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Abstract: Digital terrain models (DTM) have been used in soil mapping worldwide. When using
such models, improved predictions are often attained with the input of extra variables provided by
the use of proximal sensors, such as magnetometers and portable X-ray fluorescence scanners (pXRF).
This work aimed to evaluate the efficiency of such tools for mapping soil classes and properties in
tropical conditions. Soils were classified and sampled at 39 locations in a regular-grid design with
a 200-m distance between samples. A pXRF and a magnetometer were used in all samples, and
DTM values were obtained for every sampling site. Through visual analysis, boxplots were used to
identify the best variables for distinguishing soil classes, which were further mapped using fuzzy
logic. The map was then validated in the field. An ordinary least square regression model was used
to predict sand and clay contents using DTM, pXRF and the magnetometer as predicting variables.
Variables obtained with pXRF showed a greater ability for predicting soil classes (overall accuracy of
78% and 0.67 kappa index), as well as for estimating sand and clay contents than those acquired with
DTM and the magnetometer. This study showed that pXRF offers additional variables that are key
for mapping soils and predicting soil properties at a detailed scale. This would not be possible using
only DTM or magnetic susceptibility.

Keywords: magnetic susceptibility; portable X-ray fluorescence scanner; data mining; fuzzy logics;
ordinary least square multiple linear regression

1. Introduction

The small scale of most soil maps in Brazil is not suitable for land use planning and for defining
soil and water conservation practices, which need to be done in more detail, i.e., at the level of
watersheds [1], as established by the current legislation in Brazil [2]. The lack of financial support along
with the large area of the country and the scarcity of roads are some of the main issues restricting the
creation of more detailed soil maps, since they require intensive field work for sampling and classifying
soils. In this sense, digital soil mapping and modeling are viewed as an alternative to increase not
only soil information [3], but also the accuracy required for detailed soil maps, by the adoption of
new tools and techniques to analyze, integrate and visualize soil and environmental datasets [4].
In recent years, extra effort has been put into the creation and use of new covariates that represent
soil-forming factors [5,6], which are crucial for achieving adequate accuracy in soil mapping and a
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better understanding of soil modeling. Thus, the investigation of the main drivers of pedogenesis, as
well as their geographic patterns is a key point for a successful mapping and modeling.

The study area of this work comprises the complete soil-landscape variations of Latosols (Oxisols),
whose distribution pattern is commonly observed in the surrounding region. Previous studies have
pointed out parent material and age as the main drivers of soil differentiation in the region [7,8].
Such studies attempted to define soil-landscape relationships from erosional surfaces and their
relationship with parent material, soil classes and properties. One of the main findings of these
studies performed by [7,8] was the low predictive power of topography. It is important to emphasize
that during those preliminary findings, geographic information systems and digital elevation models
were not available. Besides the predominance of Latosols (Oxisols), these studies highlighted important
parent material contrasts, including soils derived from gabbro, leucocratic gneiss (predominance of
lighter minerals), and mesocratic gneiss (higher contents of darker minerals), exerting strong influence
on soil properties. These studies also indicated the importance of having detailed geologic maps in
the region, as well as in most areas of Brazil, which might improve soil maps and prediction models.
Such findings reveal the need for new techniques that may well improve the tacit models developed
by pedologists. By providing new insights on soil-landscape relationships and detailed information
on parent material differentiation, such techniques could offer more specific terrain models through
remote sensing data and increase the amount of information about soils, thus improving soil mapping
and modeling in the area.

One of the most common soil-forming factors used in the predictions of soil classes and properties
is topography [4,9–11], by analyses of a digital elevation model and its derivatives (digital terrain models
(DTMs)), e.g., slope, terrain curvatures, topographical wetness index, aspect, etc. Such maps have
been extensively used in recent years, since soils occur in response to water movement throughout the
landscape, which is controlled by local relief [11]. Additionally, considering the continuous nature of
DTM variation (raster-based distribution), they have been used in soil predictive models for providing
spatially-exhaustive auxiliary variables [12,13], although it is commonly known that soils result from a
complex interaction of soil-forming factors [14]. In this sense, the use of DTM is considered very useful
in environments where topography is strongly related to the processes driving soil formation [11,15].

Despite the fact that DTMs have been used worldwide as adequate predictors of soil properties,
recent studies are searching for new tools associated with soil attributes, especially those concerning
chemical features. For example, some soil chemical elements or properties could function as tracers or
indicators of different parent materials, which, in turn, could be related to soil classes and properties.
At last, this information could potentially improve soil mapping and modeling. In this sense,
equipment that performs fast analyses in the field and provides a large spectrum of data, such
as proximal sensors, has been recently adopted to help soil mapping. Proximal sensing includes
proximal or remote in situ and ex situ (field and laboratory) non-invasive or intrusive and mobile or
stationary devices [16]. Some examples are magnetometers, which quantify the magnetic susceptibility
of different materials, and portable X-ray fluorescence (pXRF) scanners, used to identify and quantify
chemical elements and compounds present in soil samples [17].

Magnetic susceptibility is obtained from the ratio of induced magnetization in relation to the
intensity of the magnetizing field and is being considered a simple, sensitive, inexpensive and
non-destructive analysis [18]. It has been used as a proxy method for heavy metals [18,19] and pollution
screening [20,21], sediment tagging and tracing [22] in erosion studies [22,23], for discriminating
individual soils and horizons [24], for soil survey purposes [25,26] and to quantity magnetic minerals
in soils and to relate soil-forming process [25,27–29]. For soil minerals, such studies involve measuring
the response of the material of concern to a series of externally-applied magnetic fields, which, in soils,
results mainly from the presence of magnetite and maghemite [24,30]. Thus, the major interest of soil
magnetic studies is iron oxides, as different iron forms and dynamics reflect different soil-forming
factors and processes [25].

Portable X-ray fluorescence scanners (pXRF) are another class of sensors used in recent
studies involving soils to assess total elemental contents and to make predictions regarding soil
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properties [17,31–33]. In theory, a pXRF is able to detect many elements of the periodic table, since
each one has a typical fluorescence energy. Such sensors have the advantage of being a portable
proximal sensing tool that provides immediate estimates of contents of various chemical elements in
soils, with none or minimum sample pre-processing [32,33]. Results showed that pXRF devices provide
adequate analytical accuracy when compared to conventional laboratory-based methods [17,32,34,35].
On the other hand, few efforts have been made to apply proximal sensors on predictions of soil physical
properties [33]. Furthermore, parent material and the intensity of both weathering and pedogenesis
may exert strong influences on soil physical properties, such as soil particle size distribution [36],
because its pattern represents a unique combination of primary and secondary minerals, reflecting
the elemental composition of soils [33]. However, these technologies still require tests to help soil
mapping, especially in regions with a lack of detailed soils and geology information, such as in tropical
environments. Digital mapping and modeling techniques have made progress due to increased data
availability and their combination with theoretical and conceptual soil models [37], as well as the
integration of pedological knowledge into digital soil mapping [38]. Thus, proximal sensing along
with geographic information systems, predictive models and pedological knowledge can be used to
characterize the spatial distribution of soils across the landscape [11].

Thus, considering the contrast of parent material in the study area and the potential of proximal
sensors in detecting soil chemical composition that is related to parent material [32,39], this study
attempts to: (i) evaluate the efficiency of proximal sensors (magnetometer and pXRF) in addition to
DTM to create a detailed soil map of an area with highly variable geology; and (ii) generate models for
predicting soil particle size distribution based on data obtained from those sensors, DTM and parent
material in Latosols (Oxisols), in Brazil. Such tools were evaluated in two ways: areal-based (detailed
soil class maps) and point-based (OLS multiple linear regression) to assess their efficiency regarding
different types of predictions.

2. Materials and Methods

2.1. Study Area and Laboratory Analyses

The study was carried out in an area located on the Campus of Federal University of Lavras,
which is dominated by Latosols (Oxisols), a class representing the majority of the soils of Southern
Minas Gerais state, Brazil (Figure 1). This area (~150.18 ha) does not have either a detailed soil map or
a detailed geologic map and is located between latitudes 7,651,207 and 7,653,478 m and longitudes
501,962 and 503,957 m, Zone 23 K. The climate of the region is Cwa (C: subtropical climate; w: rainy
summers; a: warm summers), characterized by rainy and warm summers and cold and dry winters,
according to the Köppen classification system, with mean annual temperature and rainfall of 19 ˝C
and 1530 mm, respectively [40].
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The area encompasses a great geologic variety, with the dominance of leucocratic and mesocratic
gneisses, the latter containing greater contents of Fe and darker minerals than the former, as well as a
gabbro intrusion and sediments of varying nature.

A total of 39 sampling sites were selected throughout the study area, in a regular-grid design with
a distance of 200 m between samples (Figure 1), covering different land uses, which included cultivated
(pasture (signal grass) and coffee), and non-cultivated areas (native vegetation, semiperennial tropical
forest). At each location, soils were classified according to the Brazilian Soil Classification System [41]
into typic Dystrophic Yellow Latosol (LA), typic Dystrophic Red-Yellow Latosol (LVA), both developed
from leucocratic gneiss, typic Dystrophic Red Latosol developed from mesocratic gneiss (LVm) and
typic Dystropherric Red Latosol developed from gabbro (LVg). Such soils were classified as Latosols
due to the presence of the B latosolic diagnostic horizon (similar to the oxic horizon in the U.S. Soil
Taxonomy), followed by the dominant color of the B horizon (Munsell color 2.5YR or redder (red),
7.5YR or yellower (yellow), in between 2.5YR and 7.5YR (red-yellow)). The term Dystrophic is used
when base saturation is smaller than 50%, whereas Dystropherric describes a dystrophic soil with
Fe2O3 contents (obtained through a sulfuric acid digestion) ranging from 18% to 36%. The expression
“typic” is used for reporting no intergrade regarding other soil classes.

Soil samples were collected from A and B horizons and submitted to analyses of particle size
distribution by the pipette method [42,43]. Briefly, the sand fraction was separated using a 0.05-mm
sieve; the silt and clay fractions were separated from each other after the sedimentation of the
silt fraction, by pipetting a volume of the solution containing only the clay fraction, followed by
oven-drying the solution and weighting the remaining clay fraction; the silt fraction is obtained
by subtracting the weights of sand and clay fractions from the total weight of the soil. Chemical
analyses included: soil pH (water, at 1:2.5 ratio); exchangeable Ca2+, Mg2+ and Al3+ extracted with
1 mol¨L´1 KCl [44]; available K and P extracted with Mehlich-l solution [45], H+ + Al3+ using the SMP
extractor [46]; organic carbon by wet oxidation with potassium dichromate in sulfuric acid medium;
and remaining P [47]. Table 1 presents the physical and chemical characterization of soils developed
from each parent material.

Table 1. Mean values of the physical and chemical properties of the soils sampled.

Soil Properties
LA 1 (2) LVA 1 (10) LVm 1 (16) LVg 1 (11)

Horizons

A B A B A B A B

pH 5.6 5.7 5.5 5.1 5.9 5.4 6.0 5.1

K (mg¨ dm´3) 122.0 15.0 153.0 19.6 176.9 30.6 166.4 30.2
P (mg¨ dm´3) 7.6 0.4 5.2 0.6 8.7 1.2 20.8 1.0

Ca2+ (mg¨ dm´3) 3.2 1.6 3.0 1.1 5.1 2.2 4.3 0.9
Mg2+ (mg¨ dm´3) 1.5 0.3 1.0 0.3 2.0 0.4 1.8 0.2

Al3+ (cmolc¨ dm´3) 0.0 0.1 0.3 0.4 0.1 0.2 0.2 0.3
H+ + Al3+ (cmolc¨ dm´3) 2.1 1.7 4.5 3.5 3.3 3.8 3.7 4.5

SB 2 (cmolc¨ dm´3) 5.0 1.8 4.4 1.4 7.6 2.7 6.5 1.2
t 3 (cmolc¨ dm´3) 5.0 1.9 4.6 1.7 7.6 2.8 6.7 1.5
T 4 (cmolc¨ dm´3) 7.1 3.5 8.9 4.9 10.9 6.5 10.2 5.7

V 5 (%) 70.3 52.0 56.4 34.7 67.3 43.3 64.1 23.4
m 6 (%) 0.0 3.1 6.2 24.4 1.4 11.4 4.8 19.1

SOM 7 (%) 3.7 1.1 5.6 1.5 6.5 2.1 6.6 2.8
P-Rem (mg¨ dm´3) 26.6 9.8 23.1 7.3 20.2 7.2 15.6 3.1

Clay (g¨ kg´1) 470.0 540.0 451.0 566.0 501.0 595.0 535.0 659.0
Silt (g¨ kg´1) 140.0 85.0 18.2 119.0 230.0 158.0 312.0 186.0

Sand (g¨ kg´1) 390.0 375.0 367.0 315.0 269.0 247.0 153.0 155.0
1 LA: Yellow Latosol; LVA: Red-Yellow Latosol; LVm: Red Latosol developed from mesocratic gneiss; LVg: Red
Latosol developed from gabbro. Numbers between parentheses show the number of soil samples classified as
those soil classes; 2 SB: sum of bases; 3 t: effective cation exchange capacity; 4 potential cation exchange capacity;
5 V: base saturation; 6 m: aluminum saturation; 7 SOM: soil organic matter.
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Magnetic susceptibility per unit of mass (χBF) was determined using the Barrington MS2B
magnetometer in air-dried samples passed through a 2-mm sieve. Data were obtained at low
frequency (χBF = 0.47 kHz) and calculated through the expression χBF = (10 ˆ κ) m´1, where κ

is dimensionless [48]; studying different soils and parent materials in the region of Lavras, it was
noticed that soil classes comprising the same taxonomic order (Latosols and Argisols) developed from
different parent materials showed contrasting magnetic susceptibility values, which demonstrates the
potential of using magnetic susceptibility for characterizing soils with varying parent materials.

For the analyses of total elemental contents in soil samples, a portable X-ray fluorescence analyzer
(pXRF) (Bruker model S1 Titan LE) was used to scan samples that were previously air-dried and passed
through a 2-mm sieve. Samples were placed in plastic holders, and the scanning was performed
during 60 s in two beams. The software used in pXRF is GeoChem General, and the device contains a
50-kV and 100-µA X-ray tube, which provides fairly selective detection of various elements, ranging
from Mg to U, with limits of detection (LOD) in the parts per million range (ppm) for many of these
elements. Calibration of the pXRF was checked with the analysis of a standard soil sample (CS).
The average of the measured values for selected elements found in CS was within acceptable limits:
Al2O3 (99%), SiO2 (95%), K2O (90%), Mn (85%), Fe (130%) and Cu (93%). Furthermore, quality control
and quality assurance protocols were performed by analyses of NIST Standard Reference Materials
with varying elemental concentrations (SRM 2710a and SRM 2711a). Each of these control samples
(NIST and CS) were analyzed ten times. The recoveries (%) for NIST 2710a and NIST 2711a were,
respectively: Al (36; 69), Si (46; 41), P (75; 22), K (67; 33), Ca (76; <LOD), Ti (77; 55), V (155; 135),
Mn (87; 55), Fe (92; 77), Cu (110; 104), Zn (129; 135) and Zr (257; 54). Selected data obtained with pXRF
for the 39 samples collected in the field (MgO, SiO2, Cl, K2O, Ti, Fe, Zn, Zr, Mn, Cr, Ni, Cu and Ce)
were used as covariates to help soil and geologic mapping.

X-ray diffractometry (XRD) analyses were performed to identify Fe oxide minerals present in the
soil clay fraction, which was previously treated with 5 mol¨L´1 NaOH [49] for iron concentration and
dissolution of kaolinite, gibbsite and other minerals in the samples. Afterwards, non-oriented plates
(Koch plate) were prepared for XRD analyses in the range from 15 to 45˝2θ, using halite as an internal
pattern to correct for instrumental distortions.

2.2. Soil Classes Mapping

A digital elevation model (DEM) of 5-m resolution was created from contour lines of 1 m of
vertical distance by the Topo to Raster function in ArcGIS 10.1(ESRI). From this DEM, 9 terrain variables
commonly used for predictions and mapping of soil classes and properties [10,50–55] were selected
using both ArcGIS 10.1 and SAGA GIS [56], including: slope, topographic wetness index (TWI),
SAGA wetness index (SWI), cross-sectional and longitudinal curvatures, vertical distance to channel
network and valley depth, in addition to elevation and Geomorphons [57]. Geomorphons consist of an
algorithm that classifies the landscape into 10 possible landforms, and thus, it is expected to contribute
to distinguishing geomorphology patterns that may be related to varying soil classes and properties.

Terrain information in addition to magnetic susceptibility and pXRF data for the 39 sites were
grouped into four soil classes found in the study area during the field work, and box plots were
generated in order to help identify the variables (terrain and laboratory data) that contributed the
most to distinguishing soil classes. Similar boxplot analyses have been performed by [52,58–60] to
identify the best variables regarding the prediction of soil properties. In this procedure (analysis of
boxplots), the variables whose values per soil class presented different ranges, without overlapping
the range of values of other soil classes, were considered appropriate to distinguish soil classes and,
hence, adequate to be used for soil mapping.

Next, the mean value of these previously-mentioned variables was calculated per each soil class,
being considered representative of the typical condition for each soil class of occurrence. The standard
deviation of each variable for each soil class was also calculated per soil class based on data obtained
from the 39 sampling sites. Both the mean and the standard deviation of the chosen variables per soil
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class were used as rules for predicting the spatial occurrence of soil classes through ArcSIE, the soil
inference function, an ArcGIS extension that has been successfully used for soil mapping [59,61–64].
For example, according to the sampling sites, a soil class was found to occur at places where slope
values range from 12% to 20% (mean ˘ standard deviation), with a mean value (typical condition) of
16% coupled with SWI ranging from 2 to 4 and a mean value of 3. Based on this kind of information
(rules, typical conditions and range of values of variables for all of the soil classes occurring in the
area), ArcSIE uses fuzzy logic and similarity vectors to predict soil classes and properties on the
landscape [65] identifying the places that are more related to the typical conditions of each soil class.
For that, ArcSIE generates membership maps in raster format in which every pixel shows the value of
similarity to a typical condition, ranging from 0 (low similarity) to 1 (great similarity). Subsequently,
a final map is generated representing the places that are more likely for each soil class to occur,
according to the rules inserted into ArcSIE.

For the soil mapping procedure, DTM information was continuously available for the entire study
area, but variables obtained from pXRF and magnetic susceptibility data at the 39 sampled sites needed
to be extrapolated to the entire area using the inverse distance weighting (IDW) method, with the
purpose of being used as continuous variables for soil mapping through ArcSIE. The values inferred
at non-sampled areas by IDW are estimated using a linear combination of values at the sampled
points, weighted by an inverse function of the distance from the point of interest to the sample points.
The weights (λi) are expressed as:

λi “

1
dp

i
řn

i“1
1

dp
i

(1)

where di is the distance between x0 and x0, p is a power parameter and n represents the number of
sampled points used for the estimation. This interpolation was performed in ArcGIS 10.1 (ESRI), where
a power parameter equal to 2 (default) was chosen. Mean error (ME) and root mean square error
(RMSE) were calculated for assessing the accuracy of interpolation, as follows:

ME “
1
n

n
ÿ

i“1

pei´miq (2)

RMSE “

g

f

f

e

1
n

n
ÿ

i“1

pei´miq2 (3)

where n is the number of observations, ei is the estimated value from pXRF and magnetic susceptibility
data and mi is the correspondent measured value.

The accuracy assessment of the soil classes map generated in ArcSIE was performed through the
comparison of the soil class presented on the map with the real soil class at 14 places (field validation)
randomly chosen within the study area. From this analysis, overall accuracy (percentage of
correctly-predicted soil classes), Kappa index, omission and commission errors and user’s and
producer’s accuracy were calculated for each soil class. The formulas for calculating the Kappa
index and producer’s and user’s accuracies are presented below:

Kappa “
Po´ Pe
1´ Pe

(4)

where Po is the proportion of correctly-classified samples and Pe is the probability of random agreement.
The Kappa index ranges from ´1 to 1, although the results are commonly found between 0 and 1,
indicating increasing accuracy as the values get closer to 1 [66]:

User1s accuracy “
Xii

řr
i“1 Xij

(5)
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Producer1s accuracy “
Xjj

řr
j“1 Xij

(6)

where Xii and Xjj represents the number of correctly-classified samples and Xij indicates the total
number of samples of a soil class in a row (user’s accuracy) or column (producer’s accuracy) of a
confusion matrix.

2.3. Soil Particle Size Distribution Predictive Models

The ordinary least square multiple linear regression (OLS) was used for fitting the prediction
models of sand and clay contents (dependent variables) in ArcGIS 10.1 from proximal sensors, DTM
and the previously obtained soil classes map (explanatory variables). First, the exploratory analysis
module was applied to the data to provide a suitable set of explanatory variables, to determine if the
OLS assumptions were met and to measure the prediction power of the candidate variables in order to
generate effective and reliable prediction models. Only models that met the criteria were considered
as suitable models. Statistically-significant explanatory variables, models with higher adjusted R2,
Akaike’s information criterion, multicollinearity checked by means of the variance inflation factor, the
normality of regression residuals and parsimony were all carefully considered and analyzed for the
selected models.

In order to properly assess the accuracy of the models, independent sand and clay datasets
were used. Such data were not used for developing the models. Mean error and root mean square
of prediction error were calculated, according to Equations (2) and (3), as previously mentioned.
Furthermore, in order to assess the predictive power of the variables, five types of prediction models
were refined for clay and sand contents, according to the explanatory variable source: (i) only with
DTM; (ii) proximal sensors plus parent material (based on soil classes map); (iii) proximal sensors plus
parent material plus DTM; (iv) only proximal sensors; and (v) proximal sensors plus DTM.

3. Results

3.1. Digital Soil Mapping

Boxplots of the analyzed variables are shown on Figure 2. The fluorescence energy is characteristic
of the elements present in a sample of interest, and so, theoretically, the spectrum of atomic weights
greater than 19 May be determined by the pXRF detector. However, because of low energy responses,
not all elements of the periodic table can be effectively measured, and there is also a limit of detection
depending on the content of the element of interest in the sample [67]. pXRF could identify 13 elements
and/or compounds for at least one soil class, increasing the number of potentially useful variables
to distinguish different Latosols, making up a total of 23 variables, including both the ones related
to terrain features and those obtained from laboratory analyses (pXRF and magnetic susceptibility).
Only elements with low error or uncertainty were selected. This error is a deviation calculated by the
equipment, according to its calibration. Four out of the 23 variables were considered more capable of
distinguishing at least one of the four possible soil classes (Figure 2), according to the boxplots, three of
them being related to proximal sensing analyses (magnetic susceptibility, Fe and SiO2) and one related
to terrain (SWI). Regarding all of the terrain-related variables, only SWI presented high potential for
distinguishing a soil class (LA) due to the lowest values found for that soil class in comparison with
the others. In contrast, all of the other terrain-related variables contain values within a similar interval
among the four soil classes.
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Figure 2. Boxplots of the variables used for distinguishing the four soil classes of the study area. 1, LA;
2, LVm; 3, LVg; 4, LVA.

Magnetic susceptibility, Fe and SiO2 contents presented distinguished ranges of values for the
soil classes, in addition to SWI. Soils derived from gabbro had higher magnetic susceptibility and Fe
contents, while LA presented the greatest concentration of SiO2. Other chemical compounds were not
considered adequate for distinguishing one soil class from the others because they could be estimated
only in some soil classes (e.g., Ni, Cr, Cu, Ce and MgO) or because their values were within the same
range for all soil classes (K2O, Ti, Mn, Cl, Zn and Zr).

Redder soils (LVA, LVm and LVg) had greater contents of Fe and Ti and some elements that were
not present in LA, such as Ni, Cr and Cu. This latter soil class contains MgO and Ce, which were not
detected by pXRF for the other soils, and greater amounts of SiO2 and Cl than the redder soils.

Table 2 shows the mean and the standard deviation of the variable values obtained by analyses
of the soil samples grouped according to the soil class. It can be noticed that the greatest magnetic
susceptibility, as well as Fe and Ti contents were found for LVg, followed by LVm, and also that they
decreased as the soil became yellower. On the other hand, SiO2, Cl and K2O contents decreased as the
soil became redder. Zn and Zr contents were greater for LVm and LVA, respectively.

Table 2. Mean and standard deviation (SD) of the variable values.

Variable LA LVA LVm LVg

MS 1 (10´7 m3¨ kg-1) 4.8 15.7 43 194
SM SD 0.26 16.9 27 97

MgO (ppm) 23,545 - - -
MgO SD 20,543 - - -

SiO2 (ppm) 19,568 17,265 16,946 16,289
SiO2 SD 1870 1858 1961 2033.7
Cl (ppm) 1461 1160 1113 984.9

Cl SD 36 40 48.6 60.8
K2O (ppm) 1432 1397 1324 945

K2O SD 146 150 159.2 157.9
Ti (ppm) 5900 6799 8379 9221

Ti SD 155 165 186.2 196.7
Fe (ppm) 31,880 46,103 66,450 96,410

Fe SD 304 358 439.6 531
Zn (ppm) 18 23 35.3 32.2
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Table 2. Cont.

Variable LA LVA LVm LVg

Zn SD 8 9 9.8 10.7
Zr (ppm) 170 187 182 167.6

Zr SD 9 10 10.8 11.6
Mn (ppm) 91 152 372 -

Mn SD 53 62 79.3 -
Cr (ppm) - - 454 1103

Cr SD - - 55.9 68.3
Ni (ppm) - - 121 105.7

Ni SD - - 23.5 28.1
Cu (ppm) - - 29 36.8

Cu SD - - 9.6 11.3
Ce (ppm) 1538 - - -

Ce SD 468 - - -
1 Magnetic susceptibility.

Figure 3 shows the maps of the four variables considered more capable of distinguishing the
soil classes. Magnetic susceptibility ranged from 2.9 to 431 χBF in the study area, and higher values
covaried with larger contents of Fe, which, in turn, ranged from 21,531 to 130,434 ppm. SiO2 contents
ranged from 12,135 to 21,100 ppm, while SWI ranged from 1.3 to 10.4, being greater as the chance of
accumulating water increases on the landscape [68]. The accuracy indexes of magnetic susceptibility,
Fe and SiO2 IDW maps were, respectively: ME = ´3.603 and RMSE = 60.604; ME = ´340.103 and
RMSE = 22,867.917; ME = ´137.973 and RMSE = 1707.471.
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Table 3 represents the values used in ArcSIE to generate the soil class map. The similarity column
in Table 3 represents the similarity to the typical condition: when it is 100%, it corresponds to the
typical condition for a soil class to occur (mean value obtained from the collected samples), whereas 50%
represents the values resulting from the standard deviation subtracted from (lower limit) and added to
(upper limit) the mean value, indicating the range of values for a soil class to occur, with at least 50%
membership in relation to the typical condition. Data in Table 3 show that Fe was the unique variable
used for mapping all four soil classes, while the other three variables were employed for at least one soil
class, such as SWI, although in all cases, a soil class required more than one variable to be mapped.

Table 3. Values used in ArcSIE in order to map the soil classes’ distribution in the study area. SWI,
SAGA wetness index.

Similarity 1 LA LVA LVm LVg 2

50% 31,610 23,100 48,450 70,410
Fe 100% 31,880 46,100 66,450 96,410

50% 32,150 69,100 84,450 -
50% 18,840 14,970 14,750 -

SiO2 100% 19,570 17,270 16,950 -
50% 20,300 19,570 19,150 -
50% 4.54 - 16 97

SM 100% 4.80 - 43 194
50% 5.06 - 70 -
50% 2.9 - - -

SWI 100% 3.0 - - -
50% 3.1 - - -

1 Similarity to the typical condition. 2 The curve type for LVg is S-shaped, while for other soils, it is bell-shaped.

The geologic variety contributed to the formation of Latosols with contrasting physical, chemical
and mineralogical properties [7,48,69], as shown in Table 1 and Figure 4. Leucocratic gneisses tend to
form Yellow- or Red-Yellow Latosols, while mesocratic gneisses develop Red Latosols, as well as the
gabbro-derived soils, yet the latter contain different properties in relation to the former, such as the
presence of maghemite (Figure 4), higher Fe contents and magnetic susceptibility values (Table 2).
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The predicted soil map is shown in Figure 5. It can be noticed that LVA is the soil class that
occupies the largest portion of the area, corresponding to 40.79% (61.25 ha). It is followed by LVg, with
33.70% (50.60 ha), mainly occurring in the center of the study area, from east to west. In sequence,
LVm is found in 25.50% (38.30 ha). Lastly, LA occurs in 0.01% (0.016 ha) of the area, at places where
SWI is lower.
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The indexes for the predicted soil map accuracy were assessed according to a confusion matrix
(Table 4), from where it was found an overall accuracy of 78.57%, meaning that 11 out of the
14 validation points match the predicted soil class. The validation resulted in a Kappa index of
0.6719, corresponding to a substantial classification [66]. Furthermore, the omission error for LVA was
the greatest (lowest producer’s accuracy), while commission error was the greatest for LVm (lowest
user’s accuracy).

Table 4. Confusion matrix, omission and commission errors and producer’s and user’s accuracies for
the predicted soil map.

LVg LVm LVA LA Omission
Error

Producer’s
Accuracy

Commission
Error

User’s
Accuracy

LVg 4 0 1 0 0 100 20 80
LVm 0 2 2 0 0 100 50 50
LVA 0 0 5 0 37.5 32.5 0 100
LA 0 0 0 0 0 100 0 100

3.2. Soil Particle Size Distribution Predictive Models

Tables 5 and 6 show, respectively, the parameters of clay and sand predictive models from OLS
multiple linear regression, as well as the R2, adjusted R2, the variance inflation factor (VIF) and the
summary of variable significance. VIF less than 7.5 means no redundancy among explanatory variables.
The summary of variable significance provides information about variable relationships and how
consistent those relationships are. For each explanatory variable, the OLS tool calculates a coefficient
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to determine if such a variable can help to explain clay and sand contents. These coefficients (and their
statistical significance) can be changed depending on the combination of variables in the model.
The summary of variables’ significance provides information about variable relationships and how
consistent those relationships are. Larger values (%) mean stronger predictors, as they were considered
statistically significant in most of the cases during the analysis, i.e., they are consistently significant,
and the relationships are stable. All equations are models that met the OLS requirements. Considering
the adjusted R2, the models are considered suitable, since all of them were able to explain more than
58% of the total variance, with sand models performing better than clay models. However, adjusted
R2 is not the unique parameter that determines the modeling performance. All of the explanatory
variables were statistically significant, and all of the residuals of regression showed normality.

Differently from the digital soil map, only SiO2, Cl, K2O, Ti, Fe, Zn and Zr from pXRF were used
for developing models, because their contents were above the detection limit for all sampling points.
The models that had only DTM as explanatory variables did not meet the OLS requirements, with
adjusted R2 around 0.15.

Proximal sensors showed higher predictive power and consistency (higher variable significance)
than DTM, with no multicollinearity among them. TWI, SWI and valley depth showed multicollinearity,
while proximal sensors and parent material did not present multicollinearity. Parent material was
statistically significant (0.01 level) in most cases (variable significance), which reinforces the importance
of soil class and parent material for the prediction of soil properties, such as soil particle size
distribution. For the prediction of clay content, Fe and magnetic susceptibility were selected in
the models that did not consider parent material (models using only proximal sensors and proximal
sensors plus DTM). Considering the adjusted R2, the model with proximal sensors showed greater
predictive power. However, for the prediction of sand content, models that excluded parent material
showed lower adjusted R2.

Considering the selected explanatory variables and the scatterplot graphics (Figure 6), clay content
values increase as follows: leucocratic gneiss Ñ mesocratic gneiss Ñ gabbro. This was followed
by increasing Ti and decreasing K2O and Zn contents. Sand content increases according to the
sequence gabbro Ñ mesocratic gneiss Ñ leucocratic granite gneiss, followed by increasing SiO2,
Zr and Cl contents.

Table 7 shows the accuracy of the models, from an independent dataset. In general, the R2 are
higher than 0.50, and the models presented a positive bias (positive ME), with small RMSE, which
means high accuracy. The R2 of clay content is the lowest considering scatterplots; on the other hand,
the ME and the RMSE are the lowest. In general, when compared to the validation indexes from
other studies that used proximal sensors, the models in our study performed well. In the studies
of [33,70–72], the RMSE values range from 2.66 to 7.9, which is similar to the RMSE values of our study.
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Table 5. Ordinary least square multiple linear regression models of the parameters for clay content developed from proximal sensors (PS) portable X-ray fluorescence
and magnetic susceptibility, parent material (PM) and digital terrain models (DTM).

Explanatory
Variable

Clay (PS + PM) and Clay (DTM + PS + PM) Clay (PS) Clay (DTM + PS)

Coefficient VIF 1 Variable Significance (%) Coefficient VIF Variable Significance (%) Coefficient VIF Variable Significance (%)

Intercept 72.177 92,361 79,406
MS 2 - 67.75 0.028 * 1.980 76.77 0.035 ** 1.347 79.95
SiO2 - 6.85 - - 10.10 - - 8.09

Cl - 100.00 ´0.012 ** 1.311 100.00 - - 100.00
K2O ´0.013 ** 1.334 100.00 ´0.010 ** 1.313 100.00 ´0.009 ** 1.363 100.00

Ti ´0.001 * 1.750 4.84 - - 0.00 - - 6.12
Fe - 9.58 ´0.00005 ** 1.803 3.03 - - 11.90
Zn ´0.196 ** 1.213 77.43 ´0.164 ** 1.146 87.88 ´0.165 ** 1.101 70.29
Zr 0.038 * 1.310 11.54 - - 8.08 - - 11.35

Geomorphons - 4.84 - - - - - 0.27
DEM 3 - 9.58 - - - - - 8.97
SWI 4 - 13.81 - - - - - 12.85
WI 5 - 5.62 - - - - - 4.89
Slope - 70.17 - - - ´0.372 * 1.173 64.65

AACHN 6 - 4.84 - - - - - 2.31
Valley depth - 9.58 - - - - - 5.30

Parent material 4.527 ** 1.740 67.75 - - - - - -
R2 0.66 0.71 0.67

Adjusted R2 0.61 0.67 0.64
1 VIF, variance inflation factor; 2 MS, magnetic susceptibility; 3 digital elevation model; 4 SWI, SAGA wetness index; 5 WI, wetness index; 6 AACHN, altitude above the channel
network; model variable significance: * = 0.05, ** = 0.01.
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Table 6. Ordinary least square multiple linear regression models of parameters for sand content developed from proximal sensors (PS) portable X-ray fluorescence
and magnetic susceptibility, parent material (PM) and digital terrain models (DTM).

Explanatory
Variable

Sand (PS + PM) Sand (DTM + PS + PM) Sand (PS) Sand (DTM + PS)

Coefficient VIF 1 Variable
Significance (%) Coefficient VIF Variable

Significance (%) Coefficient VIF Variable
Significance (%) Coefficient VIF Variable

Significance (%)

Intercept ´1.726 0.487648 ´30,497 9.134
MS 2 - 47.85 - 72.13 - - 78.79 ´0.036 ** 1.708 92.11
SiO2 0.001 * 1.278 78.53 0.001 * 1.337 61.88 0.001 ** 1.218 85.86 0.001 ** 1.103 63.83

Cl 0.013 ** 1.322 100.00 0.012 ** 1.334 99.95 0.017 ** 1.202 100.00 - - 99.93
K2O - 27.61 - 39.98 - - 34.34 - - 49.22

Ti - 6.13 - 13.70 ´0.001 * 1.157 10.10 - - 17.61
Fe - 59.51 - 78.52 - - 90.91 ´0.0001 ** 1.825 94.09
Zn - 1.23 - 5.00 - - 2.02 - - 6.59
Zr 0.050 * 1.121 16.56 0.046 * 1.130 24.32 0.101 ** 1.173 22.22 - - 28.96

Geomorphons - - - 3.45 - - - - - 4.42
DEM 3 - - - 47.45 - - - - - 50.44
SWI 4 - - - 11.03 - - - - - 10.67
WI 5 - - - 7.52 - - - - - 9.11
Slope - - 0.270 * 1.076 47.45 - - - 0.432 ** 1.122 32.29

AACHN 6 - - - 5.20 - - - - - 6.12
Valley depth - - - 5.36 - - - - - 6.80

Parent
material ´5.154 ** 1.333 100.00 ´5.560 ** 1.380 99.64 - - - - - -

R2 0.73 0.77 0.63 0.69
Adjusted R2 0.70 0.73 0.58 0.66

1 VIF, variance inflation factor; 2 MS, magnetic susceptibility; 3 digital elevation model; 4 SWI, SAGA wetness index; 5 WI, wetness index; 6 AACHN, altitude above the channel
network; model variable significance: * = 0.05, ** = 0.01.
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Figure 6. Scatterplots considering only the explanatory variables of predictive models for clay and
sand contents. In (a–c), models for clay, and in (d–g), models for sand. (a,d) Using parent material
(PM), proximal sensors (PS) and digital terrain models (DTM) as explanatory variables; (b,f) using
only PS; (c,g) using only PS and DTM; and (e) using PS and PM. The model for clay using PS and P.M.
resulted in the same model as using PS, PM, and DTM. MS = magnetic susceptibility.
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Table 7. Accuracy assessment of predictive clay and sand models.

Model ME RMSE R2

Clay (PS 1 + PM 2) and (DTM 3 + PS + PM) 13.56 3.68 0.52
Clay (PS) 2.21 6.26 0.39

Clay (DTM + PS) ´4.32 12.37 0.37
Sand (PS + PM) 25.84 5.08 0.69

Sand (DTM + PS + PM) 24.11 4.91 0.67
Sand (PS) 48 136.47 0.72

Sand (DTM + PS) ´10.81 30.41 0.87
1 PS, proximal sensor; 2 PM, parent material; 3 DTM, digital terrain model.

4. Discussion

4.1. Soil Classes Mapping

Through the analysis of boxplots (Figure 2), it can be noticed that the terrain attributes most
commonly used for the predictions of both soil classes and properties were not capable of solely
distinguishing most Latosols in the study area, except for SWI, which could distinguish LA from the
other Latosols.

The magnetic susceptibility data and some elements/compounds assessed by the pXRF technique,
mainly SiO2 and Fe, could aid in predicting soil classes, probably because of their relationships to soil
parent material [73]. The work in [48], studying eight soils and their correspondence to the parent
material in the region of Lavras, found that a gabbro-derived soil contained higher contents of Fe2O3

and magnetic susceptibility value and a lower content of SiO2 when compared to soils derived from
gneiss, which agrees with the findings of our study, as estimated here by pXRF.

Among the gneisses, soils derived from mesocratic ones are expected to contain higher contents of
Fe and lower contents of SiO2, in comparison with soils derived from leucocratic gneisses, as supported
by our pXRF analyses (Table 2). Similar results were found by [7,8], studying soils of the same region.

Regarding magnetic susceptibility, [74] found lower values of magnetic susceptibility in soils
derived from rocks, such as gneiss, granite, quartzite, marble and dolomite, due to their lower content
of Fe when compared to soils derived from mafic rocks. The presence of gneiss, granite, quartzite,
marble and dolomite reduces the chances of ferromagnetic minerals to be formed [75], which is in
agreement with the lower Fe content and magnetic susceptibility values found for gneiss-derived soils
(LA, LVA and LVm) in comparison to the gabbro-derived soil (LVg) found in our study. Those authors
also found higher magnetic susceptibility values for soils derived from diabase and basalt, the latter
being the extrusive rock correspondent to gabbro, ranging from 225 to 7790 ˆ 10´8 m3¨kg´1, which
contributed to the distinction of those soils from other soils derived from different parent materials.
The work in [76], studying magnetic susceptibility in samples of soils derived from sandstone and
basalt with the goal of separating soils from different landscape segments in the Jaboticabal region
(São Paulo state, Brazil), found that this variable could help with the separation of soils derived from
these two rock types.

The higher magnetic susceptibility value for LVg than for Latosols derived from gneiss is probably
due to the presence of maghemite, as supported by the X-ray diffractograms (Figure 4). Contrary to
magnetite and maghemite, generally found in the sand and clay fractions, respectively [77], goethite
and hematite, also present in the studied soils, tend to contain null or low values of magnetic
susceptibility [78], similarly to the findings of this study (Figure 4 and Table 3).

According to the soil map of the study area, LVA was the dominant class. This result was also
reported by other works related to soil mapping in this same region, such as [79,80].

In Brazil, due to the lack of detailed soil surveys, the establishment of differential soil properties at
inferior taxonomic levels has been discussed, and a consensus has not been reached yet. This might be
one of the causes of the mismatches between taxonomical and mapping units in detailed soil maps in
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Brazil. In this sense, the importance of numerical classification models has increased as an alternative
for mapping [26,81,82]. Keeping in mind such limitations and options to overcome it, this study
proposes the use of numerical soil properties from proximal sensors, which could function as a basis
for establishing the boundaries of different types of Latosols at lower taxonomic levels, coupled with a
data mining tool for extracting and applying information.

According to the validation indexes, this approach properly fits to the study area, thus contributing
to the identification of taxonomic units and their distribution through the landscape (mapping units).
The accuracy assessment presented values of overall accuracy within the range defined by the Technical
Manual of Pedology [83], which establishes the basis for soil surveys in Brazil, considering reliable
soil maps those that present more than 70% of overall accuracy. The remaining 30% are considered
inclusions of other soil classes within a mapping unit, which are not included in the legends of soil
maps. Thus, the soil maps generated in this work can be considered adequate. Furthermore, soil maps
have the ability to provide information about the spatial distribution of surficial geology [84], and,
thus, such maps can be used for several soil property predictions, which was performed in this study
for modeling soil particle size distribution, as an example.

4.2. Soil Particle Size Distribution Prediction Models

The main goal here was not only to develop soil particle size distribution prediction models, but
also to understand which covariates (proximal sensors, DTM or soil classes map) could better explain
this soil property, using the OLS multiple regression, a data mining tool [9]. From the OLS multiple
linear regression results, it is clear that the soil class itself and the elemental composition obtained from
pXRF that is related to parent material were the best explanatory variables, consistently increasing the
prediction power of models.

Chemical elements obtained from pXRF were able to predict soil particle size distribution,
which, in turn, depends on parent material, as well as on weathering and leaching [33]. Considering
those explanatory variables of prediction models, as clay content increases, K2O and Zn decreases,
Ti increases and the soils tend to be Red Latosols derived from gabbro [73]. Although low K contents
were found in those soils, which was expected due to the very low contents of K-bearing minerals in
those parent materials and the intense and prolonged weathering-leaching processes to which those
soils were subjected [73,85–87], there was a trend of reducing K content and increasing clay content
(as an influence of parent materials) in soils developed from varying parent materials, following the
sequence leucocratic gneissÑmesocratic gneissÑ gabbro. The same trend of reducing K content and
increasing clay contents was reported by [48], studying soils derived from the same parent materials
of this current work. As sand content increases, SiO2, Cl and Zr are greater, and the soils tend to be
Yellow Latosols derived from leucocratic gneiss [8]. Cl was an important chemical component in the
predictive models, and according to [88], Cl contents tend to be higher in igneous rocks. The same
authors stated that Zr content in soils generally is inherited from parent rocks. SiO2 content in the
sand fraction was selected to be used on the models, probably because particles in the sand fraction in
these extremely weathered-leached soils, such as those in tropical conditions, e.g., in Brazil, are by far
dominantly composed of quartz, followed by other very resistant minerals in much smaller quantities,
such as magnetite, concretions and nodules of Fe, as reported by [86].

Analyzing the low predictive power of DTM in the models, it is important to highlight that such
maps serve only as a proxy of the current environmental conditions, which in many cases are different
from the past conditions in which pedogenesis took place [6,89]. Considering that Latosols, soils
formed in ancient landscapes, resulted from an environment of soil formation that does not currently
exist [87], the contemporary landscape analyzed by DTM might not translate to the preterit soil-forming
conditions [13]. Since DTM did not significantly improve the predictive power of soil properties’
prediction, it is preferable to create models that contain less independent variables, reducing time
and cost for processing data. These findings suggest that, for tropical conditions, alternative variables
that help the predictions of soil classes and properties, such as those provided by pXRF and magnetic
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susceptibility, may contribute to soils’ differentiation and, hence, for the creation/improvement of
detailed soil maps, following the world trend for that, as the GlobalSoilMap [90], AfSoilsGrid250m [91]
and SoilGrids1Km [92] projects. Furthermore, in tropical developing countries, such as Brazil, most
geologic maps, which could contribute to detailed soil mapping, are at small scales, limiting the
detailed scale soil maps, coupled with the lack of financial support for soil surveys. Thus, the use
of new tools, such as pXRF and magnetic susceptibility, may be of great help in creating/improving
detailed soil maps in a fast and reliable way at lower cost, while contributing substantially to a better
planning of soil use and management in a sustainable manner.

It is important to emphasize that this work did not have the intention to obtain real values of
element contents in soils using pXRF, which would require total element analyses in the laboratory
(e.g., with wavelength dispersive (WDXRF) or energy dispersive (EDXRF) X-ray fluorescence
equipment) to be correlated with those obtained by pXRF (some of the authors of this paper are
currently working on such a study for several tropical soils). This would probably make the soil
mapping procedure more costly and time consuming, which is contrary to the idea of using pXRF
as a field support for soil mapping [17,31–33] by providing results in a fast way. Furthermore,
the estimated values of the elements for the soil classes were consistent with values reported by other
studies related to soil characterization in this same region [7,8,48] and contributed to distinguishing
soil classes by providing more variables for soil mapping and modeling.

5. Conclusions

The findings of this work suggest that soil classes under tropical conditions may be variable
according to the places where they occur on the landscape. This is especially noticed for more detailed
soil mapping, in which information about parent material variability becomes even more important.
It also demonstrates that the use of other variables, such as magnetic susceptibility data and those
provided by analyses with pXRF, in addition to DTM, are needed and may contribute to create detailed
soil maps.

Proximal sensors were useful to generate detailed soil class maps and predictive models of soil
particle size distribution with suitable accuracy. Therefore, for the region of study, considering the
aforementioned limitations, the use of proximal sensors is recommended for digital mapping and
modeling. This approach could make soil mapping faster, less expensive and more accurate.
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