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Abstract: Urban flooding is a serious natural hazard to many cities all over the world, which has
dramatic impacts on the urban environment and human life. Urban flooding mapping has practical
significance for the prevention and management of urban flood disasters. Remote sensing images
with high temporal resolutions are widely used for urban flooding mapping, but have a limitation
of relatively low spatial resolutions. In this study, a new method based on a generalized regression
neural network (GRNN) is proposed to achieve improved accuracy in super-resolution mapping of
urban flooding (SMUF) from remote sensing images. The GRNN-SMUF algorithm was proposed and
then assessed using Landsat 5 and Landsat 8 images of Brisbane city in Australia and Wuhan city
in China. Compared to three traditional methods, GRNN-SMUF mapped urban flooding more
accurately according to both visual and quantitative assessments. The results of this study will
improve the accuracy of urban flooding mapping using easily-available remote sensing images with
medium-low spatial resolutions and will be propitious to the prevention and management of urban
flood disasters.

Keywords: generalized regression neural network; super-resolution mapping; urban flooding;
remote sensing images

1. Introduction

Urban flooding is the inundation of land or property in densely-populated areas usually caused
by heavy rainfalls. It is a serious natural hazard to many cities all over the world, which has dramatic
impacts on the urban environment and human life [1–3]. For example, Brisbane city of Australia
and New York City of the United States have both experienced significant flood events in recent
years. In January 2011, the Brisbane River flooded and inundated more than 20,000 houses [3];
in October 2012, Hurricane Sandy hit New York City and produced a major storm surge, which flooded
much of the city [3]. Therefore, it is a crucial task to effectively monitor and manage urban flooding and
to ensure the resilience of cities. Urban flooding mapping has practical significance for the prevention
and management of urban flood disasters. Flooding mapping needs to use high temporal remote
sensing images [4–6], but these images usually have relatively low spatial resolutions. The mixed pixel
issue, in which one pixel covers multiple types of land surfaces, commonly occurs in such images.
It negatively affects the mapping accuracy of urban flooding. One way to deal with the mixed pixel
issue is to combine high temporal resolution images with high spatial resolution images to make both
high temporal and high spatial resolution maps [7–9]. Another way is super-resolution mapping.
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Super-resolution mapping, also known as sub-pixel mapping, has been designed to tackle
the mixed pixel issue. It aims to obtain more accurate sub-pixel information based on the spatial
dependence assumption [10] and can divide mixed pixels into multiple sub-pixels to achieve a higher
mapping accuracy from remote sensing images with relatively low spatial resolutions. Every sub-pixel
is classified to one land cover type according to fraction images, which represent the area proportions
of land cover types within the mixed pixels. Many super-resolution mapping methods have been
proposed [10–17], such as the pixel swapping algorithm, spatial attraction models (SAM), conditional
random fields, noniterative interpolation-based method, particle swarm optimization, the Hopfield
neural network and the back-propagation neural network (BPNN). However, because of the uncertainty
of remote sensing images, super-resolution mapping of urban flooding (SMUF) from such images is
complicated. There are many possible sub-pixel distributions in the mixed pixels in SMUF. It is still
difficult to obtain the optimal results of SMUF. Therefore, SMUF needs a further improvement.

Neural networks have attracted extensive attention in artificial intelligence and relevant research
fields [15–17], and their popularity is still increasing. The general regression neural network (GRNN) is
a memory-based network and converges to the underlying regression surface [18]. The generalization
ability of GRNN is maintained, even when applied to sparse data in a multidimensional measurement
space [18]. GRNN features fast learning that does not require an iterative procedure [18]. Based on
a probability density function of GRNN, the chances of falling into local optimums are very low in
the supervised training process [19]. Due to its excellent performance in classification, prediction and
control, GRNN has been used in many fields in recent years, such as environmental sciences [20–24],
energy [25–28], food sciences [29,30], traffic [31,32], chemical sciences [33], pharmaceutical sciences [34]
and remote sensing [35–37].

SMUF from remote sensing images using GRNN is relatively rare in the literature. In this study,
a new GRNN-based SMUF (GRNN-SMUF) method is proposed to improve the accuracy in mapping
urban flooding at a sub-pixel scale from remote sensing images. The main objectives are: (1) to
develop the GRNN-SMUF algorithm; (2) to compare the effects of GRNN-SMUF to SAM-SMUF,
standard BPNN-SMUF (SBPNN-SMUF) and Bayesian regulation BPNN-SMUF (BRBPNN-SMUF)
using Landsat 5 and Landsat 8 images of Brisbane city in Australia and Wuhan city in China; and (3) to
discuss the super-resolution mapping accuracy of GRNN-SMUF in relation to the spread parameter
and the percentage of training samples.

2. Methodology

2.1. Principle of SMUF

SMUF is designed to acquire the distribution of urban flooding at the sub-pixel scale. It maximizes
the spatial dependence and at the same time maintains the original flooding proportion of the mixed
pixels. The fraction image of urban flooding is the input to SMUF, where fraction values stand for the
proportion of flooding in mixed pixels. Let S stand for the scale factor between mixed pixels and their
sub-pixels. SMUF divides mixed pixels into Sˆ S sub-pixels. For example, if S is 5, SMUF divides
each mixed pixel into 25 sub-pixels. An illustration of SMUF is shown in Figure 1. A fraction image
is shown in Figure 1a. The fraction value of the central mixed pixel is 32%, so the mixed pixel can
be regarded as a composition of 8 flooding sub-pixels and 17 non-flooding sub-pixels. The fraction
value does not specify the spatial distribution of flooding, so there could be many different possible
compositions of sub-pixels. Therefore, it is complicated to find out the optimal sub-pixel distribution,
which gives the highest mapping accuracy. Figure 1c shows the corresponding discrete encoding of
the central mixed pixel where flooding is represented by 1 and non-flooding is represented by 0.
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Figure 1. An illustration of SMUF (scale = 5). (a) Fraction image of urban flooding; (b) A possible 
SMUF result; (c) Corresponding discrete encoding of the central mixed pixel. 

2.2. Traditional Algorithms 

SAM-SMUF uses SAM to acquire the distribution of urban flooding at the sub-pixel scale. SAM 
is on the basis of the fraction values in the neighbourhood, which act towards sub-pixels inside a 
central pixel [11]. In SAM, at most eight neighbouring pixels around the central pixel are taken into 
account for attraction.  

SBPNN-SMUF constructs a local SMUF model based on SBPNN to describe the relationship 
between sub-pixel distributions within a mixed pixel and the fractions of the eight neighbouring 
pixels of the mixed pixel. SBPNN is made up of one input layer, one or more hidden layers and one 
output layer. SBPNN is trained through multiple feed-forward and back-propagated phases. 
BRBPNN-SMUF has the same architecture as SBPNN-SMUF. Different from SBPNN-SMUF, 
BRBPNN-SMUF uses Bayesian regulation to train the back-propagation neural network. 

2.3. GRNN-SMUF Algorithm 

GRNN is a powerful mathematical tool for solving complex nonlinear problems [18].  
GRNN-SMUF constructs a local SMUF model based on GRNN to describe the relationship between 
sub-pixel distributions within a mixed pixel and the fractions of the eight neighbouring pixels of the 
mixed pixel. GRNN-SMUF consists of an input layer, one pattern layer, one summation layer and an 
output layer. The pattern layer and summation layer are also called hidden layers because they are 
internal to the neural network and do not have direct contact with the external environment. The 
GRNN-SMUF architecture is shown in Figure 2. GRNN-SMUF does not require an iterative training 
procedure. There are eight neurons in the input layer, corresponding to eight adjacent neighbours to 
the mixed pixel. The input layer is connected to the pattern layer. Each neuron in the pattern layer 
represents a training pattern. The pattern layer performs a nonlinear transformation on the input 
data. Its output measures the distance of the input data from the training patterns. The summation 
layer has two different types of neurons—one D summation neuron (in pink) and multiple S 
summation neurons (in green), respectively. All of the neurons in the pattern layer are connected to 
the one D summation neuron and the S summation neurons. The D summation neuron is used to 
compute the sum of unweighted outputs of the neurons in the pattern layer. The S summation 
neurons are used to calculate the sum of weighted outputs of the neurons in the pattern layer. The 
neuron in the output layer calculates the quotient of the two outputs of the summation layer to yield 
the predicted result. When the scale factor S  is 5, there are 25 neurons in the output layer, 
corresponding to the 25 sub-pixels within the mixed pixel.  

 

Figure 1. An illustration of SMUF (scale = 5). (a) Fraction image of urban flooding; (b) A possible
SMUF result; (c) Corresponding discrete encoding of the central mixed pixel.

2.2. Traditional Algorithms

SAM-SMUF uses SAM to acquire the distribution of urban flooding at the sub-pixel scale. SAM is
on the basis of the fraction values in the neighbourhood, which act towards sub-pixels inside a central
pixel [11]. In SAM, at most eight neighbouring pixels around the central pixel are taken into account
for attraction.

SBPNN-SMUF constructs a local SMUF model based on SBPNN to describe the relationship
between sub-pixel distributions within a mixed pixel and the fractions of the eight neighbouring pixels
of the mixed pixel. SBPNN is made up of one input layer, one or more hidden layers and one output
layer. SBPNN is trained through multiple feed-forward and back-propagated phases. BRBPNN-SMUF
has the same architecture as SBPNN-SMUF. Different from SBPNN-SMUF, BRBPNN-SMUF uses
Bayesian regulation to train the back-propagation neural network.

2.3. GRNN-SMUF Algorithm

GRNN is a powerful mathematical tool for solving complex nonlinear problems [18].
GRNN-SMUF constructs a local SMUF model based on GRNN to describe the relationship between
sub-pixel distributions within a mixed pixel and the fractions of the eight neighbouring pixels of
the mixed pixel. GRNN-SMUF consists of an input layer, one pattern layer, one summation layer
and an output layer. The pattern layer and summation layer are also called hidden layers because
they are internal to the neural network and do not have direct contact with the external environment.
The GRNN-SMUF architecture is shown in Figure 2. GRNN-SMUF does not require an iterative training
procedure. There are eight neurons in the input layer, corresponding to eight adjacent neighbours to
the mixed pixel. The input layer is connected to the pattern layer. Each neuron in the pattern layer
represents a training pattern. The pattern layer performs a nonlinear transformation on the input data.
Its output measures the distance of the input data from the training patterns. The summation layer
has two different types of neurons—one D summation neuron (in pink) and multiple S summation
neurons (in green), respectively. All of the neurons in the pattern layer are connected to the one D
summation neuron and the S summation neurons. The D summation neuron is used to compute the
sum of unweighted outputs of the neurons in the pattern layer. The S summation neurons are used to
calculate the sum of weighted outputs of the neurons in the pattern layer. The neuron in the output
layer calculates the quotient of the two outputs of the summation layer to yield the predicted result.
When the scale factor S is 5, there are 25 neurons in the output layer, corresponding to the 25 sub-pixels
within the mixed pixel.
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Figure 2. General regression neural network (GRNN)-SMUF architecture (scale = 5). 

Let independent variable 1 2 8[ , , ]TX x x x=   be the input vector, which corresponds to eight 

adjacent neighbours of a mixed pixel. Let dependent variable 1 2 *[ , , ]T
S SY y y y=   be the output 

vector, which corresponds to the distributions of *S S  sub-pixels within the mixed pixel. GRNN 
can estimate the value of Y  for a new X  through the network. The estimated ˆ( )Y X  can be 
calculated as follows [18]: 

2 2

1

2 2

1

exp( / 2 )
ˆ ( )

exp( / 2 )

n

i i
i

n

i
i

Y D
Y X

D

=

=

− σ
=

− σ




 (1) 

2 ( ) ( )T
i i iD X X X X= − ⋅ −  (2) 

where ˆ ( )Y X  is the weighted average of all of the training samples in essence, and the weight for iY  

is the exponential of the squared Euclidian distance between X  and iX · ( , )i iX Y  is a training 
sample of ( , )X Y . n  is the number of training samples. σ  is the spread parameter, which is the 
kernel width of the Gaussian function. The value of the spread parameter affects the performance of 
GRNN-SMUF. 

3. Case Study 

3.1. Study Materials 

Heavy floods hit Brisbane city and Wuhan city in January 2011 and June 2013, respectively. 
Two study areas were chosen from these two cities for comparison. The Landsat 5 image for 
Brisbane city was acquired on 16 January 2011, and the Landsat 8 image for Wuhan city was 
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Figure 2. General regression neural network (GRNN)-SMUF architecture (scale = 5).

Let independent variable X “ rx1, x2, ¨ ¨ ¨ x8s
T be the input vector, which corresponds to

eight adjacent neighbours of a mixed pixel. Let dependent variable Y “ ry1, y2, ¨ ¨ ¨ yS˚Ss
T be the

output vector, which corresponds to the distributions of S ˚ S sub-pixels within the mixed pixel.
GRNN can estimate the value of Y for a new X through the network. The estimated ŶpXq can be
calculated as follows [18]:
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where ŶpXq is the weighted average of all of the training samples in essence, and the weight for Yi is
the exponential of the squared Euclidian distance between X and Xi ¨ pXi, Yiq is a training sample of
pX, Yq. n is the number of training samples. σ is the spread parameter, which is the kernel width of the
Gaussian function. The value of the spread parameter affects the performance of GRNN-SMUF.

3. Case Study

3.1. Study Materials

Heavy floods hit Brisbane city and Wuhan city in January 2011 and June 2013, respectively.
Two study areas were chosen from these two cities for comparison. The Landsat 5 image for Brisbane
city was acquired on 16 January 2011, and the Landsat 8 image for Wuhan city was acquired on
13 June 2013, respectively. Both image sizes are 500 ˆ 500 pixels. The spatial resolution of the images is
30 m. Two study areas are shown in Figure 3. The flooding reference images in Figure 3 were derived
from the corresponding Landsat images using the modified normalized difference water index [38–40].
The flooding fraction images in Figure 3 were obtained by aggregating the corresponding flooding
reference images. The aggregated pixel value equals the proportion of flooding pixels inside the
corresponding Sˆ S window. In this study, the scale factor S is set at five, so the spatial resolution of
the flooding fraction images is 150 m.
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Figure 3. Experimental images of the two study areas. (a) Brisbane city, Australia; (b) Wuhan city, China.

3.2. Experimental Results

The four SMUF methods for comparison in the study are SAM-SMUF, SBPNN-SMUF,
BRBPNN-SMUF and GRNN-SMUF. The inputs of the SMUF methods were the flooding fraction
images. The same neighbouring type was used for all of the methods. Thirty percent mixed pixels
were randomly selected as training samples for SBPNN-SMUF, BRBPNN-SMUF and GRNN-SMUF.
The hidden layer number of SBPNN-SMUF and BRBPNN-SMUF was one. The spread parameter of
GRNN-SMUF was set at 0.2.

The results of the two study areas for the four SMUF methods are shown in Figure 4 for Brisbane
and Figure 5 for Wuhan. The same small regions from the reference images and result images are
zoomed to show the details in Figures 4f and 5f. As shown in Figure 4, especially in Figure 4f,
GRNN-SMUF produced the most satisfactory visual SMUF result among the four SMUF methods
for Brisbane city, being the most similar to the reference image. GRNN-SMUF mapped the Brisbane
River and its tributaries more smoothly and continuously than other SMUF methods. From Figure 5,
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especially from Figure 5f, GRNN-SMUF also produced the most satisfactory visual SMUF result for
Wuhan city.
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Figure 4. Comparisons of SMUF results for Brisbane city (scale = 5). (a) Reference image
(500 ˆ 500 pixels); (b) spatial attraction model (SAM)-SMUF; (c) standard back-propagation neural
network (SBPNN)-SMUF; (d) Bayesian regulation BPNN (BRBPNN)-SMUF; (e) GRNN-SMUF;
(f) zoomed images (50 ˆ 50 pixels).
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Figure 5. Comparisons of SMUF results for Wuhan city (scale = 5). (a) Reference image
(500 ˆ 500 pixels); (b) SAM-SMUF; (c) SBPNN-SMUF; (d) BRBPNN-SMUF; (e) GRNN-SMUF; (f) zoomed
images (50 ˆ 50 pixels).

For quantitative assessments of the different SMUF methods, we compared the SMUF results using
overall accuracy (OA), Kappa coefficient (KC), average producer’s accuracy (APA) and average user’s
accuracy (AUA) [41–43] (Table 1). All non-mixed pixels in the flooding fraction images were excluded
from calculating the mapping accuracy. From Table 1, we can see that GRNN-SMUF outperformed
other methods with the highest OA, KC, APA and AUA. SBPNN-SMUF was the worst performer using
these measures, while BRBPNN-SMUF outperformed SAM-SMUF in general. For example, the OA
values of SAM-SMUF, SBPNN-SMUF, BRBPNN-SMUF and GRNN-SMUF are 83.0%, 78.7%, 84.6% and
85.8% in Study Area 1, respectively. The OA values of SAM-SMUF, SBPNN-SMUF, BRBPNN-SMUF
and GRNN-SMUF are 83.9%, 79.5%, 84.9% and 86.1% in Study Area 2, respectively.
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Table 1. Quantitative assessments of different SMUF methods. KC, Kappa coefficient; APA, average
producer’s accuracy; AUA, average user’s accuracy.

Methods
Study Area 1 Study Area 2

OA (%) KC APA (%) AUA (%) OA (%) KC APA (%) AUA (%)

SAM-SMUF 83.0 0.500 71.5 83.4 83.9 0.558 75.5 81.9
SBPNN-SMUF 78.7 0.406 68.4 73.7 79.5 0.435 69.8 75.2
BRBPNN-SMUF 84.6 0.573 76.1 83.0 84.9 0.598 78.2 82.3
GRNN-SMUF 85.8 0.603 77.3 85.3 86.1 0.628 79.5 84.2

SMUF is a complex multidimensional issue. There are many possible sub-pixel distributions in
mixed pixels in SMUF. The generalization ability of GRNN is maintained, even when applied to sparse
data in a multidimensional measurement space [18]. Therefore, GRNN-SMUF can obtain satisfactory
results and outperform the traditional methods in this complex situation.

4. Discussion

4.1. Discussion of the Spread Parameter

The spread parameter (SP) is the kernel width of the Gaussian function and is a key parameter
of GRNN-SMUF, which affects its mapping accuracy. The super-resolution mapping accuracy of
GRNN-SMUF in relation to SP was analysed. The Landsat 5 image for Brisbane city was used with
different SP values. Other parameters were the same as those in the case study. Super-resolution
mapping accuracy of GRNN-SMUF for each SP value is shown in Figure 6 and Table 2. It indicates
that with the increase of the SP value, the OA value firstly increases to the maximum value of 85.8%
when SP is 0.20 and then decreases. Although KC, APA and AUA reach their maximum values at
different SP values (0.10, 0.10, 0.40, respectively), they also firstly increase to the maximum and then
decrease in general. That is because the larger the SP value, the smoother the function approximation,
while the function approximation will not fit the training samples closely, if the SP value is too large.
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Table 2. Super-resolution mapping accuracy of GRNN-SMUF in relation to the spread parameter (SP).

SP OA (%) KC APA (%) AUA (%)

0.05 84.3 0.588 78.3 80.9
0.10 85.5 0.610 78.7 83.1
0.15 85.5 0.602 77.7 84.0
0.20 85.8 0.603 77.3 85.3
0.25 85.5 0.587 76.1 85.7
0.30 85.3 0.578 75.5 85.9
0.35 85.1 0.570 74.9 86.1
0.40 84.8 0.556 74.1 86.5
0.45 84.4 0.544 73.4 86.1
0.50 84.0 0.530 72.8 85.3

4.2. Discussion of Training Sample Numbers

GRNN-SMUF is a supervised algorithm, where the number of training samples (TS) affects
the mapping accuracy of GRNN-SMUF. The super-resolution mapping accuracy of GRNN-SMUF in
relation to TS was analysed. The Landsat 5 image for Brisbane city was used with different TS values.
Other parameters were the same as those in the case study. The super-resolution mapping accuracy
of GRNN-SMUF for each TS value is shown in Figure 7 and Table 3. It shows that the higher the
percentage of TS, the higher the value of OA. The value of OA increases from 83.2% to 88.8% when the
percentage of TS rises from 10% to 100%. The values of KC, APA and AUA have a similar increasing
trend as that of OA. That is because the larger the percentage of TS, the more closely the function
approximation fits the samples, which increases the accuracy of SMUF.
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Table 3. Super-resolution mapping accuracy of GRNN-SMUF in relation to the percentage of training
samples (TS).

TS (%) OA (%) KC APA (%) AUA (%)

10 83.2 0.540 74.9 80.3
20 84.6 0.568 75.7 83.3
30 85.8 0.603 77.3 85.3
40 86.6 0.629 78.7 86.1
50 87.0 0.640 79.2 86.9
60 87.7 0.659 80.0 87.8
70 88.0 0.670 80.6 88.2
80 88.3 0.676 80.9 88.6
90 88.6 0.684 81.2 89.2

100 88.8 0.688 81.2 89.9

5. Conclusions

Urban flooding is a serious natural hazard for many cities all over the world. In this study,
a new method called GRNN-SMUF was proposed to achieve improved accuracy in super-resolution
mapping of urban flooding from remote sensing images. The GRNN-SMUF algorithm was proposed
and then assessed using Landsat 5 and Landsat 8 images from Brisbane city in Australia and Wuhan
city in China. GRNN-SMUF was compared to three other SMUF methods, and it mapped the urban
flooding more smoothly and continuously in the two cities. Besides a superior performance visually,
SMUF consistently achieved more accurate results than these other SMUF methods according to the
quantitative measures of OA, KC, APA and AUA. The OA values of SAM-SMUF, SBPNN-SMUF,
BRBPNN-SMUF and GRNN-SMUF for Brisbane city are 83.0%, 78.7%, 84.6% and 85.8%, respectively.
The OA values of SAM-SMUF, SBPNN-SMUF, BRBPNN-SMUF and GRNN-SMUF for Wuhan city are
83.9%, 79.5%, 84.9% and 86.1%, respectively. The super-resolution mapping accuracy of GRNN-SMUF
in relation to the spread parameter and to the percentage of training samples was discussed.

The results of this study will improve the accuracy of urban flooding mapping from remote
sensing images with medium-low spatial resolutions and will be propitious to the prevention and
management of urban flood disasters. Possible further study of this research will focus on the
integration of GRNN-SMUF and other intelligent algorithms to further improve the accuracy of SMUF
from remote sensing images.
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