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Abstract: Observed alternation of global and local meteorological patterns governs increasing
drought impact, which puts at risk ecological balance and biodiversity of the alpine forest.
Despite considerable attention, drought impact on forest ecosystems is still not entirely understood,
and comprehensive forest drought monitoring has not been implemented. In this study, we
proposed to bridge this gap exploiting a time-domain synergetic use of medium resolution MODSI
NDVI (Normalized Difference Vegetation Index) and NDII7 (Normalized Difference Infrared Index
band 7) time series as well as on-station temperature and precipitation measures combined in the
scPDSI (self-calibrated Palmer Drought Severity Index) datasets. Analysis employed the S-mode
Principal Component Analysis (PCA) examined under multiple method settings and data setups.
The investigation performed for South Tyrol (2001–2012) indicated prolonged meteorological drought
condition between 2003 and 2007, as well as general drying tendencies. Corresponding temporal
variability was identified for local mountain forest. The former response was fostered more often
by NDII7, which is related to foliage water content, whereas NDVI was more prone to report on an
overall downturn and implied drop in forest photosynthetic activity. Among tested approaches, the
covariance-matrix based S-mode PCA of z-score normalized vegetation season NDVI and NDII7
time series ensured the most prominent identification of drought impact. Consistency in recognized
temporal patterns confirms integrity of the approach and aptness of used remote-sensed datasets,
suggesting great potential for drought oriented environmental analyses.

Keywords: S-mode Principal Component Analysis (PCA); drought; forest; MODIS; NDVI; NDII7;
scPDSI; the Alps; South Tyrol

1. Introduction

Drought is one of the most common environmental disasters nowadays. It affects an enormous
number of people and the biggest area worldwide [1] drawing attention of scientists, economists,
policy makers as well as the public [2]. Increasing, but not uniform drought threat is noted on local to
global scale, and is driven by prolonged climatic anomaly [3,4] expressed in change in temperature,
precipitation and insolation patterns (e.g., [5–12]).

Although drought is a “burning” issue, its understanding and defining in unified terms is
biased due to region and environment dependent perception of the phenomenon [13], relative course
and impact, as well as not well specified inception and end of an event [1]. Furthermore, drought
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is perceived through its manifestations such as precipitation shortfall, insufficient soil moisture
or diminished vegetation status. Consequently, the majority of conceptual drought definitions
describes a drought event through divergence from local long-term “normal” conditions of a selected
environmental variable. Additionally, aridity impact is not only relative, but also non-discrete,
which implies further difficulty in its monitoring and quantification.

Drought impact on vegetation is nowadays of particular interest in relation to global climate
change modeling and carbon sink efficiency (e.g., [14–16]). Among others, complex drought influence
on forest ecosystems [17,18] is especially crucial for comprehensive and holistic environmental
monitoring [19] and has become a subject of numerous studies (e.g., [14,20–22]) and further
projections [23,24]. Despite high importance, drought impact on forest ecosystems is still not entirely
understood, particularly with respect to dry spell intensity, trees response under diverse local
environmental conditions [22], uncertainty of long term change scenarios [16] as well as regional to
global scale consequences. Although local dendrochronological surveys provide essential information
on trees development under water stress conditions (e.g., [25–29]), they are limited to small sites or
transects [30], restraining broader understanding of the forest environment.

Unlike field studies, remote sensing techniques allow spatial surveys at local to regional or
even global scale, ensuring not only dense temporal sampling, but also generating relatively low
costs. Although high spatial resolution of remotely sensed data is usually still compromised by
low spatial and temporal coverage (and the other way round), remote sensing acquisitions provide
reliable information for environmental monitoring, especially when complemented by in-situ data.
Vegetation drought impact can be measured by an extensive suite of remote sensing indices, among
which the red and near infrared spectra based NDVI (Normalized Difference Vegetation Index [31]), as
well as near and short wave infrared based NDII (Normalized Difference Infrared Index [32]) and NBR
(Normalized Burn Ratio [33], also known as NDII7 (Normalized Difference Infrared Index band 7) [34]
which adopts MODIS band 7 short infrared information) gained high recognition. Despite some
constraints due to saturation effect [35], sensitivity to soil information [36], species dependent value
range and nonlinear correlation with precipitation (e.g., [37–41]), aforementioned metrics offer great
simplicity and robustness in approximating photosynthetic plant activity and plant water content.
Moreover, they ensure abundance of data, with some datasets and time series dating back even to the
1970s [42]. The latter provides an outstanding opportunity for comprehensive vegetation analyses in
the context of ongoing climate alteration and increasing drought threat.

Although time series of remotely sensed vegetation indices allow an extensive examination,
the four-dimensional character of datasets (latitude, longitude, index value and time) imposes a need
for efficient spatio-temporal processing. Moreover, non-discrete character of changes and limited
ground truth or reference information on vegetation drought impact present an additional challenge
in the analyses. Among multiple statistical and mathematical methods for multidimensional analyses,
particularly convenient to address these issues are variance oriented approaches that identify the
dominant variability in space and/or time domain of data [43]. The Principal Component Analysis
(PCA) [44] is probably the best known and most frequently applied multivariate decomposition
method. Robustness and straightforward calculation spurred its use in environmental studies including
analyses of remote sensed data (e.g., [44–50]). Despite its popularity, the approach is sometimes
implemented as an exploratory analysis, without correct exploitation of various PCA decomposition
modes [44,51,52]. Consequently, results might not be derived by the optimal PCA setup and next to
general methodological constraints [52] they might be additionally affected by poor application.

Meeting the arising need for a comprehensive approach to large scale forest drought impact
detection [19], we exploited in this paper the PCA decomposition of remotely sensed time series
of vegetation indices. The analyses were carried out using the 2001–2012 time series of MODIS
derived 16-day NDVI and NDII7 datasets, subjected to the S-mode PCA (time priority mode)
and aimed at time-domain recognition of drought impact. Investigation examined multiple
PCA decomposition settings and data setups, including correlation/covariance matrix based PCA
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convolution, data z-score normalization, diverse annual time-windows as well as two loadings
(eigenvectors) rotation approaches (orthogonal Varimax [53] and oblique Promax [54] solutions).
In order to assess robustness of the method, the study was conducted for a complex and diverse
mountain forest of South Tyrol, which is known not only to have experienced 2003 heat-wave
related disturbances [55], but also accelerated climate change [56]. Due to a shortage of available
ground truth data on regional spatio-temporal drought development, PCA PCs (scores), representing
herein the most dominant temporal evolution of forest status, were evaluated against regional
meteorological conditions. The latter was approximated by the temperature and precipitation based
scPDSI (self-calibrated Palmer Drought Severity Index [57]), which has been demonstrated to be
well correlated with forest status [58–60]. The unified regional scPDSI responses were also identified
through the S-mode PCA decomposition. Consequently, the applied coupling allowed recognizing
regional temporal forest variability in response to meteorological conditions.

In this paper we: (i) present a synthesis of 2001–2012 meteorological drought conditions in
South Tyrol; (ii) relatively evaluate the utility of the S-mode PCA of 16-day MODIS NDVI and NDII7
time series used for identification of short to medium term temporal vegetation variability, and propose
the most suitable PCA setups for monitoring of drought impact in alpine forest; (iii) demonstrate
efficiency of the applied scPDSI–NDVI/NDII7 synergy for reliable analysis of drought impact on
temporal development of forest status in the complex and diverse alpine ecosystem; and (IV) discuss
and interpret the most eminent time-domain variability of the South Tyrolean forest status governed
by the identified 2001–2012 meteorological drought conditions.

2. Materials and Methods

2.1. Study Area

South Tyrol (Autonome Provinz Bozen—Südtirol/Provincia Autonoma di Bolzano—Alto Adige),
is the north most province of the Italian Republic, located in the central part of the Alps (Figure 1).
It is a typical alpine region characterized by complex and diverse orography ranging from 190 m asl
(southern Adige Valley) to 3905 m asl (Mount Ortler), where 86% of the area is placed above 1000 m asl,
and over 40% above 2000 m asl [61]. Around 43% of the region (namely 3170.5 km2 out of 7400 km2) is
covered by forest, with its overall structure predominated by a coniferous woodland (90.1%) with an
addition of mixed (7.3%) and broadleaved (2.6%) stands. Following the elevation gradient combined
with regional climatic diversification, hardwood species are present in the valley floors and on lower
elevations in the central part of the region.
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2.2. Data

2.2.1. Meteorological Data and scPDSI

Monthly on-station cumulative precipitation and mean temperature records, essential for the
scPDSI computation, were obtained from the WISKI database of the Hydrographic Office of the
Autonomous Province of Bolzano-Südtirol. Only stations with minimum 25 years of uninterrupted
coupled observations of both variables were considered [57] (taking December 2012 as a final record
entry, meteorological observations had to date back to, at least, January 1988). This condition was
fulfilled by 26 stations evenly spread around the province (Figure 1; information on selected stations
and the length of available records are presented in Table S1). The scPDSI was calculated independently
for each location using the code written within The GreenLeaf Project [62]. The computation was
always based on the longest available time series of records (Table S1). In order to match the time-span
of MODIS data, only the 2001–2012 scPDSI results were considered further (Figure 2).
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Figure 2. Distribution of scPDSI (self-calibrated Palmer Drought Severity Index) values among the
26 stations (y axis) between January 2001 and December 2012 (x axis). Station identification numbers
correspond with Figure 1 (scPDSI categories after [57]).

2.2.2. MODIS Derived Time Series of Vegetation Indices

The study was based on a 16-day MOD13Q1 standard MODIS products of 250 m spatial resolution
acquired for a h18v04 tile for the 2001–2012 period. For each of the 276 considered datasets, NDVI,
QA (Quality Assessment) as well as bands 2 (NIR: 0.840–0.876 µm) and 7 (MIR: 2.105–2.155 µm) were
extracted. Subsequently, NDII7 was computed according to the formula:

NDII7 “ pNIR´MIRq{pNIR ` MIRq (1)

All pixels in the NDVI and NDII7 time series with QA-usefulness values below “acceptable”
were masked out following the suggestion of Colditz et al. [63]. Next, outliers (confidence level
0.95 according to Chebyshev’s Theorem) and masked-out low quality pixels were replaced using a
time-domain linear interpolation carried out in the TimeStats Software Tool [64]. To ensure the highest
quality and limit amount of “artificial” values introduced to the time series, the interpolation was
performed only for a single observation gap. Longer gaps were not revised. As a result, complete
2001–2012 NDII7 time series was available for 52,009 forest pixels (out of 52,394). NDVI spatial
coverage was not affected. Finally, following the findings of Wang et al. [65], adjustment for MODIS
sensor degradation was completed for both time series.

2.2.3. Ancillary Data—Forest Mask

Forest mask information for South Tyrol were adopted from a core forest product of the FP7
geoland2 project (EL-04a dataset; [66]). Information gaps present in the layer (in total 162 km2 excluded
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due to cloud cover and shadowing) were filled in using the CORINE Land Cover 2006 dataset [67].
Resolution change from 20 m (native to the EL-04a and CORINE) to 250 m was based on a spatial
averaging, where a new 250 m ˆ 250 m pixel was assigned to a “forest” class only when at least 50% of
its area was devoted to a forest within the core dataset.

2.3. PCA Analyses Design

2.3.1. scPDSI Based Meteorological Variability

Interannual 2001–2012 meteorological variability in South Tyrol was identified applying the
S-mode PCA on a data matrix combining 26 on-station scPDSI time series. In order to ensure equal
impact of each time-step the decomposition was based on a correlation-matrix [52] (Scheme 1; for a
detailed description of the S-mode PCA see Appendix A).
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Scheme 1. Conceptual flow chart of a PCA (Principal Component Analysis) based synergy between
scPDSI (self-calibrated Palmer Drought Severity Index) data and remotely sensed time series of
vegetation indices. NDVI and NDII7 datasets were processed separately.

2.3.2. MODIS Derived NDVI and NDII7 Time Series

Analysis design (Scheme 1, Table 1) aimed at exploring potential of the S-mode PCA for identifying
vegetation dynamism and related drought impact. The following PCA settings and data setups
were exploited:

‚ NDVI and NDII7 time series, where the former relates to the photosynthetic activity, while the
latter approximates foliage water content;

‚ removal of seasonality through a per-pixel z-score normalization

d “
Xij ´ µj-com

δj-com
(2)

where Xij denotes a j-th composite (j P r1, 23s) of an i-th year (i P r2001, 2012s) of the complete
2001–2012 time series, µj-com stands for an average value for all j-th composites across all the years,
and σj-com is a standard deviation for all the j-th composite in the time series;

‚ two different lengths of NDVI and NDII7 time series (applied to the original and z-score
normalized datasets alike) where beside the complete MODIS time series comprising all 23 annual
composites (1–23), a vegetation season time series focusing on a period between end of April
and mid-October (corresponding with 8th to 18th MODIS annual composites (8–18)) were also
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exploited as time series restricted to vegetation season allow excluding dormancy state signal and
potential impact of snow cover; and

‚ PCA decomposition based on a correlation and on a covariance matrix—following the suggestion
of Eastman and Fulk [50], a covariance-matrix based PCA was applied to normalized time series,
while not-normalized datasets were decomposed based on a correlation matrix (Scheme 1).

Table 1. Summary of the S-mode PCA design exploring utility of the NDVI and NDII7 time series, data
z-score normalization, diverse annual time windows, correlation and covariance-matrix based PCA
setting, as well as loading rotation for detection of drought related changes in forest status.

Index z-Score Data
Normalization

Annual Time Window
(MODIS Composites)

Dataset Short
Name

EOF
Matrix

Rotation
(Retained Scores)

NDVI

no full year (1–23) NDVI1–23 cor. no
no veg. season (8–18) NDVI8–18 cor. no
yes full year (1–23) nNDVI1–23 cov. no
yes veg. season (8–18) nNDVI8–18 cov. yes (1–5)

NDII7
no veg. season (8–18) NDII78–18 cor. no
yes veg. season (8–18) nNDII78–18 cov. yes (1–4)

Abbreviations: veg.—vegetation; cor.—correlation; cov.—covariance.

Each PCA setup (Table 1) was run independently where only pixels within the forest mask
were considered.

The first four PCs (scores) resulting from each of the tested PCA setup (Table 1) and representing
temporal profiles of changes in forest vegetation status were cross-compared against four identified
scPDSI temporal patterns (Scheme 1). The process allowed recognizing scores with physical meaning
of forest response following recognized drought conditions. Owing to inconsistent time steps (16-day
vs. monthly) and annual windows, vegetation indices based PCs and scPDSI temporal profiles were
correlated for yearly averages. Since a sign of a resulting PCA score function is arbitrary and originates
from the data variance based rotation of the original dataset, when needed, a sign of emerging PCs was
subsequently adjusted to fit the scPDSI approximated meteorological variability. This step simplified
interpretation and comparison between results. The PCA resulting EOFs (loadings) were not evaluated
due to unavailable ground-truth information on drought footprint in South Tyrol.

A limit to inspect only the first four resulting PCs of each PCA setup was governed by eigenvalues
that indicate amount of dataset variance explained by a given loading and corresponding score.
Since temporal and spatial patterns associated with higher variance are more likely to carry a physical
meaning [43], we decided to focus only on most prominent PCs.

In order to enhance potential physical meaning of identified temporal profiles of changes in
forest status, loadings rotation was performed (for more information see Appendix A). Since the
approach is targeted at strengthening already recognized patterns exploring only a subset of the total
data variance, rotation was applied only to those PCA setups that revealed sound drought related
temporal variability in the first four resulting PCs (Table 1). Two rotation algorithms were tested:
orthogonal Varimax [53] and oblique Promax [54] techniques, where a number of EOFs to be rotated
was determined using the Cattell’s scree test [68]. In this case, a potential physical meaning was also
sought within the first four emerging PCs and was evaluated, on a yearly bases, against the scPDSI
identified meteorological variability (Scheme 1).

Since the yearly averages fail to address intra-annual data variability, performed correlation
between vegetation indices based PCs and scPDSI temporal profiles ensured only a coarse similarity
measure. Frequent single-value anomalies presented in the NDVI and NDII7 derived scores were not
validated in relation to smooth scPDSI temporal variability. Consequently, despite high correlation
values, yearly means could foster misleading impression of recognized forest response to drought.
Therefore, statistical analyses were complemented by a visual evaluation of similarity between scPDSI
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temporal patterns and PCs they controlled. Although potentially subjective, this approach ensured
straightforward comparison between time series of diverse time steps and annual length, where all
erratic and “noisy” PCs were rejected despite high yearly based correlation to the scPDSI profiles.

PCs carrying the most eminent forest response to identified drought conditions were subsequently
mutually compared in order to specify the information overlap.

3. Results

3.1. Meteorological Conditions in South Tyrol

The first PC (1scPDSI; Figure 3a) resulting from the correlation-matrix based S-mode PCA of
the 2001–2012 monthly scPDSI time series indicated drought conditions between 2003 and 2007.
This variability explained 63% of the total data variance. The second identified score (2scPDSI;
Figure 3b) revealed leveled temporal response with positive anomalies in 2001 and 2002, which
accounted for 9.95% of data variability. The third PC (3scPDSI; Figure 3c) demonstrated positive
anomalies in 2002 and 2008 as well as drought conditions in 2009, 2011 and 2012. Furthermore, a subtle
overall decreasing trend was revealed in this time evolution pattern. It explained 7.36% of the total
variance present in the scPDSI time series. Finally, the fourth resulting score (4scPDSI; Figure 3d)
showed gradual decrease between 2001 and 2008 followed by a strong positive anomaly in 2012.
This temporal pattern was associated with 5.61% data variability.
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Figure 3. First four PCs derived from the correlation-matrix based S-mode PCA of the 2001–2012
scPDSI time series: (a) 1scPDSI; (b) 2scPDSI; (c) 3scPDSI; and (d) 4scPDSI. Presented temporal patterns
explain 63%, 9.95%, 7.36% and 5.61% of the total scPDSI data variance, respectively.

The scPDSI PCA results provided an interesting and essential insight into meteorological
variability in South Tyrol between 2001 and 2012. First, strong scPDSI drought condition was identified
in the region between 2003 and 2007 with the most severe drop in 2005 (Figures 2 and 3a). Second, a
clear positive anomaly was observed in 2008 for all on-stations scPDSI time series (Figure 2), and was
well singled out in the 1scPDSI, 3scPDSI and 4scPDSI scores (Figure 3a,c,d, respectively). Third, the
2scPDSI, as well as 1scPDSI and 3scPDSI scores (Figure 3a–c, respectively) highlighted above-average
wet conditions for 2001 and 2002. Fourth the 3scPDSI indicated drought circumstances in 2009 and
2011 (Figure 3c), and overall subtle decreasing trend. Finally, the 4scPDSI temporal pattern revealed a
fine linear downturn between 2003 and 2007. Neither decreasing tendency was obvious in the original
scPDSI dataset.
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3.2. Forest Photosynthetic Activity Captured by PCA of MODIS NDVI Time Series

The correlation-matrix based S-mode PCA of the complete NDVI time series (NDVI1–23) revealed
seasonality in all first four resulting PCs (Figure S1). This behavior was the most robust for the
first score (herein 1CORNDVI1–23; Figure S1a), which explained 63.23% of the total data variability.
The following PCs (2CORNDVI1–23, 3CORNDVI1–23 and 4CORNDVI1–23, respectively; Figure S1b–d)
not only demonstrated more wobbly temporal profiles but also accounted for significantly smaller
data variance (3.29%, 2.68% and 1.69%, respectively). All PCs showed limited forest ecosystem
response to drought. Only the 2CORNDVI1–23 and 3scPDSI, as well as the 3CORNDVI1–23 and
1scPDSI demonstrated moderate mutual correlation (0.584 and 0.664, respectively; correlation was
performed on a yearly basis due to non conforming time steps; Table S2a).

Covariance-matrix based S-mode PCA of the full year z-score normalized NDVI time series
(nNDVI1–23) revealed temporal patterns with intense changes in vegetation photosynthetic activity
between consecutive observations (Figure S2). The first four PCs together accounted for 28% of the data
variance with the first score explaining 18.55%. Correlation with the scPDSI temporal profiles, based on
yearly averages, indicated strong relation between the second resulting PC (herein 2COVnNDVI1–23:
Figure S2b) and 1scPDSI as well as the third score (3COVnNDVI1–23; Figure S2c) and 3scPDSI (0.712 and
0.731 respectively; Table S2b).

The correlation-matrix based PCA decomposition of the vegetation season (end of April–mid
October) NDVI time series (NDVI8–18) left some periodic fluctuations in the scores (Figure S3).
This was especially strong in the first PC (herein 1CORNDVI8–18; Figure S3a), which explained
41.94% of the total data variance. The leading score depicted potentially drought related diminished
forest photosynthetic activity in 2006 and 2007 as well as subtle intra-annual NDVI irregularity
in 2003 and 2011. Despite this, the 1CORNDVI8–18 was not correlated to any of the scPDSI
temporal profiles (Table S2c). NDVI8–18 derived PCs of the higher order (Figure S3b–d) addressed
much smaller amount of the data variability, namely 4.77%, 3.04% and 2.68% for the second to
fourth scores, respectively (herein 2CORNDVI8–18, 3CORNDVI8–18 and 4CORNDVI8–18, respectively).
Correlating the 2CORNDVI8–18 with the 1scPDSI (both aggregated on a yearly basis) revealed strong
mutual relation (0.825; Table S2c). Despite positive correlation visual resemblance of both temporal
patterns was obscured due to various single-value anomalies in the 2CORNDVI8–18.

The z-score normalized vegetation season NDVI time series (nNDVI8–18) convoluted with the
covariance matrix S-mode PCA produced principal components showing in places intense isolated
anomalies (Figure S4). Dominance of the first PC (herein 1COVnNDVI8–18; Figure S4a) was not
so strong comparing with the NDVI8–18 results, with the leading score explaining 15.25% of the
data variance. A potential physical meaning of forest drought impact was observed in the second
PC (2COVnNDVI8–18; Figure S4b) that significantly correlated on a yearly bases with the 1scPDSI
and 2scPDSI (0.713 and 0.608, respectively; Table S2d). Furthermore, the third resulting score
(3COVnNDVI8–18; Figure S4d) depicted intense value increase in 2003 followed by decreasing tendency,
and was found in accordance with the 3scPDSI (0.632; Table S2d). Both PCs explained 5.56% and 3.37%
of the total data variance, respectively.

3.3. Forest Foliage Water Content Indicated by PCA of Vegetation Season MODIS NDII7 Time Series

The NDII7 PCA focused on the vegetation season (end of April–mid October) datasets.
Initially, the NDII78–18 time series was decomposed with the correlation-matrix based S-mode PCA.
The first PC (herein, 1CORNDII78–18; Figure S5a) revealed a potentially meaningful response to drought
conditions, with diminished values in the seasonal envelope before 2008, and two local minima in
2003 and 2007. This temporal profile was strongly consistent on a yearly bases with the 1scPDSI (0.736;
Table S2e) and represented 22.55% of the total data variance. The 1scPDSI correlated well with the
third (3CORNDII78–18; Figure S5c; 0.660) and fourth (4CORNDII78–18; Figure S5d 0.702) PCs, which
accounted for 4.40% and 2.68% of the total data variability, respectively. This relation was, however,
visually concealed due to intensive value fluctuations in both temporal profiles.
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The first PC of the covariance-matrix based decomposition of the z-score normalized vegetation
season NDII7 (nNDII78–18) time series (herein 1COVnNDII78–18; Figure S6a) explained 11.98% of the
data variance and showed strong correlation to the 1scPDSI (0.717; Table S2f). This score revealed
diminished forest foliage water content in 2003, 2004 and 2007. Although the fourth resulting PC
(4COVnNDII78–18; Figure S6d) accounted for only 1.66% of the total data variance, the score clearly
resembled the 1scPDSI, which was supported by moderate correlation calculated on a yearly bases
(0.608; Table S2f). NDII7 decrease revealed in the 4COVnNDII78–18 between 2003 and 2007 implied
mild connection to the 4scPDSI temporal pattern (0.583; Table S2f).

3.4. Loadings Rotation

Rotations were performed on the eigenvectors of the z-score normalized vegetation season NDVI
and NDII7 time series decomposed using covariance-matrix based S-mode PCA (Scheme 1; Table 1).
This selection was motivated by the highest cumulative accordance between the first four PCs of each
setup and the scPDSI temporal profiles. Decomposition results based on the NDII78–18 dataset were
not considered due to the seasonal component, which dominated variability of the first four PCs and
would further control rotated EOFs and their scores.

Following Cattell’s scree test, the first five eigenvectors were retained for the nNDVI8–18 time series
(Figure S7a). Rotation performed with the Varimax and Promax methods produced very similar sets of
first four PCs (Figures S8 and S9, Table S3a). A pair of first PCs (herein 1COVnNDVI8–18ROT5V
and 1COVnNDVI8–18ROT5P for the Varimax and Promax solutions respectively; Figures S8a
and S9a) were moderately correlated on a yearly bases with the 2scPDSI (0.638 and 0.615,
respectively; Table S4a), whereas both second principal components (herein 2COVnNDVI8–18ROT5V
and 2COVnNDVI8–18ROT5P; Figures S8b and S9b) showed moderate negative relation to the 3scPDSI
(´0.588 and ´0.576, respectively; Table S4a). Moreover, the Promax rotation generated a third PC
(herein 3COVnNDVI8–18ROT5P; Figure S9c), which bore mild resemblance to the 3scPDSI (0.607),
and secondary negative relation to the 1scPDSI (´0.590; Table S3a). Finally, the fourth Promax derived
score (herein 4COVnNDVI8–18ROT5P; Figure S9d) followed variability of the 4scPDSI temporal pattern
(0.612; Table S3a).

The first four loadings were retained for the z-score normalized vegetation season NDII7 time
series (nNDII78–18) based on Cattell’s scree test (Figure S7b). Temporal patterns constructed through
the Varimax and Promax rotations (Figures S10 and S11 respectively) revealed very high mutual
accordance (Table S3b), where the latter solution demonstrated less intense single-value abrupt
irregularities in the envelope. In both cases, the fourth resulting scores (herein 4COVnNDII78–18ROT4V
and 4COVnNDII78–18ROT4P for the Varimax and Promax rotation, respectively; Figure S10d and
S11d) demonstrated diminished forest foliage water content between 2003 and 2007, and were found
strongly correlated to the 1scPDSI (0.751 and 0.772 respectively; Table S4b). Significant relation was
also identified on a yearly bases, between the 2scPDSI temporal pattern and a pair of the first PCs
(herein 1COVnNDII78–18ROT4V and 1COVnNDII78–18ROT4P; Figures S10a and S11a; 0.614 and 0.689,
respectively). Furthermore, beside the 1COVnNDII78–18ROT4V, the drought year of 2003 was also
emphasized in the third PC resulting from the Varimax based convolution (3COVnNDII78–18ROT4V;
Figure S10c).

3.5. Comparison of Identified Potential Forest Responses to Meteorological Drought Conditions

Among all sets of the first four PCs of multiple S-mode PCA setups, 22 scores were significantly
correlated on a yearly bases with at least one out of four identified scPDSI temporal patterns.
Visual comparison of each of these PCs with its controlling scPDSI profile allowed rejecting erratic
scores with intense sequential fluctuations. All scores associated only with the 2cPDSI were excluded
due to non-drought related variability of this temporal pattern.

Seven PCs with the most eminent relation between forest photosynthetic activity or foliage
water content and meteorological drought conditions were singled out (Figure 4). Five of these
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scores were primary related to the 1scPDSI variability (Table 2, Figure 4b–d,f,g) with two PCs
additionally influenced by the 3scPDSI and 4scPDSI temporal patterns (Table 2, Figure 4b and d
respectively). Diminished forest foliage water content between 2003 and 2007 was particularly
clear in the 4COVnNDII78–18ROT4V (Figure 4f, Table 2; abbreviation explained in Table 3) and
4COVnNDII78–18ROT4P (Figure 4g, Tables 2 and 3). Both PCs were highly correlated (Table 4),
and emerged from drought related variability detected in the 4COVnNDII78–18 (Figure 4d, Table 3)
subsequently strengthened through the rotation. Mutual correlation among the original and rotated
PCs was moderate (Table 4).
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Figure 4. Scores with a potential physical meaning of forest drought impact: (a) 3COVnNDVI8–18—
third PC from covariance based PCA of nNDVI8–18 time series; (b) 1CORNDII78–18—first PC from
correlation-based PCA of NDII78–18 dataset; (c) 1COVnNDII78–18—first PC form covariance-based
PCA of nNDII78–18 dataset; (d) 4COVnNDII78–18—fourth PC from covariance-matrix based
PCA of nNDII78–18 time series; (e) 3COVnNDVI8–18ROT5P—third PC from Promax rotation
of the first five scores resulted from covariance-matrix based PCA of nNDVI8–18 time series;
(f) 4COVnNDII78–18ROT4V—fourth PC from the Varimax rotation on the first four scores resulted
from covariance-matrix based PCA of nNDII78–18 time series; and (g) 4COVnNDII78–18ROT4P—fourth
PC from the Promax rotation of the first four scores resulted from covariance-matrix based PCA on
nNDII78–18 time series. PC’s naming convention is explained in Table 3. Time series abbreviations are
explained in Table 1.

The 1CORNDII78–18 (Figure 4b; Table 3) as well as 1COVnNDII78–18 (Figure 4c; Table 3) PCs
demonstrated, on a yearly bases, high correspondence with drought conditions approximated by the
1scPDSI (Table 2). Both temporal patterns rendered deteriorated forest foliage water content before 2008,
with two stronger declines in 2003 and 2007. Moreover, the 1COVnNDII78–18 PC indicated additional
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drop in 2004, which was in line with similar anomaly observed in the 4COVnNDII78–18ROT4P
(Figure 4f). Owing to phenology component, the 1CORNDII78–18 was weakly correlated with other
scores (Table 4). The 1COVnNDII78–18 (Table 3) also revealed no substantial connection to other PCs,
but for reverse moderate relation with the 3COVnNDVI8–18ROT5P score (Figure 4e, Tables 3 and 4).

Increasing aridity demonstrated through the overall scPDSI decline observed in the 3scPDSI
temporal profile governed forest response identified in the 3COVnNDVI8–18 (Figure 4a; Table 3)
and 3COVnNDVI8–18ROT5P PCs (Figure 4e; Table 3). The former was better correlated on a yearly
bases with the controlling 3scPDSI pattern (Table 2) as well as showed smoother temporal variability.
Since the 3COVnNDVI8–18ROT5P score employed the 3COVnNDVI8–18 related variance, both temporal
profiles bore considerable resemblance (Table 4), including strong positive anomaly in 2003.

Gradual scPDSI decline between 2003 and 2007 depicted in the 4scPDSI temporal pattern was
recognized as a secondary driver in the 4COVnNDII78–18 PC (Figure 4d).

Table 2. Correlation among investigated drought related PCs (in columns, index letters correspond with
Figure 4 and Table 3) and first four scPDSI temporal patterns approximating meteorological conditions.

PCs

a b c d e f g

1scPDSI ´0.310 0.736 * 0.717 * 0.608 * ´0.590 * 0.751 * 0.772 *
2scPDSI 0.360 ´0.172 ´0.199 0.502 0.186 0.301 0.241
3scPDSI 0.632 * ´0.576 * ´0.559 ´0.023 0.607 * ´0.331 ´0.397
4scPDSI 0.257 0.030 ´0.010 0.583* 0.029 0.466 0.400

*—significant at the level p < 0.05.

Table 3. Naming convention structure of seven PCs identified as carrying potential meaning of forest
response to recognized meteorological drought conditions. Index letters correspond with Figure 4,
whereas short names of datasets are explained in Table 1.

Index PC Name Score Order EOF Matrix
Rotation

Short Name of
Original Dataset

Scores Retained
for Rotation

Rotation
Approach

a 3COVnNDVI8–18 3 cov. nNDVI8–18 - -
b 1CORNDII78–18 1 cor. NDII78–18 - -
c 1COVnNDII78–18 1 cov. nNDII78–18 - -
d 4COVnNDII78–18 4 cov. nNDII78–18 - -
e 3COVnNDVI8–18ROT5P 3 cov. nNDVI8–18 (1–5) Promax
f 4COVnNDII78–18ROT4V 4 cov. nNDII78–18 (1–4) Varimax
g 4COVnNDII78–18ROT4V 4 cov. nNDII78–18 (1–4) Promax

Abbreviations: cor.—correlation; cov.—covariance; “-”—not applicable.

Table 4. Mutual correlation among investigated drought related PCs. PCs index letters correspond
with Figure 4 as well as Tables 2 and 3.

Index PC Name
PCs

a b c d e f g

a 3COVnNDVI8–18 1.000 *
b 1CORNDII78–18 ´0.207 * 1.000 *
c 1COVnNDII78–18 ´0.422 * 0.487 * 1.000 *
d 4COVnNDII78–18 0.267 * 0.032 0.000 1.000 *
e 3COVnNDVI8–18ROT5P 0.714 * ´0.352 * ´0.674 * ´0.031 * 1.000 *
f 4COVnNDII78–18ROT4V 0.320 * 0.187 * 0.339 * 0.617 * 0.025 1.000 *
g 4COVnNDII78–18ROT4V 0.285 * 0.226 * 0.497 * 0.659 * ´0.051 0.924 * 1.000 *

*—significant at the level p < 0.05.
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4. Discussion

4.1. Drought Conditions in South Tyrol

Four temporal patterns of meteorological variability were identified for South Tyrol between 2001
and 2012. Three of them indicated drought conditions or tendency for increasing aridity.

The strongest and most persistent drought conditions were depicted by the 1scPDSI between
2003 and 2007 (Figure 3a). They initiated with a very hot and dry summer of 2003, which resulted
from the pan-European summer heat wave of 2003 [69]. Consecutive year was also characterized
by below-normal scPDSI values, which harmonized with drought conditions observed in Western
Europe and the Mediterranean [70]. The 2005 drought circumstances comprised extremely arid
spring culminated in a drought peak in May–June. These extreme conditions were attributed
on exceptional setup of pressure system over Europe, and considerably affected the Iberian
Peninsula and central Mediterranean Basin [71]. Impact of the heat-wave of 2006, associated by
Rebetez et al. [72] mainly with Central and North Europe, was demonstrated in our analyses also
for South Tyrol. Meteorological conditions showed here below-average rainfall sums and extreme
temperatures from June onwards [73]. Finally, drought depicted in 2007 arose from averagely wet,
but extremely hot spring and summer of 2007. These conditions were related to drought events
observed in central Europe [3], Tyrol [74] as well as Mediterranean region [75]. Importantly, the
extensive, five-year-long (2003–2007) persistent drought conditions identified in our study are in strong
accordance with the drought response recognized for Central Europe by Ivits et al. [76]. An earlier
ingress of drought marked in the 1scPDSI (Figure 3a) and perceived in the southern and eastern parts
of South Tyrol (Figure 2) could be linked to the Mediterranean drought of 2001–2002 [76].

Drought conditions in 2009 and 2011–2012 depicted in the 3scPDSI (Figure 3c) were perceived
in the central and eastern part of South Tyrol (Figure 2) as well as the most western outskirts of the
province. They correspond well with drought alerts in Central Europe [3] and drought in western
and central Mediterranean basin [70]. Moreover, subtle scPDSI decreasing trend identified within the
3scPDSI temporal profile likely captured an on-going climate transformation and increasing aridity
in the region, suggested by Auer et al. [77]. A similar observation was made for the 4scPDSI which
indicated scPDSI decrease between 2003 and 2007 (Figure 3d).

Beside aforementioned drought events, identified meteorological variability indicated several
periods with precipitation surplus. The scPDSI increase in 2008, depicted in the 1scPDSI and 3scPDSI
(Figure 3a,c respectively), corresponds with a timing of Tropical Cyclone “Emma”, which hit Europe in
the spring of 2008 and preceded a hot but rainy summer. Moreover, the excess of rainfall observed
mainly in the northern part of South Tyrol in 2001 through 2002, and depicted in the 2scPDSI and
3scPDSI (Figure 3b,c) is in strong accordance with the continental weather variability and flood events
in Central Europe in 2002 [78]. In addition, wetter than average meteorological condition denoted
by the 1scPDSI and 3scPDSI during 2012 are also aligned with humid European weather patterns of
that year.

Four described temporal patterns comprised meteorological variability being strongly in line with
documented pan-European weather conditions as well as regional events. Unlike in [79], time evolution
patterns of the S-mode PCA decomposition explained high portion of the total scPDSI data variance,
which supports their credibility. Therefore we assumed all four PCs to have physical meaning.

Potential shortcoming of the applied scPDSI model originates from the algorithm underlying
assumption on a liquid phase of precipitation [80], which, in a case of the Alps, is not always fulfilled.
This issue can be further addressed through a scPDSI-incorporated snowmelt model [81]. Nevertheless,
since snowfall and concluding snow cover occur during vegetation dormancy and affect mostly alpine
and subalpine zones, leaving the colline and mountain forest under limited snow impact, it was
decided to keep the original assumption.
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4.2. Evaluation of Multiple S-mode PCA Decomposition Approaches and Data Setups

Inspected S-mode PCA settings and data setups produced variety of NDVI and NDII7 based PCs,
among which many scores demonstrated considerable accordance with drought conditions identified
by the scPDSI temporal patterns. Vegetation season time series were more successful in this task
than datasets comprising full year information. Applied truncating excluded vegetation dormancy
state and snow cover impacts, hence targeted analysis at the most relevant and “drought sensitive”
portion of data variance. Consequently, PCA decomposition of the vegetation season time series
was more efficient in identifying coherent temporal profiles of subtle drought induced changes in
forest photosynthetic activity and foliage water content. The z-score normalization combined with the
covariance-matrix based S-mode PCA further enhanced correspondence between resulting PCs and
scPDSI drought temporal patterns. Although the correlation matrix approach implies standardization
of a time series, the process is based on a global mean, therefore is ineffective in removing a seasonal
component from resulting PCs. On the contrary, adopted z-score normalizes each observation using a
composite mean, which is calculated across all years only for a given annual time period (corresponding
with only one MODIS 16-day composite). As a result, a z-score normalized time series carries more
exact information on divergence from “average conditions”. This approach reduces total variance of a
time series being introduced into PCA, hence allows on more efficient exploration of drought related
signal. Moreover, time-specific expression of anomalies corresponds better with conceptual drought
definitions as well as computation schemes of drought indices, including the scPDSI [1].

The advantage of loadings rotation on enhancing drought related forest vegetation response was
not obvious. Although some principal components constructed through a rotation indicated higher
correlations with the scPDSI temporal patterns, other cases showed deconstruction of drought related
variability identified in unrotated PCs. Differences between orthogonal Varimax and oblique Promax
solutions were limited, nevertheless the latter revealed slightly better correlation with the scPDSI
temporal profiles.

Both NDVI and NDII7 datasets introduced into the S-mode PCA decomposition provided
a selection of PCs with significant correlation to the scPDSI temporal profiles. Due to diverse
design and properties, NDVI focuses on photosynthetic activity rendering a straightforward canopy
status, whereas the NDII7 approximates tree foliage water content. Consequently, both indices
captured different but complementary drought induced changes in forest status. We suggest to use
them together, with a slight preferences for the NDII7, which has higher ability to capture forest
recovery and regrowth [82]. Since resulting PCs were evaluated against the scPDSI temporal profiles,
absolute assessment of identified drought impact was impossible.

4.3. Forest Drought Response Identified through PCA Decomposition of MODIS NDVI and NDII7 Time Series

Seven PCs showed prominent relation to the scPDSI temporal patterns approximating
2001–2012 meteorological drought conditions in South Tyrol. They depicted two particular drought
related phenomena: a gradual decline and prolonged reduction in forest status between 2004
and 2007. While the latter was mainly recognized in the NDII7 based PCs (1CORNDII78–18,
4COVnNDII78–18, 4COVnNDII78–18ROT4V and 4COVnNDII78–18ROT4P), and represented drought
coincident diminished foliage water content, identified downturn in forest status was fostered
by two NDVI based PCs (3COVnNDVI8–18 and 3COVnNDVI8–18ROT5P) and corresponded with
indicated increasing aridity of the alpine climate [77,83]. Since progressing dryness has been already
reported to sway ecological balance in the Alps [24,84–86] leading to uphill shift of vegetation
belts [18,87,88], alternation of phenological phases [89–91] and intensification of local dieback processes
(e.g., Minerbi et al., 2006; Theurillat and Guisan, 2001), we assume that detected NDVI tendency depicts
climate change governed decline of coniferous stands [23,24]. On the other hand, the 1COVnNDII78–18

score, as well as the 3COVnNDVI8–18 and 3CONnNDVI8–18ROT5P PCs considered with a reversed
sign, suggested increasing forest foliage water content and photosynthetic activity, which could
be explained by upturn of hardwood species being better adjusted to drought conditions [18,21].
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Both interpretations supplement each other, since due to altitudinal distribution of forest, drought
sensitive coniferous species grow at higher altitudes, whereas broadleaved trees are present mainly in
the valley floors and on lower parts of slopes [92].

Beside seemingly apparent long-term tendencies, PCA results shed some light on complex
short-term forest changes. Particularly interesting is diverse response to the heat wave of 2003. While a
decrease in tree foliage water content corresponding with 2003 productivity decline demonstrated by
Ciais et al. [93] was indicated in the 1COVnNDII78–18 and 1CORNDII78–18, the 3COVnNDVI8–18 as well
as 3COVnNDVI8–18ROT5P PCs implied abrupt increment in forest photosynthetic activity. The latter is
supported by results of Jolly et al. [94] who documented rise in alpine vegetation productivity at higher
elevations in response to released elevation gradient constraint. Moreover, aforementioned upturn in
forest photosynthetic activity depicted in the reversed 3COVnNDVI8–18 and 3COVnNDVI8–18ROT5P
scores, commenced with intense drop in 2003. This outline is in strong agreement with drought induced
local Scots Pine dieback in Eisack Valley followed by an intense growth of hardwood species of the
understory [55]. Corresponding transitions have already been observed in the Alps [18]. Finally, the
4COVnNDII78–18, 4COVnNDII78–18ROT4V and 4COVnNDII78–18ROT4P demonstrated NDII7 decline
not before 2004. This distinction could be, among others, attributed to different adaptation strategies to
drought and persistent aridity stress, which are controlled by environmental conditions (e.g., [30,95]),
tree species (e.g., [21,24,83]) or local tree competition (e.g., [18,27,29,96,97]). Furthermore, some tree
species response to drought can be physiologically lagged [27,30]. Since the nature of presented
analyses promotes the best correlation with the scPDSI pattern, delayed and more subtle forest
responses [98] could be overlooked. Moreover, the presented approach determines adoption of scPDSI
based definition of a drought event, including its inception and end. Identified drought related PCs,
although relatively eminent, addressed only limited portion of variability composing NDVI and NDII7
time series. Consequently, comprehension of physical mechanisms governing other, non-drought
related PCs would be valuable, but cannot be done without extensive ground truth information.

Despite the forest of South Tyrol is predominated by coniferous stands and all PCAs were
conducted without forest type distinction, our results allowed to recognize forest type specific
responses to stress conditions. Although this unspecific approach limits in-depth exploitation of
differences between drought response of coniferous and hardwood species, obtained results imply
considerable utility of the method, and encourage to test it further, including use of a more specific
forest division. However, it should be kept in mind that complex structure of the South Tyrolean forest,
combined with the coarse resolution of MODIS datasets make it challenging to identify homogeneous
regions or pixels with pure signal. Furthermore, less than 10% share of broadleaved and mixed stands
present an additional constraint for PCA.

We believe that despite adopted generalization, presented approach ensures a reliable approximation
of forest drought response on a regional scale.

5. Conclusions

Constantly rising risk of drought events necessitates the advancement in drought monitoring.
The task is especially important with respect to complex and diverse alpine forest ecosystems.
This study addresses this need presenting PCA (Principal Component Analysis) based synergy
between scPDSI (self-calibrated Palmer Drought Severity Index) data and remotely sensed time series
of vegetation indices. Demonstrated approach ensures robust regional review of short to medium
term meteorological conditions, and identification of complementary temporal profiles of forest status
evolution. Exemplified case study of South Tyrol confirms effectiveness of the method, as well as sheds
some light on regional drought conditions and resulting forest status.

The presented scPDSI S-mode PCA results provides an interesting insight and essential synthesis
of meteorological variability in South Tyrol between 2001 and 2012. The identified drought conditions
between 2003 and 2007, as well as increasing aridity trends are in strong accordance with other global
and local studies, and confirm intense drought impact in the region.
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Forest status analyzed with the S-mode PCA of MODIS derived 2001–2012 NDVI (Normalized
Difference Vegetation Index) and NDII7 (Normalized Difference Infrared Index band 7) time series
tend to follow recognized scPDSI temporal variability. The correlation between meteorological
conditions and PCs derived for time series of vegetation indices gave robust results supported by
acknowledged patterns of forest vegetation drought impacts and documented local case-studies.
Despite differences in temporal resolution of coupled time series, combination of quantitative and
qualitative evaluations allowed to identify the most prominent and meaningful temporal patterns
of forest drought responses: (i) diminished foliage water content between 2004 and 2007, which
was mainly supported by NDII7 based PCs; and (ii) decreasing (increasing) photosynthetic activity,
which was most commonly detected in the NDVI based scores. Regardless of the diverse PCA setups,
numerous PCs rendered similar information. This confirms robustness of the method in extracting
both dominant and latent drought stress conditions, and in indicating vegetation feedback as well as
the quality of applied vegetation related measures. Next to a general overview of climate change and
drought impact within the South Tyrolean forest, derived results ensure also more specific short-term
variability, which presumably originates from local differences in forest structure, species distribution
and environmental conditions. Although further analyses are required to fully comprehend detected
response, presented outcome is consistent with other studies.

Based on a comparison among multiple S-mode PCA setups we indicate the covariance-matrix
based decomposition of z-score normalized vegetation time series as the most suitable analysis design
for the alpine forest drought related temporal monitoring. Both NDVI and NDII7 MODIS derived
datasets provided reliable and complementary estimation of forest condition ensuring detection of
drought induced changes. Although no clear conclusion was drawn on the advantage of loadings
rotation, we consider the oblique Promax solution to reveal higher potential.

We believe our study suggests the efficient method for temporal monitoring of drought impact
on alpine mountain forest. Demonstrated robustness of the model facilitates its application for
other, less complex regions. Moreover, aptness of derived temporal patterns encourage to advance
the approach towards spatial recognition of identified drought evolution responses and further
examination of phenology and productivity within drought affected forest sties. This step will ensure
additional insight into recognized changes and allow on more detailed analyses that will conclusively
broaden our understanding of subtle complexity of drought impact on alpine forest ecosystem.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/8/639/s1,
Figure S1: First four PCs resulted from the S-mode correlation-matrix based PCA of the NDVI1–23 (full year
NDVI) time series, herein: (a) 1CORNDVI1–23; (b) 2CORNDVI1–23; (c) 3CORNDVI1–23 and (d) 4CORNDVI1–23.
Temporal pattern s explained 63.23%, 3.29%, 2.68% and 1.69% of the total NDVI1–23 time series variance
respectively, Figure S2: First four PCs resulted from the S-mode covariance-matrix based PCA of the
nNDVI1–23 (full year z-score normalized NDVI) time series, herein: (a) 1COVnNDVI1–23; (b) 2COVnNDVI1–23;
(c) 3COVnNDVI1–23 and (d) 4COVnNDVI1–23. Temporal patterns explained 18.55%, 5.35%, 2.31% and 1.79%
of the total nNDVI1–23 time series variance respectively, Figure S3: First four PCs resulted from the S-mode
correlation-matrix based PCA of the NDVI8–18 (vegetation season NDVI) time series, herein: (a) 1CORNDVI8–18;
(b) 2CORNDVI8–18; (c) 3CORNDVI8–18 and (d) 4CORNDVI8–18. Temporal patterns explained 41.94%, 4.77%,
3.04% and 2.68% of the total NDVI8–18 time series variance respectively, Figure S4: First four PCs resulted
from the S-mode covariance-matrix based PCA of the nNDVI8–18 (z-score normalized vegetation season NDVI)
time series, herein: (a) 1COVnNDVI8–18; (b) 2COVnNDVI8–18; (c) 3COVnNDVI8–18 and (d) 4COVnNDVI8–18.
Temporal patterns explained 15.25%, 5.65%, 3.37% and 2.28% of the total nNDVI8–18 time series variance
respectively, Figure S5: First four PCs resulted from the S-mode correlation-matrix based PCA of the NDII78–18
(vegetation season NDII7) time series, herein: (a) 1CORNDII78–18; (b) 2CORNDII78–18; (c) 3CORNDII78–18
and (d) 4CORNDII78–18. Temporal patterns explained 22.55%, 8.66%, 4.40% and 2.68% of the total NDII78–18
time series variance respectively, Figure S6: First four PCs resulted from the S-mode covariance-matrix based
PCA of the nNDII78–18 (z-score normalized vegetation season NDII7) time series, herein: (a) 1COVnNDII78–18;
(b) 2COVnNDII78–18, (c) 3COVnNDII78–18 and (d) 4COVnNDII78–18. Temporal patterns explained 11.98%, 3.39%,
2.23% and 1.66% of the total nNDII78–18 time series variance respectively, Figure S7: Plots of eigenvalues of (a) the
covariance-matrix based PCA decomposition of the nNDVI8–18 (vegetation season normalized NDVI) time series;
and (b) covariance-matrix based PCA decomposition of the nNDII78–18 (vegetation season normalized NDII7)
time series. Vertical lines represents cutoff value of the Cattell’s scree test: 5 and 4 for (a) and (b) respectively,
Figure S8: First four PCs (from (a) to (d) in increasing order) resulted from the Varimax rotation of the first
five loadings of the lowest order retained from the COVnNDVI8–18 PCA results (covariance-matrix based S-mode
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PCA of the z-score normalized vegetation-season NDVI time series); Figure S9: First four PCs (from (a) to (d) in
increasing order) resulted from the Promax rotation of the first five loadings of the lowest order retained from the
COVnNDVI8–18 PCA results (covariance-matrix based S-mode PCA of the z-score normalized vegetation season
NDVI time series); Figure S10:First four PCs (from (a) to (d) in increasing order) resulted from the Varimax rotation
of the first four loadings of the lowest order retained from the COVnNDII78–18 PCA results (covariance-matrix
based S-mode PCA of the z-score normalized vegetation season NDII7 time series); Figure S11: First four PCs
(from (a) to (d) in increasing order) resulted from the Promax rotation of the first four loadings of the lowest order
retained from the COVnNDII78–18 PCA results (covariance-matrix based S-mode PCA of the z-score normalized
vegetation season NDII7 time series), Table S1: Complete list of meteorological stations used in the study with
station number (corresponds with Figure 1), name of the location (in Italian), elevation and length of records used
in the survey, Table S2: Correlation between the scPDSI scores and first four PCs obtained through the S-mode
(a) correlation-matrix based PCA of the NDVI1–23 (full year NDVI) time series; (b) covariance-matrix based PCA
of the nNDVI1–23 (full year normalized NDVI) time series; (c) correlation-matrix based PCA of the NDVI8–18
(vegetation season NDVI) time series; (d) covariance-matrix based PCA of the nNDVI8–18 (vegetation season
normalized NDVI) time series; (e) correlation-matrix based PCA of the NDII78–18 (vegetation season NDII7) time
series; (f) covariance-matrix based PCA of the nNDII78–18 (vegetation season normalized NDII7) time series.
Due to inconsistent length of scPDSI, as well as NDVI and NDII7 based datasets all time evolution patterns were
converted into yearly average time series, Table S3: Correlation based comparison between first four corresponding
PCs derived from Varimax (V) and Promax (P) rotations (ROT) of (a) the first five loadings of the COVnNDVI8–18
dataset (covariance-matrix based S-mode PCA decomposition of the normalized vegetation season NDVI time
series) and (b) the first four loadings of the COVnNDII78–18 dataset (covariance-matrix based S-mode PCA
decomposition of the normalized vegetation season NDII7 time series), Table S4: Correlation among the scPDSI
scores and first four PCs obtained from Varimax (V) and Promax (P) rotations (ROT) of (a) the first five loadings
of the COVnNDVI8–18 dataset (covariance-matrix based S-mode PCA of the normalized vegetation season NDVI
time series) and (b) the first four loadings of the COVnNDII78–18 dataset (covariance-matrix based S-mode PCA
of the normalized vegetation season NDII7 time series. Due to inconsistent length of scPDSI, nNDVI8–18 and
nNDII78–18 datasets all time evolution patterns were converted into yearly average time series.
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Author Contributions: Katarzyna Ewa Lewińska (K.E.L.) and Eva Ivits (E.I.) developed a preliminary concept of
the study, which was further specified in cooperation with Mathias Schardt (M.S.) and Marc Zebisch (M.Z.) K.E.L.
performed the analyses, interpreted the data and wrote the first draft, which was further revised in collaboration
with E.I. and M.S.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
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NDVI Normalized Difference Vegetation Index
PC Principal component
PCA Principal Component Analysis
scPDSI self-calibrated Palmer Drought Severity Index

Appendix A

The PCA (Principal Component Analysis) identifies dominant components within a dataset
investigating an inter-relationship between its elements. Depending on which dataset dimensions
(space, time or field) are assigned as variables and samples, PCA is performed in one of six unique
modes [44,52]. Since time series analyses focus either on time or space domain, appropriate PCA
implementation accounts on S- and T-mode, respectively [51]. Once the data matrix is constructed,
accordingly to the selected mode, dominant components are identified by solving the eigenproblem
based either on covariance or correlation matrix.
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Mathematical principles of the S-mode covariance-matrix based PCA analysis are as following
(modified after: [43,99]):

Taking an M ˆ N dimensional data matrix F, where the M (rows) represents time and the N
(columns) stands for locations, and M > N a covariance matrix F is formed by:

RFF “ FtF (A1)

where the Ft is a transpose of F, and the RFiFj (a covariance between time series at i and j locations,
where i, j = 1 . . . N) is defined as:

RFiFj “
1

N´ 1

N
ÿ

t“1

Fi ptq Fj ptq (A2)

The RFF covariance matrix is next decomposed into the E and Λ matrices through solving the
eigenproblem (or eigenvalue problem):

RFFE “ E Λ (A3)

The Λ is a diagonal N ˆ N matrix of eigenvalues λN of RFF where λN are usually sorted in
decreasing order (λ1 > λ2 > . . . > λN).

Λ “

»

—

—

—

–

λ1 0 ¨ ¨ ¨

0 λ2 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

0
0
¨ ¨ ¨

0 0 ¨ ¨ ¨ λN

fi

ffi

ffi

ffi

fl

(A4)

The E is also an N ˆ N dimensions matrix, with each column being an EN eigenvector. Moreover,
each non-zero eigenvalue λN corresponds with only one EN eigenvector, and the eigenvectors are
ordered according to the eigenvalues. Each eigenvalue λN informs about the proportion of the total
variance in RFF explained by the corresponding eigenvector EN.

% o f explained variance o f N “
λN

řN
i“0 λi

ˆ 100 (A5)

Knowing that
Λ “ EtE “ EEt “ I (A6)

where I is the Identity Matrix, eigenvectors are clearly orthogonal, thus uncorrelated over space.
Projection of E on the original dataset F

A “ FE (A7)

gives an AN—a time evolution of the EN vector in time. This means that the F is now depicted by
the spatial representations of EN vectors called EOFs or loadings, and their time evolution AN called
principal components (PCs) or scores.

F “ AEt (A8)

Because a number of non-zero eigenvalues is usually K ď min(M, N), the effective amount of
components reconstructing the original time series F is not greater than the minimal dimension of data
matrix F. Equation (A8) can be then given as:

FN ptq “
K
ÿ

k“1

Ak ptq Ek
N (A9)

where E is N ˆ K, and A is M ˆ K, therefore F is M ˆ N.
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However presented reasoning works efficiently only for N < M (a number of space entries
is smaller than a number of observations in time). An alternative solution for N > M introduces
eigenproblem in Equation (A1) as:

Rt
FF “ FFt (A10)

and formula in Equation (A3) is considered as:

Rt
FFD “ D Λ (A11)

where D is next projected on F in order to derive E

E “ F D (A12)

Since F is M ˆ N, Rt
FF is M ˆM, and D is M ˆM, resulting E has to be M ˆM, which means that

not N, but only M eigenvectors are derived for this case. They correspond to the first M eigenvalues
of Λ.

Importantly, PCA decomposition can be done based not only on covariance but also on correlation
matrix. The former is advisable when data are “similar” or normalized a priori because covariance
matrix weights all observations equally. On the contrary, the correlation based approach works better
for non-normalized data of different scales, as correlation matrix implements standardization of a
dataset, which results in equal weights of all variables [52]. In general, standardization allows on
better identification of time/space patterns.

Correlation matrix is then calculated through a standardization of a covariance matrix

CFiFj “
RFiFj

?
RFiFi

a

RFjFj
(A13)

and the eigenproblem in Equation (A3) is posed as

CFFE “ E Λ (A14)

All the further convolution steps stay the same.
Additionally to standardization, covariance or correlation matrix is often additionally centered

(or “demeaned”; [43]), which makes the variation relative to the mean. Importantly, centering done
in the S-mode orientation (the mean is calculated for each location over time) detrend over space
removing geographical differences. Conversely, when the centering is performed in the T-mode
(the mean is calculated over space for each time step) results are detrended over time [51].

As indicated by Richman Michael B. [52], the PCA decomposition can be affected by domain
shape dependence, instability of subdomains, and inaccuracy of EOFs (hence also PCs) desolation,
which result in misleading explanation of physical processes. These issues can be addressed through
a rotation of a first few EOFs. The process, which is performed only on a subset of the total
variance, strengthens and simplifies already detected patterns maximizing variance of rotated loadings,
(hence also resulting PCs), which leads to further clumping of similar modes. Additionally, regardless
whether the orthogonal or oblique (procrustes) rotation model is applied, the physically unrealistic
orthogonality hypothesis is released, which means the new EOFs and PCs are correlated [99]. Due to
this, the rotation is a controversial approach and according to [43] should be considered individually
for each dataset and intended application of PCA results.

Rotation can be realized through multiple transformations, among which the most popular are
Varimax [53] and Promax [54] models for orthogonal and oblique rotation, respectively.

Although identification of an optimum number of factors to be rotated is an extremely crucial
step, this selection is usually based on non-statistical approaches, therefore it is also the most elusive
part of the process. The most frequently used stopping rules include (after [100]):
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‚ Kaiser’s stopping rule [101], which proposes to rotate all loadings with eigenvalue ě1.
‚ Cattell’s scree test [68], in which the selection is based on a visual interpretation of the eigenvalues

plot and identification of a transition point between incline and leveled line. Because the transition
point belongs to the leveled part, only loadings of a lower order than the transition point are
rotated. Cattell’s scree test can be recognized as simplified graphical solution of the N rule [44].

‚ A priori criterion, where a number of rotated factors is set beforehand.
‚ Non-trivial factors approach, in which only these loadings are rotated that have at least

three variables loadings above a certain threshold (customary 0.3).
‚ Percent of cumulative variance criterion, in which rotated are these foremost loadings that

eigenvalues sum up to a predefined value.

There is no clear recommendation of the stopping approach. Two of the most frequently used
are the Kaiser’s stopping rule and Cattell’s scree test. On the one hand, relatively neat Kaiser’s rule
is sometimes considered a very inaccurate method [102]. On the other hand, elusive and seemingly
inaccurate plot interpretation based scree test seems to be a reliable approach for determining a number
of loadings to retain.
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