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Abstract: Nesting habitat for the federally endangered loggerhead sea turtle (Caretta caretta) were 
designated as critical in 2014 for beaches along the Atlantic Coast and Gulf of Mexico. Nesting 
suitability is routinely determined based on site specific information. Given the expansive 
geographic location of the designated critical C. caretta nesting habitat and the highly dynamic 
coastal environment, understanding nesting suitability on a regional scale is essential for 
monitoring the changing status of the coast as a result of hydrodynamic forces and maintenance 
efforts. The increasing spatial resolution and temporal frequency of remote sensing data offers the 
opportunity to study this dynamic environment on a regional scale. Remote sensing data were used 
as input into the spatially-explicit, multi-criteria decision support model to determine nesting 
habitat suitability. Results from the study indicate that the morphological parameters used as input 
into the model are well suited to provide a regional level approach with the results from the 
optimized model having sensitivity and detection prevalence values greater than 80% and the 
detection rate being greater than 70%. The approach can be implemented in various geographic 
locations to better communicate priorities and evaluate management strategies as a result of changes 
to the dynamic coastal environment. 
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1. Introduction 

In 2014, beaches along the Atlantic Coast and Gulf of Mexico were designated as critical habitat 
by the U.S. Fish and Wildlife Services (USFWS) for nesting sites of the federally endangered 
loggerhead sea turtle (Caretta caretta) [1]. The coastal areas that were designated as critical habitat for 
the C. caretta include approximately 700 miles of terrestrial shoreline that are deemed suitable for 
nesting habitat based on sand characteristics, lighting considerations, and beach properties of natural 
and maintained areas [1]. Previous research has focused on quantifying geophysical characteristics 
that are preferred for nesting habitat of the C. caretta. The physical and chemical characteristics 
include sand properties, moisture, salinity, and temperature [2]. Nesting suitability is routinely 
determined based on nesting density and other site specific information about the beach 
characteristics that are identified via in-situ techniques. These techniques require extensive field 
campaigns on a local scale and may involve ad-hoc methods of recording nesting sites. Morphological 
characteristics have also been studied to determine preferred ranges for C. caretta nesting habitat. 
High nesting density was found to be associated with beaches that have steep slopes, narrow beach 
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widths, shallow nearshore, defined berm features [2–7] and dunes, which provide a change in 
gradient from the beach that may be an indicator of protection and reduce light pollution [8]. The 
preferred ranges for the morphological characteristics have been found to be site dependent since the 
hydrodynamic forces that influence beach properties vary along the coast [2]. 

Environmental and anthropogenic parameters have also been found to influence the quality of 
nesting habitat. Studies have shown that nests tend to be clumped near the border between open 
sand and supra-littoral or littoral vegetation [9,10]. Vegetation presence and characteristics, such as 
type and density, may also impact sand temperatures and therefore decrease the overall incubation 
temperature [11,12] as well as risk to predation. In addition, vegetation reduces beach erosion, 
increasing stability and attractiveness to nesting suitability [8,12]. Light pollution from beachfront 
development has been found to disorient and disrupt both nesting females as well as hatchlings, 
increasing mortality rates [5,8,12–14].  

The coastal environment is highly dynamic with waves and currents acting as the primary 
drivers for changes in the morphology. The temporal scale of morphological change can vary from 
hours to seasons. In addition to these natural drivers, the coastal environment is also subject to man-
made changes that include replenishment of sand to the littoral system or other structural 
alternatives. Given the expansive geographic location of the designated critical C. caretta nesting 
habitat and the highly dynamic coastal environment, understanding nesting suitability on a regional 
scale is essential for monitoring the changing status of the coast as a result of hydrodynamic forces 
and maintenance efforts. The increasing spatial resolution and temporal frequency of remote sensing 
data offer the opportunity to study this dynamic environment on a regional scale. Lidar data have 
been used to identify morphological preferences [7] and how nesting is impacted by the changing 
environment [3,15]. Yamamoto et al. [4] used lidar-derived elevation products to identify preferred 
ranges for morphological features along nesting beaches. In combination with lidar data, the use of 
imagery is ideal for extracting environmental parameters, such as dune vegetation. 

While the specific beach characteristics that are preferred by the C. caretta for nesting habitat are 
well documented, limited literature exists that describes the use of models to determine nesting 
habitat preference for any sea turtle species. Spatially-explicit ecological models that utilize a 
Geographic Information System (GIS) framework are fairly standard practice for identifying marine 
resources and migration patterns of sea turtles [16–18], but the terrestrial component of the nesting 
habitat has not been widely explored. Using environmental variables measured with field techniques 
as input, Santos et al. [13] developed three Habitat Suitability Index models that were weighted 
according to: (1) expert opinion; (2) regression analysis; and (3) a combination of suitability indices 
with regression. The three models had a 40% prediction rate, which the authors hypothesize would 
be improved with more extensive field data and a larger study area [13]. Relying solely on field 
measurements as input into nesting suitability models that seek to make assessments on a regional 
scale is not ideal due to the arduous task of acquiring the level of detail needed to understand nesting 
habitat suitability. 

Habitat suitability index models were developed initially to assess habitat quality for a species 
based on field measurements or expert opinion of the relationship between habitat attributes and 
species’ life history [19,20]. The increase in availability of high resolution remotely-sensed data 
resulted in revisiting some of the older models to determine if accuracy can be improved [21]. High 
resolution lidar improved accuracy of models developed for amphibians [22], trees [23], and birds 
[24], but has not been applied to sea turtle nesting sites. Further, the use of high-resolution data can 
reduce uncertainty associated with trial-and error approaches and can provide standardized, broadly 
applicable methods [25–27]. 

This study aims to address the need for a regional approach that leverages available remote 
sensing data to determine relative nesting habitat suitability by: (1) implementing a multi-criteria 
weighted modeling approach that uses lidar-derived parameters as input; and (2) developing 
standardized methods that can be implemented in various geographic locations to better 
communicate priorities and evaluate management strategies as a result of changes to the dynamic 
coastal environment. Ultimately, the results from this approach can be used by planners and 
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managers to: (1) coordinate with conservation organizations; (2) identify areas to potentially improve 
nesting habitat through various efforts that could include beneficially managing sediment for project 
improvement; (3) monitor changes to the suitability of nesting habitat as a result of project 
implementation; and (4) predict future scenarios of nesting suitability during the project design phase. 

2. Methods 

2.1. Study Area and Data Collection 

The USFWS designated areas along the U.S. Atlantic and Gulf of Mexico coast as critical habitat 
by dividing the coast into five distinct recovery units [28]. The study area includes a 200 km stretch 
of the southeastern portion of Florida, USA (Figure 1) that lies within the Southeastern Florida region 
of the Peninsular Florida Recovery Unit [28,29]. The Southeastern Florida region was further divided 
by USFWS into 20-km sections to better align with the average nest site fidelity, which ranges from 
3.0 to 17.48 km for the Florida Atlantic coast [30] to 28.1 km for the Southwest Florida coast [31]. 
Nesting data from 2006 to 2011 were used to determine nesting density for the 20-km sections for the 
Southeastern Florida region where the nesting densities were divided into four equal groups (high, 
medium, low, no data) using the data for the region to ensure a good spatial representation within 
the Peninsular Florida Recovery Unit [28]. Sea turtle nesting density data for our study area within 
the Southeastern Florida region indicate medium to high nesting density for the C. caretta [1]. In 
addition, this area of Florida also has numerous U.S. Army Corps of Engineers (USACE) navigation 
and coastal storm damage risk reduction projects making it an ideal location to determine relative 
suitability of nesting habitat as it relates to these projects for planning and operations. 

Remote sensing data were obtained from the Joint Airborne Lidar Bathymetry Technical Center 
of Expertise as part of the USACE National Coastal Mapping Program (NCMP). The NCMP surveys 
the sandy shorelines of the U.S. on a recurring basis to provide high airborne data to support 
operational and planning activities on a regional scale. The southeastern portion of Florida was 
surveyed from 31 August to 3 October 2009. This survey time period overlaps with the latter half of 
the C. caretta nesting season which occurs from May through the end of October [1]. Having survey 
data that overlap with the nesting season is important for ensuring the physical conditions of the 
beach are consistent with the conditions the nesting turtle would encounter. Following the active 
2004–2005 tropical cyclone season for the East coast of Florida, the 2006–2009 timeframe was a period 
of tropical quiescence. The NCMP provides high resolution topographic and bathymetric lidar data 
in addition to concurrent hyperspectral imagery. The remote sensing data were collected using the 
Compact Hydrographic Airborne Rapid Total Survey (CHARTS) system that includes Optech’s 
Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS)-3000T20, with a 3-kHz 
bathymetric lidar and a 20-kHz topographic lidar, an Itres CASI-1500 for hyperspectral imaging, and 
a DuncanTech-4000 digital camera [32]. The lidar data were collected at 1-m spot spacing with ± 15-
cm elevation accuracy, and digital elevation models (DEMs) were developed at 1-m spatial resolution 
using a variety of software including Applied Imagery’s Quick Terrain Modeler 6.0.6 and 
Environmental Systems Research Institute (Esri) ArcGIS 10.1. DEMs were resampled to 5-m spatial 
resolution to allow for efficient processing of the extensive study area while also maintaining a high 
resolution to extract the spatial parameters. In addition to efficient processing time, the 5-m grid is of 
sufficient spatial resolution since the biological response of the nesting sea turtle has been 
documented to have nest site fidelity of approximately 20-km [31]. The hyperspectral imagery was 
likewise resampled to 5-m and included 36 spectral bands between 380 and 1050 nanometers. In 
addition, imagery was radiometrically and atmospherically corrected using procedures within Harris 
Geospatial Solutions ENVI 4.5 software environment. Remotely sensed, high resolution data are 
uniquely available to assist with this effort to demonstrate the value of using remote sensing 
techniques to determine relative nesting habitat suitability. As future surveys become available, the 
impacts of operations and planning efforts can be observed and used to assess changes in the nesting 
habitat and identify areas that would benefit from additional support. 
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Figure 1. Study area along the South East of Florida. 

2.2. Spatial Parameters 

The lidar-derived elevation grid and the hyperspectral imagery were used to extract parameters 
that were selected as being important for the nesting of C. caretta based on extensive literature review 
and input from subject matter experts. A conceptual model was developed that listed all of the 
morphological, environmental, anthropogenic, and habitat parameters that were found to relate to 
nesting of the C. caretta. The model was further refined based on knowledge about realistic spatial 
and temporal resolutions of the parameters [33]. Table 1 lists the spatial parameters that were 
included in the final conceptual model and indicates the morphological parameters that were 
reviewed using multinomial logistic regression analysis to determine the relationships between the 
parameters and nesting density for the development of the model curves. 
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Table 1. List of spatial parameters and datasets and the data source. 

 Parameters Data Source 

Morphological 

Beach Slope 2009 Lidar 
Beach Elevation (bare earth) 2009 Lidar 

Beach Width 2009 Lidar 
Dune Elevation 2009 Lidar 

Environmental * Dune Vegetation 2009 Hyperspectral 
Anthropogenic * Potential for Artificial Lighting 2009 Lidar and 2011 NLCD 

* Denotes parameters not included in the regression analysis or model. 

Four morphological parameters were developed for statistical evaluation: slope, elevation, beach 
width, and dune peak. A raster grid with a cell size of 5 m was generated for each parameter. The 
beach elevation grids, first return and bare earth, were generated from the 2009 lidar dataset that 
resulted from including all elevation points and then removing buildings and vegetation, 
respectively. Dune peaks were extracted from the bare earth elevation grid using a semi-automated 
routine to extract profiles at a 5-m spacing in the longshore direction to determine changes in slope 
that have peaks landward of the berm with the first dune being selected as the primary dune [34]. 
The bare earth elevation grid was used to ensure seasonal changes to vegetation were not extracted 
as the dune feature. A 5-m buffer was generated on the seaward side of the dune to characterize the 
dune field and provide a continuous line representing the dune toe. In areas that did not have a 
primary dune before buildings or roads, the back of the berm was used as the “no dune” point. 
Adjoining dune points were merged to generate a line. Similarly, the no dune points were used to 
create a line. These two lines were then merged to create a single line with the two attributes for the 
entire length of the study area. The dune toe line was used as the landward boundary since it was 
hypothesized that the C. caretta would not traverse behind the dune area for nesting since on steeply 
sloped beaches, nests tend to cluster at the base of the dune [2]. The 25-cm contour was extracted 
from the bare earth elevation grid and used as the seaward boundary to ensure that a continuous line 
would be extracted from the grid regardless of data gaps that may be present in the swash zone. In 
addition, the 25-cm contour is used as a shoreline proxy that aligns with the mean high water 
elevation for this region, which ranges from 28-cm to 7-cm with respect to NAVD88 [35]. The dune 
line and shoreline formed the boundary for the nesting area of interest. The beach elevation grids 
were clipped to this boundary. A beach slope raster grid was generated using the spatial analyst tool 
from the bare earth elevation grid and was clipped to the nesting area of interest. Beach width was 
determined using the Euclidean distance function within ArcGIS to generate a distance grid from the 
shoreline to the dune line [36]. In order to develop a grid of beach width values, the maximum 
distance value was extracted for 5-m bins, in which individual bins were delineated based on the cell 
size and extent and oriented perpendicular to the shoreline. Thus, the grid depicted each 5-m shore-
perpendicular bin with a single beach width (maximum distance) value clipped to the nesting area 
of interest. 

Additional parameters, dune vegetation and potential for artificial lighting, were also 
developed; however, they were not evaluated in the regression analysis or included in the model 
since they are considered secondary to site selection and may be more useful for exploring habitat 
characteristics or condition. In addition, these parameters are not readily available in a high 
resolution format and in the case of this study, a generalized approach was taken to develop 
approximations for artificial light potential and dune vegetation. Given that purpose of this study is 
to explore the use of remotely sensed data, these parameters, though inherently limited, may help 
offer a simple yet, qualitative first-step in which to glean potential opportunities for further 
examining habitat characteristics. As such, available hyperspectral imagery was used to approximate 
dune vegetation and subsequently, non-vegetated pixels within the beach area only. The Normalized 
Difference Vegetation Index (NDVI) ratio is a common band math function to distinguish pixels with 
vegetation (reflecting in the near-infrared) from those that do not contain vegetation and, thus, do 
not reflect in the near-infrared part of the electromagnetic spectrum [37]. In this case, it was calculated 
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by dividing the difference in the near-infrared (CASI band 28) and red (CASI band 15) bands by the 
sum of the same near-infrared and red bands for each pixel. The analysis was limited to areas between 
the dune line and the 25-cm contour line and thus, the primary materials were sand and vegetation, 
which have different spectral properties. Since field validation was not possible for this study, high 
resolution aerial photography from Google Earth Pro’s Time Slider Tool was used to help positively 
identify pixels with dune vegetation in the 2009 timeframe and select an NDVI threshold value. 
Visual comparisons were made between the Google Earth imagery and the NDVI grid, resulting in 
the selection of an NDVI threshold value of 0.3 to approximate dune vegetation presence. Thus, pixels 
with an NDVI value > 0.3 were defined as dune vegetation present, while pixels with an NDVI value 
< 0.3 were defined as dune vegetation absent. This approach represents a restricted approximation of 
vegetation presence and does not relay details about vegetation type, health, or quality. Additional 
field data could be used to improve the accuracy and level of vegetation detail that could be extracted 
from the hyperspectral imagery. 

Similar to the dune vegetation, potential for artificial lighting, was likewise approximated for 
exploring habitat characteristics. Data illustrating nighttime observation of lights are provided 
through the National Oceanic & Atmospheric Administration’s National Centers for Environmental 
Information. The Earth Observation Group includes the Defense Meteorological Satellite Program 
with visible and infrared sensors (DMSP-OLS) Nighttime Lights Series, collected by the U.S. Air Force 
Weather Agency. In this study, the data were not directly used because of the coarse spatial resolution 
relative to the morphological parameters (1 km2 at the equator); however, the 2011 average visible 
lights data were downloaded and used indirectly for comparison with the 2011 National Land Cover 
Database (NLCD) [38] in order to examine the relationship between visible nighttime lights and land 
use. A one-way ANOVA revealed significantly different means for visible light with high NLCD 
values than low NLCD values (low NLCD mean visible light = 34.47, high NLCD mean visible light 
= 63, F = 1479, p < 0.001). Since it was out of the scope of this study to use site-specific, ground data 
(e.g., such as from lighting ordinances during nesting season), the approximation for light pollution 
potential is based on medium and high intensity urban land use that may be visible in areas between 
the dune line and the 25-cm shoreline contour. This approximation assumes that high intensity urban 
areas are more likely to produce light pollution in the area of interest. It should be noted, however, 
that a handful of houses with bright lights can be more damaging than those in urban areas with light 
dampening measures in place. Thus, this approximation only captures generalized lighting trends 
associated with heavily urbanized areas and may miss localized instances of light pollution. Using 
the dune line as the backline, the 25-cm shoreline contour, and the first return elevation grid as input, 
the Viewshed tool was used to determine line of sight for an approaching sea turtle from the shore. 
Land cover data from the 2011 NLCD [38] was used to discriminate urban versus natural areas, in 
which pixels designated with medium and high intensity urban values within 200 m of the dune line 
were flagged as having the potential for far-reaching light pollution in the beach area of interest. 
Combining the visible pixels from the Viewshed analysis with the nearby flagged light pollution 
pixels from the land cover grid resulted in a proxy for artificial light pollution. Although light could 
extend beyond urban pixels, it was assumed that only those pixels found to be visible in the beach 
area of interest to those with medium and high intensity urban values would represent a starting 
point for assessing areas with broad potential impacts. It may be possible for artificial light pollution 
to spill into pixels identified as not visible in the Viewshed analysis and, ultimately, localized 
assessment of lighting ordinances would yield specific light pollution effects. 

Regression Analysis 

The study area comprised all medium and high nesting density designations as defined by the 
Florida Fish and Wildlife Conservation for the C. caretta. In addition, the nesting density designations 
are highly generalized with data reported at the county beach level, which are typically 20-km along 
the coast for a single section of the nesting density line. We subdivided the 39 beach area densities 
into relative densities for this stretch of coastline since this area is designated as having either medium 
to high nesting densities. The mean value nesting density for the study area is 198, with a standard 
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deviation of 200. The three class designations were preserved and were divided as follows: less than 
100 (low), between 101 and 300 (medium), and greater than 300 (high). The more detailed subdivision 
of densities was conducted in order to better quantify and evaluate the relationship between 
individual morphological parameters and nesting densities. To identify the relationship between 
each morphological parameter and the predicted probability of nesting density (high, medium, and 
low), we developed a suite of individual multinomial logistic regressions for each morphological 
parameter (slope, elevation, beach width, and dune peak). The two elevation grids (first return and 
bare earth) were found to be highly correlated with a Pearson’s correlation coefficient of 0.93. The 
bare earth elevation grid was used in the model since it removes any temporal variations that might 
be present due to seasonal vegetation, debris, or human use of the beach area. None of the other 
morphological parameters were correlated, and all of the remaining correlation coefficients were 
below 0.4. As stated, the dune vegetation and artificial lighting parameters were not evaluated in the 
regression analyses. Rather, they were set aside for comparison with the model results to illustrate 
potential habitat quality. To that end, these parameters were used as general proxies for habitat 
quality and may provide an initial way to target more detailed opportunities for managers to find 
and improve habitat quality. 

The predicted probability graphs based on beach slope and beach width are shown in Figure 2. 
Wald tests, used to evaluate the statistical significance of coefficients in each model, showed that each 
morphological parameter was a significant variable in its respective model (beach slope Wald’s p = 
0.001, beach width Wald’s p = 0.01). It is inappropriate to use traditional R2 values to interpret model 
performance of logistic regressions. Pseudo R2, though difficult to interpret, indicates that it is 
reasonable to use the individual morphological parameter models to inform suitability curves (beach 
slope McFadden’s R2 = 0.63, beach width Mcfadden’s R2 = 0.21). The predicted probability graph 
based on beach slope shows the trends for the three relative density classes (low, medium, and high) 
and compares with expected results since the C. caretta prefers steeply sloped beaches for nesting [2–7]. 
The low nesting probability is highest for the mild slopes ranging from 0 to 4 degrees. The medium 
nesting probability has a bell shaped curve with the peak probability occurring around 9 degrees. 
The high nesting probability grows quickly with the 0.5 probability occurring around 10 degrees. The 
end tail for the high nesting probability continues to increase with the increasing slope that occurs 
near the dune field. For the model development, the threshold was capped at 15 degrees since values 
beyond this range occur at the back of the grid where the dunes are located. The beach width 
predicted probability curves show that as the beach width increases, the nesting probability class 
changes from medium to low. Beach widths greater than 100-m should indicate low nesting density 
habitat. While the overall trend is in-line with expected results, the high and medium nesting density 
classes both have a lower probability value for the narrow beach widths than was expected. As stated 
previously, this may be a result of the generalized nesting density line that reports data for county 
beaches along the coast where beach width may vary considerably alongshore within the county 
beach. 

The predicted probability graphs based on bare earth elevation and dune elevation are also 
shown in Figure 2. As in the previous models, the bare earth elevation and dune elevation coefficients 
were statistically different from zero and pseudo R2 values were above 0.2 (bare earth elevation 
Wald’s p < 0.001, McFadden’s R2 = 0.79; dune peak Wald’s p < 0.05, McFadden’s R2 = 0.38). Higher 
nesting density is expected in areas with higher elevations. Since elevation and slope are related, the 
trend for the high nesting density follows that of slope. The predicted probability for the medium 
class is more surprising in that the greatest values are seen at the lowest elevations. This is likely a 
result of the highly generalized nesting density data, which are considered medium/high for this 
area. The lowest nesting class shows a similar trend with the slope, with the greatest probability of 
having a low nesting density occurring at the lower elevations. Lower elevation areas are typically 
not considered to be ideal nesting habitat because of the risk of inundation or overwash [2]. The lower 
nesting class curves align with elevations in the 3-m range with a steady decline to show that at the 
next step with elevations greater than 3-m the nesting classes transitions to a medium/high class. The 
lower dune peaks have a high probability of being in the low nesting class. These results are expected 
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given the role dunes provide to block light and their indication of the stability of the coastal area. The 
medium class shows a similar trend with the slope that the peak probability is around the 4-m 
elevation. The high class shows the greatest probability of occurring with the dune peaks are at an 
elevation greater than 4-m. The dune peaks over 7-m are greater than one standard deviation from 
the average dune elevation and occur in limited locations within the study area. These high dune 
elevations only account for two percent of the total dune peak elevations for the entire study area and 
are primarily observed in portions of Palm Beach County where there are densely vegetated dune 
fields. 

 
Figure 2. Predicted probability of C. caretta nest density based on: (A) beach slope; (B) beach width 
parameter; (C) bare earth elevation; and (D) dune peak parameter. Predicted probabilities determined 
through multinomial logistic regression run on individual parameters. 

2.3. Model Development 

The four morphological spatial parameters form the foundation of the model. Each parameter is 
represented quantitatively as suitability indices ranging from 0 to 1 (unsuitable to highly suitable, 
respectively) Figure 3. The regional variability necessitates deriving the suitability curves for the 
study area by utilizing the regression curves to determine transition points in addition to relying on 
value ranges documented in the literature and vetted by subject matter experts. The graphs of the 
curves are provided in Figure 3 and the supporting equations for the parameters for this study area 
are provided in Appendix A. 

More specifically, the C. caretta have been documented in the literature to nest more frequently 
on steeper sloped beaches that have a range of 9 ± 2 degrees for southeast Florida [2,5] and similarly 
also corresponds to what the regression curves in Figure 2A show with the transition point from 
medium to high occurring at 9 degrees. The slope curve in Figure 3A linearly increases in suitability 
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from 0 to 8 degrees and then peaks for values from 8 to 11 degrees before decreasing for the slopes 
greater than 11 degrees. 

Similarly, C. caretta have been documented to prefer narrow beaches that have values around 33 
± 5.6 m [2], which is evident in the regression curves in Figure 2B that transition from low predicted 
probability to high/medium predicted probability at the 30-m width. The suitability index curve in 
Figure 3B highlights this preference of the C. caretta for narrow beaches with the right-skewed 
distribution curve that peaks at 30-m. 

 
Figure 3. Suitability index curves for: (A) beach slope; (B) beach width; (C) elevation; and (D) dune 
elevation. 

Beach elevation has been found to influence nesting location since the elevation provides 
protection of the nest from inundation or overwash [2]. This is also seen in the regression curves 
(Figure 2C) where the transition point from low to high predicted probability occurs at 4-m. The 
suitability index curve is normally distributed around the 4-m elevation to account for the lower 
suitability of the lowest and highest elevation value ranges. 

Similar to the beach elevation suitability curve generation process, the dune elevation regression 
curves were used to determine the elevation where the predicted probability transitions from low to 
high. This occurs at the 5-m elevation for dune peak and results in a suitability curve that increases 
and decreases rapidly since a majority of the dunes have elevation between 3.5-m and 6-m. 

The model curves were used to generate raster grids to scale each of the four morphological 
parameters from 0 to 1 based on the spatial data. An example of the rasterized model grids is shown 
in Figure 4. 

The rasterized model grids are a gridded representation of the suitability index from the model 
curves. The nesting area of interest in Figure 4 is centered around Jupiter Inlet and shows a higher 
suitability index for: slope (A); beach width (B); elevation (C); and dune peak (D) north of the inlet. 
The area north of the inlet has a steeper sloped beach, higher bare earth elevation, medium width 
beach, and a corresponding dune field. The area south of the inlet has less gradient variation from 
the shoreline to the dune line and results in the lower values represented in the rasterized grid from 
the model curves. 
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Figure 4. Rasterized model grids for: (A) slope; (B) beach width; (C) elevation; and (D) dune elevation 
for the area around Jupiter Inlet, FL. 

A weighted overlay approach was determined to be the best fit for the dataset and analysis goals. 
Overlay tools are commonly used in habitat models [26,27]. The model grids were reclassified to 
integer grids since the weighted overlay tool requires integerized grids instead of floating point. This 
changed the scale of the grids from 0 to 10 though still consistent with the trend of the model curve 
values. In order to choose appropriate parameter weights, an optimization process was conducted 
comparing actual site nest locations from Palm Beach County to suitability values in the model grids 
using 57 different parameter weighting schemes. Palm Beach County was selected as the model 
evaluation area since detailed nesting data were available for the 2008–2009 time period, which aligns 
with the timeframe of the lidar dataset. The 2008 nest site data were included to increase the sample 
size since there are approximately 7500 nests in the 2008 dataset compared with 5000 nest sites in the 

A B 

C D 
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2009 dataset and as stated previously the period between the 2008 nesting season and the collection 
of the 2009 lidar dataset was a time of tropical quiescence and therefore the coastal morphology is 
arguably similar for both nesting seasons. 

2.3.1. Model Development and Selection 

Utilizing costume scripting routines, 57 alternate weightings were evaluated by comparing 
sensitivity (true positive rate), detection rate, and detection prevalence to explore associations 
between actual C. caretta nesting sites and the overall habitat suitability values within each of the 57 
models generated (Appendix B). To isolate the effect of a single parameter, four additional scenarios 
were also included using one parameter weighted at 100 percent. The presence of C. caretta nests 
identified in 2008 and 2009 was recorded for each corresponding cell and combined with null values 
where nests were not present at individual cells to create a grid for the spatial domain. Next, 
sensitivity, detection rate, and detection prevalence of each of the models tested were determined. 
This method provided a quantitative method for optimizing the weighting scheme developed, and 
allowed us to further evaluate whether the model could determine a relationship between model-
generated habitat values and field-collected nest distributions. Methods followed Agresti [39] and 
Simonoff [40], statistical analyses used α = 0.10, and all analyses were conducted in R 3.2.3. 

2.3.2. Model Sensitivity Analysis 

A sensitivity analysis was performed in order to determine how robust the models were to the 
parameters and weightings included in the model. For each of the 57 weightings, a parameter was 
systematically removed from the model (e.g., elevation, slope, dune peak, or beach width) in order 
to determine how the predicted model index values responded to the exclusion of specific model 
parameters. The sensitivity analysis evaluates how well the area occupied by nests is predicted by 
reduced models. This method quantifies the importance of each parameter to overall model 
performance and allows for a more rigorous evaluation of index-based model outputs [41,42]. Once 
model sensitivity was quantified, the model weightings that optimized predictions for nesting 
occupancy were determined. 

3. Results 

3.1. Model Selection 

The motivation for model development based on morphological parameters was to identify the 
terrestrial component of nesting habitat using lidar-derived data. After determining which 
morphological parameters were relevant to nest site selection, and exploring the relationships 
between each parameter and nesting data, various weighting schemes were explored to identify 
which parameters were most important for identifying habitat with high nesting suitability. 
Categorical data analysis [39,40] was used to select the model(s) that best predicted C. caretta nest 
occurrence. As the available nesting density data obtained from nesting surveys did not contain any 
information or verification of non-nesting sites, the focus was on metrics that emphasized true 
positive values within the data set. Five models were selected that were best able to classify true 
positive values, made up of nest presence and presence of habitat with high suitability. 

The metrics include sensitivity, detection rate, and detection prevalence as defined in confusion 
matrix. Sensitivity refers to the true positive rate, or the proportion of positive nesting occurrences 
that were properly identified. Detection rate and detection prevalence refer, respectively, to the 
proportion of true positive nesting occurrences and positive predicted nesting occurrences within the 
entire dataset. Of the 57 weighting scenarios (Figure 5), the models with the highest sensitivity and 
detection were driven by larger weights for elevation. Four out of five of these models had an 
elevation weight of 0.75 and all models had an elevation weight of at least 0.5 (Table 2). In comparison 
to the balanced model, in which each parameter was weighted equally, metrics increased in the top 
models, indicating that these models were better suited for identifying nesting habitat. 
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Table 2. Model sensitivity, detection rate, and detection prevalence of top five models as determined 
through comparative analysis of contingency tables from 57 candidate models. Results from equal-
weight (balanced design) and one-parameter models are also listed. 

Model Weighting Structure Sensitivity Detection 
Rate 

Detection 
Prevalence 

 Slope 
Beach 
Width 

Elevation 
Dune 
Peak 

   

17 0.13 0.06 0.75 0.06 0.830 0.725 0.828 
8 0.08 0.08 0.76 0.08 0.830 0.724 0.831 
2 0.06 0.06 0.75 0.13 0.802 0.700 0.807 
4 0.06 0.13 0.75 0.06 0.795 0.695 0.795 
35 0.25 0.08 0.5 0.17 0.748 0.653 0.742 

Balanced (40) 0.25 0.25 0.25 0.25 0.663 0.579 0.644 
Elevation (60) 0 0 1 0 0.891 0.778 0.896 

Slope (58) 1 0 0 0 0.731 0.638 0.706 
Dune Peak (61) 0 0 0 1 0.323 0.282 0.347 

Beach Width (59) 0 1 0 0 0.265 0.231 0.239 

 
Figure 5. Sensitivity (solid gray line), detection prevalence (dashed black line), and detection rate 
(gray dashed line) for predicting the occurrence of C. caretta nests for each of the 61 models tested. 
The weighting scheme for each model is listed in Appendix B. 

Assessment of isolated individual parameter effects on model performance were consistent with 
weighting structures in the top five models in that the elevation model provided the highest 
sensitivities and detection metrics (Table 2). Following elevation, sensitivity decreased sequentially 
when slope, dune peak and beach width were individually used to identify nesting habitat suitability 
(Table 2). The results also indicated that while beach width may be the least useful parameter for 
accurately identifying high nesting habitat suitability (as determined by nest presence), it may be 
useful in identifying low suitable nesting habitat. 

3.2. Model Sensitivity Analysis 

The model was most sensitive to elevation—when elevation was removed from the model, each 
of the metrics decreased (Table 3). Slope was influential, but the model was not as sensitive to its 
exclusion if elevation was present. This indicates that slope is also an important parameter for 
predicting true nest habitat, especially in the absence of elevation information. When the slope, dune 
peak or beach width parameters were removed from the weighting schemes, the top resulting models 
were dominated by large weight values (>0.5) for elevation, or the equal balanced model (Table 3). 
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Table 3. Top resulting models from model sensitivity analysis in which one parameter was removed 
from all 57 weighting schemes. 

Model 
Weighting Structure 

Sensitivity 
Detection 

Rate 
Detection 
Prevalence Slope Beach Width Elevation Dune Peak 

No 
Elevation 

45 0.5 0.08 0 0.17 0.8777 0.7178 0.867 
40 0.25 0.25 0 0.25 0.8723 0.7416 0.864 
47 0.5 0.13 0 0.12 0.8589 0.7500 0.843 
50 0.5 0.13 0 0.25 0.8492 0.6932 0.831 
44 0.5 0.17 0 0.08 0.8349 0.7092 0.824 

No Slope 

35 0 0.08 0.5 0.17 0.932 0.814 0.937 
40 0 0.25 0.25 0.25 0.930 0.812 0.934 
37 0 0.13 0.5 0.12 0.921 0.804 0.925 
26 0 0.08 0.5 0.25 0.915 0.799 0.919 
39 0 0.17 0.5 0.08 0.909 0.794 0.912 

No Dune 
Peak 

40 0.25 0.25 0.25 0 0.934 0.816 0.936 
26 0.17 0.08 0.5 0 0.934 0.816 0.931 
19 0.13 0.12 0.5 0 0.926 0.808 0.928 
35 0.25 0.08 0.5 0 0.918 0.801 0.920 
10 0.08 0.17 0.5 0 0.908 0.793 0.911 

No Beach 
Width 

40 0.25 0 0.25 0.25 0.957 0.835 0.958 
21 0.13 0 0.5 0.12 0.940 0.821 0.944 
30 0.17 0 0.5 0.08 0.939 0.820 0.942 
12 0.08 0 0.5 0.17 0.938 0.819 0.941 
10 0.08 0 0.5 0.25 0.921 0.804 0.926 

Model 17 was determined to have the best weighting scheme for the study area. This model 
weights elevation the highest with a value of 0.75 and the remaining parameters have a value of 0.13 
for slope and 0.06 for both beach width and dune peak. Results for Model 17 applied to the full study 
area are shown in Figure 6. The area is divided into five sections to better visualize the distribution 
of the C. caretta nesting suitability. The occurrences of each nesting suitability class were grouped 
together for the various sections. The sections were primarily divided at the county line, except for 
Palm Beach County which was divided into two sections. This was done to show the distribution in 
the area used for model evaluation (Figure 1; Figure 6B). Similarly, the breakout of the nesting 
suitability values for the sections reported as a percent of the total occurrence per section in Table 4 
show that a majority of the area for each of the sections has a nesting suitability between 3 and 5. It 
is important to remember that the weighting is applied to the entire study area, both cross-shore and 
alongshore which results in a spatial interpretation of the nesting suitability where each individual 
grid cell is assigned a nesting suitability value. Based on existing literature, it is known that C. caretta 
have preferred nesting habitat conditions and therefore some areas along the beach will not have 
high suitability or nesting. 

Table 4. Nesting suitability for each section. 

Suitability 
Martin 
County 

Palm Beach 
County North 

Palm Beach 
County South 

Broward 
County 

Dade 
County 

1 0.1% 1% 1% 2% 1% 
2 11% 15% 16% 10% 7% 
3 13% 23% 22% 37% 38% 
4 25% 24% 32% 27% 20% 
5 28% 19% 19% 20% 27% 
6 11% 7% 6% 2% 2% 
7 0.1% 0.5% 0.05% 1% 0.4% 
8 7% 5% 2% 2% 3% 
9 5% 5% 2% 1% 1% 

10 0.5% 0.5% 0.07% 0.03% 0.03% 
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Per area, the highest nesting suitability is modeled as occurring in Martin and Palm Beach 
Counties. This area of the coast has geomorphic features that align with the higher suitability in the 
model curves (Figure 3). While we know that nests occur in Broward and Dade counties, the results 
of the nesting suitability are a function of the morphological conditions that are shown to be less 
suitable than in the northern counties. 

 
Figure 6. Nesting suitability distribution for the study area divided into sections for: (A) Martin 
County; (B) northern portion of Palm Beach County (area used in the model evaluation); (C) southern 
portion of Palm Beach County; (D) Broward County; and (E) a Dade County. 
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4. Discussion 

The results from our multi-model integrated approach for projecting C. caretta nesting site 
suitability can provide natural resource managers with a tool to determine if potential projects will 
impact sea turtle nests. Given that sea turtles are at their most vulnerable to predation during the egg 
and hatchling stage, developing a mechanism to gain a priori knowledge is critical because it reduces 
anthropogenic mortality vectors [2]. 

The use of remote sensing data is uniquely positioned to address the need for more efficient 
methods of assessing nesting habitat suitability on a regional scale. One interesting result from the 
study is the high influence that elevation had on the sensitivity of the model for this study area. The 
importance of elevation lends more power to utilizing remote sensing data for nesting habitat 
suitability assessment since acquiring elevation data on a regional scale is better suited for remote 
sensing techniques. Additionally, the use of remote sensing data provide the regional focus for 
determining nesting site suitability by addressing the need for a flexible model that allows for the 
variability in regional values to be included as input. This allows for a flexible model that can 
incorporate regional value ranges for the various morphological parameters [25–27]. 

The coastal environment is highly dynamic and thus having frequent surveys is essential to 
characterize the morphology. This is of particular importance in areas that experience substantial 
change during the nesting season such as from extreme storm events and/or anthropogenic changes. 
The 2008 and 2009 nesting season was a period of tropical quiescence with no extreme storm events 
impacting the area. Additionally, hindcast wave histories from Wave Information Study (WIS) 
Station 63460 for the 2008–2009 timeframe are plotted in Figure 7, which shows the average 
significant wave height is 1-m with a mean wave direction of 107-degrees [43]. The station is located 
at the 347-m depth contour at approximately 12-km offshore of Palm Beach County in the Atlantic 
Ocean. Since less than two percent of the waves are greater than or equal to 3-m, the low wave climate 
for this time period is assumed to cause limited morphological change. As such, the use of a single 
survey (2009 lidar dataset) for the model may not capture the subtle changes to the beach area that 
occurred during the 2008–2009 nesting season, but the over-arching morphology is expected to be 
fairly consistent between these two years. 

 
Figure 7. Wave rose for Station 63460 off the coast of Palm Beach County. 
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While the nearshore features may influence nest site selection of C. caretta prior to emergence 
from the water [2], a study by Yamamoto et al. [4] indicated that the onshore characteristics are more 
influential than the nearshore features for determining nest density. Additionally, limiting the 
present study to subaerial morphological features ensures that the model approach will be applicable 
in areas where the collection of bathymetric lidar data is limited due to turbid environments. 

Effective species management and conservation requires an understanding of how and why 
species are distributed spatially across a landscape with spatial datasets often biased towards where 
species are present, and not where they are absent [44]. This issue is magnified for rare or endangered 
species, where research is often focused on gathering basic information on the species, which can 
result in a larger bias towards presence-only data [45,46]. Barring the availability of true absence data 
to validate the model, the model was developed independently of the nesting data source, and the 
presence of nests were indicative of how well our model could predict nesting sites. While the model 
was optimized using detailed nesting data, high fidelity nesting data with coordinates is often 
difficult to obtain, does not exist in many locations, or is not released to protect nesting sites; however, 
the approach is intended to be flexible and adapt to the level of data that is available. For this study 
area, the equal weighting/balanced scenario had sensitivity and detection values of approximately 
0.6 meaning that at a minimum, this model can be used with reasonable certainty for determining 
nesting habitat suitability with limited optimization. These results are an improvement from the field 
based approach described by Santos et al. [13] for collecting environmental data for a region to 
determine nesting suitability where the authors compared three habitat model approaches with an 
overall prediction rate of 40 percent [13]. 

As stated previously, dune vegetation and artificial lighting data were developed and set aside 
for qualitative comparison. These environmental and anthropogenic parameters may be important 
to consider for influencing nesting activity [4,12]. In addition, they may aid in evaluating habitat 
characteristics or quality, impacting site preference and mortality rates. Figure 8 shows the same 
section as Figure 4, highlighting approximated dune vegetation and the potential for artificial light 
pollution. Although it was outside the scope of this study to validate these parameters with ground 
truth data, they represent a preliminary way in which to investigate remotely sensed data for nesting 
habitat conditions. It should be noted that a more thorough inclusion of in-situ vegetation data as 
well as factoring lighting ordinances during nesting season would be required for site-specific 
assessment. Our modeling approach is easily adapted to include more data sources, and including 
such data not only highlights the potential role for new remotely sensed data products relating to 
nesting activities, but also, a starting point for how to incorporate them and begin to evaluate habitat 
characteristics. Thus, qualitative data comparisons can help explore links between habitat 
characteristics and nesting suitability. For example, lack of dune vegetation or potential for light 
pollution in areas that are highly suitable for nesting may help identify opportunities for habitat 
enhancement and improvement with maximum benefit to the species. This is seen in Figure 8, in 
which some areas south of Jupiter inlet have high suitability for nesting, but lack dune vegetation 
and have the potential for artificial lighting. This may be important to managers looking to prioritize 
and maximize strategies pertaining to nesting activity, including the maintenance of existing dune 
vegetation in dense nesting areas, identification of locations for dune vegetation enhancement in 
areas where it may be maximally beneficial, and reducing the potential for light pollution in nesting 
areas where possible. Thus, environmental and anthropogenic data in turtle nesting models such as 
this can be used as an initial screening tool, and when integrated with ancillary or site-specific data, 
can be used to help further identify and refine management strategies as they relate to turtle nesting 
habitat. 



Remote Sens. 2016, 8, 573 17 of 21 

 

 
Figure 8. Nesting suitability, Model 17 (A); approximate dune vegetation (B); and potential artificial 
light pollution (C). 

5. Conclusions 

The methods developed in this study will be beneficial for monitoring the changing status of the 
coast as it relates to nesting habitat suitability for C. caretta as a result of anthropogenic factors and 
hydrodynamic conditions. In addition, the approach can be used to assess planned scenarios during 
the design phase and may lend insight for ways to improve the beach area and enhance nesting 
habitat suitability through beneficially managing sediment and other resources. 

Future work should include additional analyses of the model approach to explore the influence 
of the morphological parameters in other locations. In addition, improved spatial integration of 
environmental and anthropogenic parameters could be helpful in determining their influence in 
nesting suitability as well as for conducting specific prioritization analyses for identifying 
management hotspots and areas of concern. 
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Appendix A 

Equations used to generate suitability indices are provided for the 200-km study area in 
southeast Florida, including Martin, Palm Beach, Broward, and part of Dade Counties. Breakpoints 
in the curves correspond to transition points that were determined from: (1) the regression curves, 
which provided site specific results for the probability of value ranges having low, medium, or high 
nesting suitability; (2) literature about preferred value ranges; and (3) input from subject matter 
experts on the preferred value ranges, and all contributed to the overall shape of each of the curves. 
The equations were determined as a step function using the suitability curve transition points to 
divide the curve into the various parts. Values between the steps or transition points were determined 
by fitting a line to the curve, which was either a linear interpolation or polynomial expansion. Refer 
to the main text for further information on the use of the regression curves, literature, and subject 
matter experts to identify transition points for curve development. 

A         B        C 
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Values between the transition points for the slope were calculated as follows in Equations (A1)–
(A4): ݁݌݋݈ݏ ≤ ௦௟௢௣௘ܫܵ 8 = 0.0062 × (ଶ݁݌݋݈ݏ) + 0.078 × 8 (A1) ݁݌݋݈ݏ < ݁݌݋݈ݏ ≤ 11 ௦௟௢௣௘ܫܵ = 1 (A2) 11 < ≥ ݁݌݋݈ݏ ௦௟௢௣௘ܫܵ 20 = 0.0058 × (ଶ݁݌݋݈ݏ) − 0.281 × ݁݌݋݈ݏ + 3.40 (A3) 20 < ≥ ݁݌݋݈ݏ 34 ௦௟௢௣௘ܫܵ = −0.0071 × ݁݌݋݈ݏ + 0.2429 (A4) 

Values between the transition points for the beach width were calculated as follows in Equations 
(A5)–(A10):  ݐ݀݅ݓℎ ≤ = ௪௜ௗ௧௛ܫܵ 30 −0.0004 × (ℎଶݐ݀݅ݓ) + 0.0533 × ℎݐ݀݅ݓ − 0.2374 (A5) 30 < ≥ ℎݐ݀݅ݓ 40 ௪௜ௗ௧௛ܫܵ = −0.02 × (ℎݐ݀݅ݓ) + 1.6 (A6) 40 < ≥ ℎݐ݀݅ݓ 100 ௪௜ௗ௧௛ܫܵ = −0.0082 × (ℎݐ݀݅ݓ) + 1.121 (A7) 100 < ≥ ℎݐ݀݅ݓ 125 ௪௜ௗ௧௛ܫܵ = −0.008 × (ℎݐ݀݅ݓ) + 1.1 (A8) 125 < ℎݐ݀݅ݓ ≤ 175 ௪௜ௗ௧௛ܫܵ = 0.1 (A9) 175 < ≥ ℎݐ݀݅ݓ 183 ௪௜ௗ௧௛ܫܵ = −0.0125 × (ℎݐ݀݅ݓ) + 2.2875 (A10) 

The bare earth elevation was calculated as follows for the normal distribution in Equation (A11): 0 < ≥ ݊݋݅ݐܽݒ݈݁݁ 10 ௘௟௘௩௔௧௜௢௡ܫܵ = 1√2π × ݁ି(௘௟௘௩௔௧௜௢௡)మ 2⁄  (A11) 

Values between the transition points for the dune elevation were calculated as follows in 
Equations (A12)–(A15):  ݀݁݊ݑ ≤ ௗ௨௡௘ܫܵ 4 = 0.0452 × (ଶ݁݊ݑ݀) + 0.0761 × 4 (A12) ݁݊ݑ݀ < ≥ ݁݊ݑ݀ 7 ௗ௨௡௘ܫܵ = −0.3 × (݁݊ݑ݀) + 2.2 (A13) 7 < ݁݊ݑ݀ ≤ 10 ௗ௨௡௘ܫܵ = 0.1 (A14) 10 < ≥ ݁݊ݑ݀ 11 ௗ௨௡௘ܫܵ = −0.1 × (݁݊ݑ݀) + 1.1 (A15) 

Appendix B 

Table B1. Experimental design used to weight parameters for 57 model runs that utilized all four 
parameters. Four additional model runs, each using only one parameter, were also included in the 
analyses. 

Weight Scenario Slope Beach Width Elevation Dune Peak 
1 0.06 0.06 0.13 0.75 
2 0.06 0.06 0.75 0.13 
3 0.06 0.13 0.06 0.75 
4 0.06 0.13 0.75 0.06 
5 0.06 0.75 0.06 0.13 
6 0.06 0.75 0.13 0.06 
7 0.08 0.08 0.08 0.76 
8 0.08 0.08 0.76 0.08 
9 0.08 0.17 0.25 0.5 
10 0.08 0.17 0.5 0.25 
11 0.08 0.25 0.17 0.5 
12 0.08 0.25 0.5 0.17 
13 0.08 0.5 0.17 0.25 
14 0.08 0.5 0.25 0.17 
15 0.08 0.76 0.08 0.08 
16 0.13 0.06 0.06 0.75 
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17 0.13 0.06 0.75 0.06 
18 0.13 0.12 0.25 0.5 
19 0.13 0.12 0.5 0.25 
20 0.13 0.25 0.12 0.5 
21 0.13 0.25 0.5 0.12 
22 0.13 0.5 0.12 0.25 
23 0.13 0.5 0.25 0.12 
24 0.13 0.75 0.06 0.06 
25 0.17 0.08 0.25 0.5 
26 0.17 0.08 0.5 0.25 
27 0.17 0.17 0.16 0.5 
28 0.17 0.17 0.5 0.16 
29 0.17 0.25 0.08 0.5 
30 0.17 0.25 0.5 0.08 
31 0.17 0.5 0.08 0.25 
32 0.17 0.5 0.17 0.16 
33 0.17 0.5 0.25 0.08 
34 0.25 0.08 0.17 0.5 
35 0.25 0.08 0.5 0.17 
36 0.25 0.13 0.12 0.5 
37 0.25 0.13 0.5 0.12 
38 0.25 0.17 0.08 0.5 
39 0.25 0.17 0.5 0.08 
40 0.25 0.25 0.25 0.25 
41 0.25 0.5 0.08 0.17 
42 0.25 0.5 0.13 0.12 
43 0.25 0.5 0.17 0.08 
44 0.5 0.08 0.17 0.25 
45 0.5 0.08 0.25 0.17 
46 0.5 0.13 0.12 0.25 
47 0.5 0.13 0.25 0.12 
48 0.5 0.17 0.08 0.25 
49 0.5 0.17 0.17 0.16 
50 0.5 0.17 0.25 0.08 
51 0.5 0.25 0.08 0.17 
52 0.5 0.25 0.13 0.12 
53 0.5 0.25 0.17 0.08 
54 0.75 0.06 0.06 0.13 
55 0.75 0.06 0.13 0.06 
56 0.76 0.08 0.08 0.08 
57 0.75 0.13 0.06 0.06 
58 1.00 0.00 0.00 0.00 
59 0.00 1.00 0.00 0.00 
60 0.00 0.00 1.00 0.00 
61 0.00 0.00 0.00 0.00 
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