels in the
study area. Note that all bootstrap training samples are associated with known LULC classes
and are treated as training data in the bootstrap-sample-based LULC classification. However, in
contrast to the original training samples, these bootstrap samples are not associated with specific
geographic locations in the study area.

A schematic diagram of the aforementioned bootstrap resampling and classification procedures is
depicted in Figure 5. Notably, by using B sets of bootstrap training samples for LULC classification,
we can assess not only the uncertainty in the classification of the bootstrap training samples, but also
the uncertainty in the class assignment of individual pixels in the study area.

3.3. Assessing Classification Uncertainty by using Bootstrap Samples

The classification accuracy of the training data can be evaluated by using the training-data-based
confusion matrix. In a confusion matrix, the class-dependent producer’s accuracy (PA) and user’s
accuracy (UA), and the overall accuracy (OA) are presented. However, the training-data-based
confusion matrix can assess only the classification accuracy (or errors) of the training data. Furthermore,
studies have also evaluated classification accuracy by applying decision rules derived from training
data to an independent set of reference data. For such applications, reference-data-based confusion
matrices have been established to evaluate the classification accuracy of the reference data. When
only one set or a limited number of sets of reference data are used, the reference-data-based confusion
matrices are unlikely to represent the classification accuracy of the entire study area. In light of the
uncertainties, several questions that require consideration in remote sensing LULC classification are
as follows:

• What is the probability that a pixel that is randomly and equally likely to be selected from the set
of all pixels in the study area is correctly classified? This probability is referred to as the global OA
(as opposed to the OA of the training data set).

• Let the set of all pixels that are assigned to the i-th class be denoted as S(i)
A . What is the probability

that a pixel that is randomly and equally likely to be selected from S(i)
A is correctly classified? This

probability is referred to as the class-specific global UA.
• For any specific pixel in the study area, what are the probabilities of that pixel being classified into

individual LULC classes when various sources of uncertainty are considered? These probabilities
are referred to as the pixel-specific (or location-specific) class probabilities.
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Estimating these probabilities is complex when all of the sources of uncertainty addressed in
the Introduction require consideration. These probabilities cannot be exactly known, and we can
estimate them only according to the classification results derived from the training data set. In this
study, we focused on estimating these probabilities by considering only the training data uncertainty.
A bootstrap-resampling-based approach is proposed in this study. The details of the approach are
as follows:

1. Determine the a priori probabilities of individual LULC classes; that is, p(ωi)(i = 1, . . . , N).
These probabilities are estimated on the basis of ancillary data or the investigator’s knowledge of
the study area.
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2. Collect training data of individual LULC classes. The proportions of training pixels of the
individual LULC classes in the training data set should be consistent with the a priori probabilities
of the individual LULC classes for the training-data-based classification accuracy and uncertainty
to be representative of the entire study area or be considered estimates of the classification
accuracy and uncertainty for the entire study area.

3. Conduct bootstrap resampling to obtain B sets of bootstrap training samples.
4. For each set of the bootstrap training samples, determine the Bayes classification decision

rules of the individual LULC classes and conduct LULC classification for the entire study area.
Subsequently, establish the corresponding bootstrap-training-sample-based confusion matrices.
Because bootstrap samples have different distribution parameter estimates and class-dependent
discriminant functions, their confusion matrices vary among different bootstrap samples, enabling
the assessment of the uncertainty in the classification accuracy.

5. For any pixel in the study area, calculate the frequency it is assigned to an individual LULC class.
Let b(i) represent the frequency that a particular pixel is assigned to ωi(i = 1, · · · , N); then, its

class probability vector (CPV) is defined as Pω =

 pω1
...

pωN

 =

 b(1)/B
...

b(N)/B

. The pixel-specific

CPV represents the probabilities that a pixel will be assigned to individual LULC classes (i.e.,
pixel-specific class probabilities). These probabilities can then be used to characterize the
location-specific classification uncertainty and generate a set of class-probability images.

6. Reclassify the study area by assigning individual pixels to the class of the highest class probability.
In this study, this process is referred to as bootstrap-based LULC reclassification.

7. Identify unclassified pixels by using the predetermined threshold p∗max (for example, p∗max = 0.9)
for the highest class probability. A pixel with class probabilities Pω

T =
(

b(1)
B · · · b(N)

B

)
is

identified as unclassified if pmax = max
(

b(1)
B , · · · , b(N)

B

)
< p∗max.

An analytical flowchart of the proposed LULC classification by using bootstrap-based LULC
reclassification is depicted in Figure 6.
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4. Results and Discussion

4.1. LULC Classification Results Based on the Original Training Data Set

Derived from the original training data set (Table 1), the training-data-based confusion matrix and
Bayes LULC classification results of the study area are shown in Table 3 and Figure 7a, respectively.
Misclassifications primarily occurred between the forest and grass land-cover classes and between the
buildings and roads land-cover classes. In particular, a significant portion (approximately 23%) of the
pixels of the buildings class were misclassified into the roads class, whereas only 7.5% of the pixels of
the roads class were misclassified into the buildings class.
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Figure 7. LULC classification results: (a) based on the original training data set; and (b) based on
the bootstrap training data sets and the highest class probability. The purple-circled area is the main
structure of the Beitou Depot of the Taipei MRT (see Section 4.2.3). (c,d) Magnified images of the
red-square-enclosed areas in Panels (a) and (b), respectively.

Table 3. Confusion matrix of LULC classification by using the original training data set.

Assigned Classes
Referenced Classes

Forest Water Buildings Grass Roads Sum User’s Accuracy (%)

Forest 6676 0 1 167 0 6844 97.55
Water 0 2763 1 0 0 2764 99.96

Buildings 2 3 4595 19 225 4844 94.86
Grass 327 0 28 2259 49 2663 84.83
Roads 0 5 1331 0 3650 4986 73.20
Sum 7005 2771 5956 2445 3824 22,101

Producer’s accuracy (%) 95.30 99.71 77.15 92.39 93.02 Overall accuracy 90.24
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4.2. Bootstrap-Based LULC Reclassification Results

Bootstrap resampling of the original training data set was implemented in this study, yielding
B sets of bootstrap training samples. As illustrated in Figure 6, the Bayes LULC classification results
vary among the bootstrap training data sets. Because the uncertainty of classification accuracy was
evaluated on the basis of B sets of bootstrap-training-data-based confusion matrices, we investigated
the effect of the number of bootstrap samples (B) on the uncertainty in the LULC classification accuracy.
We repeatedly generated bootstrap training data sets with the total number of bootstrap samples;
specifically, B varied from 10 to 1000 in increments of 10. On the basis of B sets of training-data-based
confusion matrices, we calculated the mean and standard deviation for each of the UA, PA, and OA.
Figure 8 shows that the mean classification accuracy remains nearly constant, regardless of the value
of B. By contrast, the standard deviation of the classification accuracy changes with the number of
bootstrap samples for 10 ≤ B ≤ 400 but remains approximately constant for B ≥ 500. These results
indicate that, based on our original training data set, at least 500 sets of bootstrap training samples must
be used when assessing the uncertainty of classification accuracy. Therefore, the subsequent analysis of
the classification accuracy was based on the results obtained from 500 sets of bootstrap training samples,
and this is also considered in the discussion of the classification results and uncertainty assessment.
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Figure 8. Means and standard deviations of the classification accuracy values derived from multiple
sets of bootstrap training samples and their corresponding confusion matrices: (a) Overall accuracy
(OA) and producer’s accuracy (PA); and (b) User’s accuracy (UA). Note: The letters F, W, B, G, and R
represent forest, water, buildings, grass, and roads, respectively.
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4.2.1. LULC Reclassification and Uncertainty of the Classification Accuracy

Bayes LULC classification by using 500 sets of bootstrap training samples yielded a total of
500 confusion matrices. The variations of PA and UA are depicted in Figure 9. Both the forest and
water LULC classes were associated with high (>95%) classification accuracy and lower uncertainty
in PA and UA because of their highly concentrated feature values in the feature space (see Figure 3).
By contrast, the feature values of the grass, building, and roads classes were more scattered in the
feature space and, therefore, were associated with higher uncertainty in PA and UA. Generally, under
the training data uncertainty, the PA and UA of individual LULC classes in our study do not vary by
more than 5%. The OA of the 500 sets of confusion matrices varied within only a very small range
(89.52%–90.88%). Assuming that the proportions of the training pixels of individual LULC classes
are consistent with the a priori probabilities of the individual LULC classes, the global OA and the
class-specific global UA can be estimated using the mean values of the OA and class-specific UA of
the 500 bootstrap-training-samples-based confusion matrices, respectively. In this study, the global
OA was estimated as 90.25%, and the class-specific global UAs of the forest, water, buildings, grass,
and roads were estimated as 96.62%, 99.96%, 94.30%, 86.20%, and 73.81%, respectively.
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Figure 9. Uncertainties of the producer’s and user’s classification accuracies based on the Bayes LULC
classification results derived from 500 sets of bootstrap training samples.

LULC reclassification is achieved by assigning individual pixels to classes with the highest class
probability. The reclassification results (Figure 7b) are visually indistinguishable from the original
classification results (Figure 7a). However, differences can be observed in Figure 7c,d, which shows
magnified images of the red-square-enclosed areas in Figure 7a,b, respectively. Table 4 shows that
areal coverage in the original classification and reclassification results differ by 5.33 km2 and 4.79 km2

for the buildings and grass classes, respectively. Areal percentages of the individual LULC classes in
the original classification and reclassification results are nearly identical, and the a priori probabilities
of the forest, water, buildings, grass, and roads classes are estimated as 26.41%, 4.53%, 24.89%, 20.05%,
and 24.13%, respectively. However, the corresponding proportions (31.70%, 12.54%, 26.95%, 11.06%,
and 17.75%, respectively) of training pixels of the individual LULC classes in the original training data
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set are not completely consistent with these estimates of the a priori probabilities. The effect of such
inconsistency is further discussed in the following section.

Table 4. Comparison of pixel numbers and areal coverages of the individual LULC classes obtained
using original classification and reclassification.

Forest Water Building Grass Roads

Original classification
No. of pixels 965,039 163,544 927,127 701,231 860,663

Areal percentage 26.68 4.52 25.63 19.38 23.79
Reclassification
No. of pixels 945,607 164,173 873,766 749,180 884,878

Areal percentage 26.14 4.54 24.15 20.71 24.46

Areal Coverage difference (in km2) 1.9432 −0.0629 5.3361 −4.7949 −2.4215

In a confusion matrix, the class-specific PA and UA, and OA are presented and used to evaluate
the LULC classification results. Among these three types of classification accuracy, the PA of a given
class is calculated solely on the basis of training pixels of that class. The numbers of training pixels in
other classes and their classification do not affect the PA of a given class. By contrast, calculations of
the class-specific UA and OA involve the numbers of training pixels that are assigned to all individual
classes. Consequently, changing the proportions of the training pixels of individual LULC classes
affects the UA and the OA. For example, the training pixels of the buildings and roads LULC classes
respectively account for 27% and 17% of all pixels in the training data (see Table 1). Approximately
30% (1331/4595) of the training pixels of the buildings class were misclassified into the roads class, and
approximately 93% of the training pixels of the roads class were correctly classified (Table 3), resulting
in 73.20% UA for the roads class. Suppose that the proportions of the training pixels of the buildings
and roads LULC classes in the original training data set were changed to 32% and 12%, respectively,
and the estimated parameters of the multivariate Gaussian distributions of the individual LULC classes
remain the same. Under this situation, we can expect that approximately 30% of the training pixels
of the buildings class would be misclassified into the roads class, and 93% of the training pixels of
the roads class would be correctly classified. However, the UA of the roads class would decrease to
below 73.20% because a higher number of pixels from the buildings class would be misclassified into
the roads class, and the number of correctly classified pixels of the roads class would be low because
of changes in the proportions of training pixels of the buildings and roads classes.

A comparison of the estimates of the class-specific a priori probabilities and the proportions of
class-specific training samples in Table 1 reveals that the forest and water classes were given an excess
number of training pixels (overrepresented), whereas the grass and roads classes were given insufficient
training pixels (underrepresented) in the original training data set. The buildings class was adequately
represented in the original training data set. The confusion matrix in Table 3 shows that the pixels that
were misclassified into the grass class primarily belong to the forest class. Because the forest and grass
LULC classes were respectively over- and underrepresented in the original training data set, we expect
that the UA of the grass class (84.83%) in the training-data-based confusion matrix and the global UA
of the grass class (86.20%) were underestimated. Similarly, most of the pixels that were misclassified
into the roads class actually belong to the buildings class. The roads class was underrepresented in
the original training data set, and thus the UA of the roads class (73.20%) in the training-data-based
confusion matrix and the global UA of the roads class (73.81%) were also likely to be underestimated.

4.2.2. Pixel-Specific Classification Uncertainty and Identification of Unclassified Pixels

In this study, the pixel-specific CPV was used to characterize the location-specific classification
uncertainty. Various measures of classification uncertainty for remote sensing LULC classification have



Remote Sens. 2016, 8, 705 14 of 20

been proposed [40,41]. In the present study, two measures (i.e., the Shannon entropy and 1− pmax)
were adopted.

The maximum class probability, pmax, in the CPV of a pixel is used for LULC reclassification. The
higher the pmax, the lower the uncertainty in assigning a pixel to the class of the highest class probability.
Thus, 1− pmax indicates possible confusion with other classes. However, the uncertainty measure
based on pmax fails to capture the entire distribution of the class probabilities because it considers
only the highest class probability in the CPV [41]. By contrast, the Shannon entropy considers all class
probabilities and is defined as follows:

H = −
N

∑
i=1

(pωi lnpωi ). (5)

The entropy can assume a maximum value of lnN if all classes have the same class probabilities.
A pixel with pmax = 1 is associated with zero entropy.

Empirical CDFs of the pixel-specific maximum class probability and entropy are shown in
Figure 10. Approximately 93% of the pixels in the study area have pmax = 1 and Shannon entropy
H = 0, indicating that using different bootstrap training samples in LULC classification affected the
classification results of only 7% of the pixels in the study area. A pixel with zero entropy is always
classified into the same LULC class, regardless of the training data uncertainty. However, having zero
entropy does not necessarily indicate that the pixel is correctly classified.
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Pixels of higher classification uncertainty can be identified using the predetermined threshold
values p∗max and H∗ of the maximum class probability and the Shannon entropy, respectively. When
the identification of unclassified pixels is desired, these pixels of higher uncertainty can be considered
unclassified pixels. Threshold values p∗max and H∗ are associated with a specified cutoff probability pc

(which represents the exceedance probability for H∗ and the cumulative probability for p∗max); that is,

Prob(pmax < p∗max) = pc (6)

Prob(H > H∗) = pc (7)

Figure 10 shows that at a 3% cutoff probability (pc = 0.03), the values of p∗max and H∗ are 0.9
and 0.325, respectively. Similarly, for pc = 0.01, p∗max and H∗ are 0.667 and 0.642, respectively.
All pixels with a Shannon entropy exceeding H∗ or with pmax value lower than p∗max are designated
as unclassified pixels. The two sets of unclassified pixels, identified by p∗max and H∗, respectively,
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are not identical because a single-value relationship between pmax and H does not exist, as depicted
in Figure 11. However, a single-value monotonic relationship exists between pmax and the
minimum conditional entropy, that is, min (H|pmax), as depicted by the red curve in Figure 11.
The pmax ∼ min (H|pmax) single-value relationship is expressed as follows:

min(H|pmax) =

{
−pmaxlnpmax − (1− pmax) ln (1− pmax) , 0.5 ≤ pmax < 1

−2pmaxlnpmax − (1− 2pmax) ln (1− 2pmax) , 1
3 ≤ pmax < 0.5

(8)

The values of min (H|pmax) and H∗ are similar for 1
3 ≤ pmax ≤ 1. For example, given

pmax = 0.667, the corresponding values of min (H|pmax) and H∗ are 0.636 and 0.642, respectively.
Thus, in practice, substituting min (H|pmax) for H∗ may be convenient, and the corresponding two sets
of unclassified pixels, p∗max and min (H|pmax), are associated with similar exceedance (or cumulative)
probability pc. Notably, such unclassified pixels mostly fall near the class boundaries in the feature
space and are thus referred to as unclassified pixels identified using the equal-likelihood technique
(see Figure 1).
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4.2.3. Comparison of Unclassified Pixels Identified Using the Chi-square Threshold Technique and
Equal-Likelihood Technique

In addition to the equal-likelihood technique, unclassified pixels can also be identified using the
following chi-square threshold technique. In this section, we compare the characteristics of unclassified
pixels identified using the two methods.

Let X = (x1, . . . , xk)
T be the k-dimensional feature vector of a pixel that has been assigned through

Bayes classification to a particular land-cover class (e.g., ωi). Assuming the feature vector X can be
characterized by a multivariate Gaussian distribution, the well-known Hotelling’s T2 statistic is defined
as follows:

T2 = (X−mi)
T S−1

i (X−mi) (9)

where mi and Si are, respectively, the sample mean vector and sample covariance matrix of X.
Hotelling’s T2 is distributed as a multiple of an F-distribution. However, if mi and Si are calculated
based on random samples of a large sample size (i.e., sample size of the training data in our study),
then Hotelling’s T2 can be approximated by a chi-square distribution with k degrees of freedom [42].
The chi-square threshold technique for identifying unclassified pixels can thus be implemented by
choosing a threshold value vc, which corresponds to an exceedance probability pc of the chi-square
distribution with k degrees of freedom. A value of 0.05 is commonly used for the exceedance probability
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pc. In this study, digital numbers of three channels (green, red, and NIR) of the ALOS images were
selected as classification features; thus, vc = 7.815. Pixels with T2 values exceeding vc fall in the tail
of the multivariate Gaussian distribution and are identified as unclassified pixels. In contrast to the
equal-likelihood technique, the chi-square threshold technique identifies unclassified pixels without
considering possible confusion between land-cover classes.

Unclassified pixels identified using the equal-likelihood technique with p∗max = 0.9 and those
identified using the chi-square threshold technique with pc = 0.05 are shown in Figure 12. Spatial
distribution patterns of unclassified pixels identified using the two techniques differ considerably.
Unclassified pixels identified using the equal-likelihood technique, which account for 3% of the total
study area, are widely scattered and mostly fall on or near the boundaries of different land-cover
types. By contrast, unclassified pixels identified using the chi-square threshold technique are mostly
clustered, forming geometric shapes and accounting for approximately 4.5% of the entire study area.
Differences in these spatial distribution patterns can be attributed to the characteristics of the two
unclassified pixel identification techniques; specifically, the equal-likelihood technique identifies pixels
of higher classification uncertainty (confusion between LULC classes), whereas the chi-square threshold
technique identifies pixels that are outliers of the assigned LULC class. To illustrate these characteristics
more clearly, scatterplots shown in Figures 13 and 14 respectively show pixels assigned to individual
LULC classes and unclassified pixels identified using the chi-square threshold and equal-likelihood
techniques in a three-dimensional feature space. Unclassified pixels identified using the chi-square
threshold technique are far from centers of the individual classes, whereas the unclassified pixels
identified using the equal-likelihood technique lie on or near the layers of the class boundaries. Taking
the Beitou Depot of the Taipei MRT (purple-circled area in Figures 2, 7 and 12) as an example, the
pixels of its main structure fall in the circled area of the feature space in Figures 13 and 14. Although
the feature vectors of these pixels represent outliers of the multivariate Gaussian distribution of
the buildings class, it is unlikely that they would be classified into other classes, regardless of the
classification method used. Thus, identifying these pixels as unclassified may undermine using the
chi-square threshold to define pixels that have a higher probability of misclassification. By contrast,
the equal-likelihood technique did not identify pixels of the Beitou Depot as unclassified because they
all had pmax values exceeding 0.9 and were associated with very low classification uncertainty.Remote Sens. 2016, 8, 705 17 of 21 
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Figure 12. (a) Unclassified pixels (white) identified using the equal-likelihood technique with
p∗max = 0.9; (b) unclassified pixels identified using the chi-square threshold technique with
pc = 0.05; and (c) the Beitou Depot of the Taipei MRT (i.e., the purple-circled area in (b)) (source:
https://zh.wikipedia.org/wiki/%E5%8C%97%E6%8A%95%E6%A9%9F%E5%BB%A0).
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Figure 13. Three-dimensional scatterplots showing: (a) pixels assigned to individual LULC classes
(excluding unclassified pixels) by the Bayes classification method; (b) unclassified pixels identified
using the chi-square threshold technique with pc = 0.05; and (c) details of the blue box in (b). Pixels of
the Beitou Depot of the Taipei MRT (purple-circled area) were identified as unclassified pixels.
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Figure 14. Three-dimensional scatterplots showing: (a) pixels assigned to individual LULC classes
(excluding unclassified pixels) through reclassification; (b) unclassified pixels identified using the
equal-likelihood technique with pc = 0.05; and (c) details of the blue box in (b). Pixels of the Beitou
Depot of the Taipei MRT (purple-circled area) were classified into the buildings class.
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5. Conclusions

This study proposes a nonparametric bootstrap resampling approach for assessing uncertainty in
LULC classification results. Two techniques for identifying unclassified pixels were also evaluated.
The conclusions are as follows:

1. The bootstrap resampling technique can be used to generate multispectral and multiclass
bootstrap training data sets.

2. The proposed bootstrap resampling and reclassification approach can be applied for assessing
not only the classification uncertainty of bootstrap training samples, but also the class assignment
uncertainty of individual pixels.

3. Investigating the effect of the number of bootstrap samples on uncertainty in LULC classification
accuracy is advantageous. In our study, 500 sets of bootstrap training samples were sufficient for
assessing the uncertainty in the classification accuracy.

4. From the results of the Bayes LULC classification based on 500 sets of bootstrap training samples,
the global OA and the class-specific global UA can be estimated as the mean values of the OA and
class-specific UA of the 500 bootstrap-training-samples-based confusion matrices, respectively.

5. Changing the proportions of training pixels of individual LULC classes can affect the UA and the
OA. The proportions of training pixels of the individual LULC classes should be consistent with
the class-specific a priori probabilities. Training samples that over- or underrepresent certain
LULC classes may result in errors in the accuracy of the global UA and OA estimates.

6. Unclassified pixels identified using the chi-square threshold technique represent the outliers of
individual LULC classes but are not necessarily associated with higher classification uncertainty.

7. Unclassified pixels identified using the equal-likelihood technique are associated with
higher classification uncertainty and they mostly occur on or near the borders of different
land-cover types.
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