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Abstract: Knowledge of the concentration of total suspended sediment (TSS) in coastal waters is
of significance to marine environmental monitoring agencies to determine the turbidity of water
that serve as a proxy to estimate the availability of light at depth for benthic habitats. TSS models
applicable to data collected by satellite sensors can be used to determine TSS with reasonable accuracy
and of adequate spatial and temporal resolution to be of use for coastal water quality monitoring.
Thus, a study is presented here where we develop a semi-analytic sediment model (SASM) applicable
to any sensor with red and near infrared (NIR) bands. The calibration and validation of the SASM
using bootstrap and cross-validation methods showed that the SASM applied to Moderate Resolution
Imaging Spectroradiometer (MODIS)-Aqua band 1 data retrieved TSS with a root mean square
error (RMSE) and mean averaged relative error (MARE) of 5.75 mg/L and 33.33% respectively. The
application of the SASM over our study region using MODIS-Aqua band 1 data showed that the
SASM can be used to monitor the on-going, post and pre-dredging activities and identify daily TSS
anomalies that are caused by natural and anthropogenic processes in coastal waters of northern
Western Australia.

Keywords: total suspended sediment; remote sensing; coastal waters; semi-analytic
algorithm; MODIS

1. Introduction

The use of satellite remote sensing of coastal waters to derive their bio-geophysical properties
provides marine scientists and managers with a relatively affordable alternative to in situ based
sampling. Remote sensing has been used to map a wide array of coastal water’s constituents, such as
phytoplankton for biomass and primary production [1–4], coloured dissolved organic matter (CDOM)
for its effect on benthic habitats [5–7], and total suspended sediments (TSS) concentration as a measure
of water quality [8–12]. Many studies have been performed to derive TSS concentration via satellite
remote sensing using different platforms: Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [13,14],
Landsat series [15–20], Medium Resolution Imaging Spectrometer (MERIS) [21–26], Moderate
Resolution Imaging Spectroradiometer (MODIS) [9,11,25,27–30], “Système Pour l'Observation de
la Terre” (SPOT) [31], and high resolution sensor IKONOS [32]. Most models are developed to estimate
TSS concentration by directly relating the remotely sensed reflectance with in situ measurements of
the TSS concentration using statistical analysis, linear and non-linear regression. These models may
use a single spectral band [16,33–38] or combinations of different spectral bands [15,21,28,39–42] with
regression analysis to predict the TSS concentration. Linear approximations from regression analysis
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are valid for relatively low TSS concentrations but as the TSS concentration increases the linearity
weakens and the reflectance saturates at high TSS concentration [13,43]. The saturation of reflectance
occurs at high TSS concentration because the increased water column scattering leads to a relative
enhancement in absorption/attenuation of the backscattered light [44]. In such cases, a non-linear
approximation such as a higher order polynomial or exponential function [13,29,35,45] is used to relate
the TSS concentration to reflectance. Combinations of different spectral bands in visible and near
infrared (NIR) spectral regions have been used to estimate the TSS concentration in coastal waters
that varied vastly in concentrations, from less than 11.0 mg/L [25,46–48] to very high, greater than
2000 mg/L [13,49,50]. Spectral bands in the blue and green spectral regions with [23,41,51,52] or
without (Jiang and Liu 2011 as cited in [28,53]) the combinations of red or NIR bands are used by many
researchers to explore the potential of TSS mapping using different band combinations. However, more
recently, single band estimations of the TSS concentration using the red or NIR bands have been widely
used in TSS algorithms because of the particulates dominance in total backscattering when compared
with the optical response of other components in these regions of the electromagnetic spectrum.

Empirical methods are most often used to estimate TSS concentration because of their simplicity
in development. However, the lack of a physical basis in empirical models limits their general
applicability to other than a local area where the algorithm was developed and ones confidence in
extrapolating the model to higher of lower concentration than those on which it was developed [54].
In recent decades, physical and semi-analytical models relating inherent optical properties (IOPs) of
water to apparent optical properties (viz. irradiance reflectance just beneath the water surface) are
used to estimate bio-geophysical parameters of interest [11,18,22,54–58]. A physical model, which
is based on radiative transfer theory, requires that the in situ inherent optical properties of water,
atmospheric conditions and several other factors are accurately known to enable the determination of
TSS concentration [44]. Use of semi-analytical models that combine both physical foundations and
statistical analyses provide a promising method to estimate TSS concentration with limited knowledge
of the in situ optical properties of the water body [57,59,60].

Semi-analytic TSS algorithms include model parameters that use in situ regional IOPs [54],
averaged IOPs representative of wider geographical locations [60] or IOPs inverted from site specific
satellite reflectance [61]. The site specific IOPs used in parameterizing these models are potentially
the best for retrieving site-specific TSS. However, notwithstanding the inherent uncertainties and
limitations of in situ IOP instruments, the acquisition of IOPs is also challenging due to financial,
logistical and time factors for rapid assessment of TSS. The dependence of IOPs on site-specific water
constituents limits the use of published IOPs from other areas as an alternative without compromising
the quality of the derived TSS concentration. The IOPs obtained by inverting the site specific satellite
reflectance are also not without limitations because the inverted IOPs are affected by not only the
uncertainties of IOPs from inversion models but also uncertainties of the reflectance product from
which the IOPs are derived. The study conducted by [62] to determine the uncertainties of IOPs
derived from semi-analytic models quantified that 20% of derived absorption coefficients were
outside the 90% confidence limit while for the backscattering coefficient ~50% were outside the
90% confidence limit.

In this study, we proposed a semi-analytic sediment model (SASM) that had a basis in radiative
transfer theory and was locally tuned to the regional waters of northern Western Australia for
MODIS-Aqua band 1 to monitor TSS concentration in the region. The SASM was applied to the
coastal waters of northern Western Australia using MODIS-Aqua 250 m data for mapping the TSS
concentration in the region, which would serve as a baseline in future water quality monitoring of
the region.
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2. Materials and Methods

2.1. Study Site

Onslow waters fall within the Pilbara Coast West (from Exmouth to Karratha) of Western
Australian centred at 21˝3510011 S and longitude 115˝0510011 E (Figure 1) and experience an annual
average temperature of 29.2 ˝C and mean annual rainfall of 296 mm [63]. The discovery of the
Wheatstone gas field off the coast of Onslow in 2004 has led to the construction of 25 million tonnes
per year gas processing plants [64] with the dredging of a shipping access channel to the processing
plants beginning from May 2013 till end of September 2013 in the location of the dredge area (DA) in
Figure 1 [65]. The dredging operation was expected to generate 45 million m3 of dredge spoil [65],
and the activity has some level of impact on the marine ecosystem in the region.
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Figure 1. True colour 15 m pan sharpened Landsat OLI (Operational Land Imager) imagery showing
study site and the location of the sampling stations. Red squares represent the location of dredge area
(DA), spoil ground (SG), and clean area (CA) used in the temporal analysis. Red, purple and green
filled circles are the locations of water sampling stations in 2013, 2014 and 2015 respectively.

2.2. In Situ and Remote Sensing Data

The satellite-based remote sensing data for this study were MODIS-Aqua data
spanning the years 2013 to 2015, acquired as Level 1B data from the NASA LAADS web
(http://ladsweb.nascom.nasa.gov/). The in situ data of reflectance samples was collected using a
hyperspectral radiometer, the “Dynamic above-water radiance and irradiance collector” (DALEC) and
simultaneously, water samples were gathered for TSS measurements. In total three field campaigns
were carried out in the study site collecting a total of 130 water samples. First two field campaigns
were carried out on board the RV Linnaeus, operated by the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) during October 2013 and June 2014. The third field campaign was
carried out in July 2015 on the Australian Institute of Marine Science (AIMS) RV Solander (Figure 1).

2.2.1. The DALEC Radiometer

The DALEC, a hyperspectral radiometer developed by “In situ Marine Optics” is used routinely
for autonomous ship-based measurement of remote sensing reflectance [66]. The DALEC takes
coincident measurements of downwelling irradiance (Ed), upwelling radiance (Lu) and sky radiance
(Lsky) with each sensor collecting spectral information in 256 spectral bins ranging from 380 nm to
900 nm. Measurement of radiance from the Lu and Lsky sensors and irradiance from the Ed sensor
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can be used to compute remote sensing reflectance (Rrs) using the ad hoc formula of Mobley [67], as
shown by Equation (1),

Rrspλq “
Lupλq ρLskypλq

Edpλq
(1)

where ρ is a correction factor which is dependent on sky radiance, solar zenith angle, wind speed
and the instrument’s viewing angle [67]. The value of ρ was set to 0.022 as prescribed by Mobley [67]
for uniform sky conditions and wind speed less than 5 m¨ s´1. DALEC data were collected between
10:00 am and 3:00 pm local time when cloud cover was below 10%, the wind speed less than 5 m¨ s´1

and the sea waves and swell were below 0.5 m.
As recommended by Mobley [67], the DALEC’s azimuthal viewing angle was maintained at 135˝

relative to the solar direction and the viewing angles of the Lu and Lsky sensors were set at 40˝ off nadir
and zenith respectively to minimize the sun glint and instrument shading. The necessary adjustment
to the orientation of the DALEC was carried out as and when the heading of the ship changed during
the course of the measurements.

2.2.2. DALEC Data Collection and Analysis

The DALEC was mounted on the bow of the research vessel using a horizontal pole to a distance
such that disturbance from the wake of the ship was avoided. The DALEC is capable of running
continuously, and collecting individual spectra at integration times selected automatically in response
to illumination conditions. On average DALEC was able to collect 11 reflectance spectrum per minute.
The DALEC was operated whilst the boat was underway and also when “on station”, with the on
station periods lasting at least 5 min to allow collection of TSS samples.

Despite taking necessary steps discussed above as recommended by Mobley [67] to avoid specular
reflection of sunlight from some wave facets for the reflectance measurements, still some spectra can be
contaminated by the sun glint. These sun glint affected spectra are removed from the time series of data
prior to subsequent analysis. After elimination of sun glint contaminated spectra there were at least
5 reflectance spectra per stations every minute. Typically, an average spectrum is derived from a set of
measurements coinciding with the collection of the TSS sample. Analysis of the variation in reflectance
spectra, by calculating the standard deviation for time periods of ˘1 min, ˘3 min, and ˘5 min from
time when TSS sample was collected, showed that the standard deviation for each set of data was
comparable. On average, we selected ˘3 min as the standard averaging period for all stations.

2.2.3. Water Sample Collection and Analysis

During the first two field trips we collected a minimum of two 1 litre sample bottles of water from
~0.5–1 m depth at each station while the boat was stationary. For the third field trip, we collected water
samples using an underway seawater sampling system on the AIMS RV Solander, which has a sea
water intake system at a depth of ~1.9 m below the ocean surface.

All the water samples collected where processed for TSS concentration using the gravimetric
method within six hours from the time the water samples were collected. Whatman GF/F filters
(47 mm diameter, nominal pore size 0.7 µm) were pre-prepared in the laboratory by rinsing each filter
with 50 mL of distilled/deionized water followed by drying at 60 ˝C in an oven for over 12 h. The
water samples were filtered using low vacuum pressure and the filter flushed with 50 mL of deionized
water to remove residual salt. The filtered TSS samples were stored in a cool dry place until being
taken back to the laboratory where they were dried for at least 24 h at 60 ˝C. The dried filters were
then repeatedly measured until the measured weight was constant within the tolerance weight limit of
0.001 mg/L.

Analysis of TSS samples collected during the third field trip showed that the TSS did not correlate
with the reflectance measurements or other optical measurements. Collecting the water samples from
a depth of ~1.9 m might have resulted in the in situ TSS concentration being different from the actual
expected value at the surface (~0.5–1.0 m) if the water column is stratified. In fact, observations from
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acoustic instruments did often show strong stratification, with suspended sediment loads increasing
with depth. Thus, data from the third field trip were excluded from the algorithm development or TSS
product validation in this study with the exception of DALEC measurements of the remote sensing
reflectance to be used in the validation of the atmospheric correction process because DALEC data on
6 July 2015 were acquired within 15 min from the MODIS-Aqua overpass. The details of water column
stratification on the MODIS sensor at band 1 is discussed in Appendix A.

2.2.4. Satellite Data Acquisition

MODIS-Aqua level 1B images containing geo located at-aperture radiances for all 36 spectral
bands were acquired from NASA LAADS web for the dates corresponding to all the field trips for the
validation of the MODIS-Aqua derived TSS. The images were assessed for sun glint contamination
and cloud cover over the study sites and found to be free of cloud and sun glint. In addition to
the aforementioned MODIS-Aqua images, additionally 247 MODIS-Aqua images free of cloud and
sun glint in the study site for the year 2013 coinciding with the dredge operation to construct access
channels for a gas processing plant by Chevron Pty Ltd. (Perth, Austrilia) were also acquired for time
series analysis. All MODIS-Aqua 1B images were processed for atmospheric correction, water pixel
extraction for the validation, and spatial consideration for the temporal analysis.

2.2.5. Atmospheric Correction

For the atmospheric correction, the top of the atmosphere (TOA) radiance from the MODIS-Aqua
Level 1B products were converted to atmospherically corrected, at-surface remote sensing reflectance
using the multi-sensor Level 1 to Level 2 generator (l2gen) function which can be run as a stand-alone
program or accessed through the SeaDAS 7.2 interface [68]. Among many atmospheric correction
algorithms available for data processing in SeaDAS we considered two, the standard atmospheric
correction method for MODIS high resolution data SWIR [69], and the MUMM [70] atmospheric
correction method, because previous studies [56,70–72] have demonstrated that these two atmospheric
correction algorithms are effective for turbid coastal waters. The SWIR atmospheric algorithm estimates
the aerosol reflectance using the 1240 nm and 2130 nm MODIS bands while the MUMM atmospheric
correction is based on the spatial homogeneity of water-leaving radiances and aerosol ratios for the
MODIS 748 nm and 869 nm bands [71].

Both the MODIS high resolution and MUMM atmospheric correction were applied to
MODIS-Aqua Level 1B data for 6 July 2015 because all the DALEC Rrs data collected on 6 July 2015
were within 15 min of MODIS overpass time compared to in excess of at last 90 min on other sampling
dates. A comparative analysis of Rrs data from the two atmospheric correction methods considered
(results discussed in Section 3.2) showed that MUMM is better at retrieving Rrs when compared with
the standard MODIS high resolution SWIR atmospheric correction method for our study site. All
MODIS-Aqua data were subsequently processed with the MUMM atmospheric correction approach.
However, analysis of the products showed that MUMM’s default cloud screening band at 869 nm
caused the turbid plumes to be flagged as clouds, thus we applied the 2130 nm band instead.

2.2.6. Water Pixel Extraction and Analysis

For water pixel extraction, we used the geographical location of the in situ TSS sampling stations
that were within ˘30 min, ˘60 min and ˘90 min from MODIS-Aqua overpass time. Herein, data are
referred to as Aqua Validation Data (AVD) and followed by the suffix 30, 60 and 90 for data collected
within ˘30 min, ˘60 min and ˘90 min of MODIS-Aqua overpass respectively. For the AVD30, AVD60
and AVD90 there were 18, 28 and 45 match-up pairs between MODIS-Aqua derived TSS and in situ
TSS respectively. TSS from each location at the validation sites were extracted using the SeaDAS pixel
extraction tool for window sizes of a single pixel, 3 ˆ 3 pixels, and 5 ˆ 5 pixels to account for the pixel
variability in the error analysis.
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For the selection of the location and the spatial extent in the MODIS derived TSS for performing
the time series analysis, we focused on three different regions in the study site after careful analysis of
the pan-sharped 15 m Landsat imagery to confirm appropriate locations to represent (1) clean area
(CA); (2) dredge area (DA); and (3) spoil ground (SG). All three areas of interest were confined to
a spatial extent of 25 km2 after visually examining the high spatial resolution Landsat images. The
CA was selected away from the main dredging area and further off the coast, the DA was selected at
a location coincident with dredging operations, and the SG was selected at a location where spoils
from the dredge operations were dumped. MODIS-derived TSS concentrations corresponding to each
location were extracted for MODIS-Aqua time series analysis. The spatial extent and the geographical
locations of CA, DA and SG are shown in Figure 1.

2.3. SASM Model Formulations

The formulation of the SASM describes the relationship between TSS concentration and ocean
reflectance, thus providing a means to estimate TSS concentration using remote sensing methods.
The approach is based on general radiative transfer theory and the Quasi Analytic Algorithm of
Lee, et al. [73].

2.3.1. Reflectance Model

Gordon, et al. [74] showed subsurface remote sensing reflectance (rrs), is related to the total
absorption coefficient, a (λ), and total backscattering coefficient, bb (λ), through:

rrspλq «
2
ÿ

i“1

gi

„

bbpλq

apλq ` bbpλq

i
(2)

The coefficients gi depend on solar angle, scattering phase function, bidirectional reflectance
effects and water surface conditions. Gordon, et al. [74] gave g1 = 0.0949 and g2 = 0.0794 for case-1
waters and Lee, et al. [59] demonstrated that g1 = 0.084 and g2 = 0.17 are more suitable for highly
scattering coastal waters. In this study, we adopted the values of g1 and g2 provided by Lee, et al. [59].

The Rrs(λ) which are measured by above-water radiometer can relate to rrs(λ) using the
relationship from Lee, et al. [59] as shown in Equation (3).

rrspλq “
Rrspλq

p0.52` 1.7Rrspλqq
(3)

The total absorption coefficient is expressed as the sum of absorption coefficients for pure sea
water (aw(λ)), particulate matter (ap(λ)), phytoplankton pigments (aϕ(λ)), and coloured dissolved
organic matter (acdom(λ)).

apλq “ appλq ` awpλq ` aϕpλq ` acdompλq
loooooooooooooooomoooooooooooooooon

aother

(4)

The total backscattering coefficient is expressed as the sum of backscattering coefficients for pure
sea water (bbw(λ)), particulates (bbp(λ)), and phytoplankton pigments (bbϕ(λ)).

bbpλq “ bbwpλq ` bbppλq ` bbϕpλq (5)

Equation (2) representing the subsurface remote sensing reflectance as a function of the IOPs can
be rewritten as a quadratic equation as follows:

rrspλq “ g1xpλq ` g2x2pλq (6)



Remote Sens. 2016, 8, 556 7 of 23

where

xpλq “
bbpλq

apλq ` bbpλq
(7)

2.3.2. Inherent Optical Properties Model

In the IOPs model we represent the ratio of bb(λ) to a(λ) as ω1b(λ) as follows:

ω1bpλq “
bbpλq

apλq
(8)

For the case of turbid water, we adopt the following assumptions:

‚ For high-scattering coastal waters, bb(λ) is mainly due to the backscattering coefficient from
particulate matter and water molecules, the backscattering coefficient contributions from other
constituents are insignificant [75]. Further, in the red and NIR regions of the spectrum the
scattering by water molecules becomes insignificant, thus we can make an assumption that total
backscattering in the red and NIR regions is due to particulate matter only. Equation (5) can be
approximated as:

bbpλq « bbppλq (9)

The assumption in Equation (9) can potentially be undermined for extreme concentrations of
chlorophyll during phytoplankton blooms because in such cases, the backscattering from chlorophyll
can be significant and cannot be ignored. HydroLight simulations show that even in the extreme
case of high chlorophyll concentration (10 mg¨m´3) the backscattering contribution from chlorophyll
constitute backscattering equivalent of TSS concentration of 3.4 mg/L and 3.6 mg/L at MODIS band 1
and 2 respectively. The backscattering contribution from pure water is calculated to be ~20% and
~9% of backscattering coefficient of MODIS band 1 and band 2 respectively than the TSS backscattering
contribution even at TSS concentration of 0.2 mg/L. The coastal waters in Western Australia typically
shows a seasonal cycle in chlorophyll with average low values of 0.24 mg¨m´3 during summer and
peaks in June with average values of 0.69 mg¨m´3 [76]. Considering the concentration of chlorophyll
is typically less than 1 mg¨m´3 and its backscattering effect minimal even during the peak seasons
in coastal waters of Western Australia, we can assume Equation (9) is valid for both MODIS band 1
and band 2. An added bonus that the aforementioned MODIS bands are both capable of is a 250 m
spatial resolution.

‚ Following [77,78] we can assume the particulate backscattering coefficient (bbp(λ)) and absorption
coefficient (ap(λ)) to be proportional to TSS concentration, via appropriate constants—the specific
particulate backscattering coefficient (bbp

*(λ)) and specific particulate absorption coefficients
(ap

*(λ)).
bbppλq “ bbp

˚
pλq ˆ TSS (10)

appλq “ ap
˚pλq ˆ TSS (11)

Taking into account the aforementioned assumptions, we can formulate Equation (8) into

TSSpλq “
C1pλqω

1
bpλq

1´ C2pλqω
1
bpλq

(12)

where C1(λ)=aother(λ)/bbp
*(λ) and C2(λ)=ap

*(λ)/bbp
*(λ).

Essentially, Equation (12) is equivalent to Equation (5) of Nechad, Ruddick and Park [60]. However,
the difference between the two models lies in the approximation of rrs(λ) where we use the second order
approximation of Gordon, et al. [74] and Nechad, Ruddick and Park [60] make use of the first order
approximation of rrs(λ) from [74]. The difference in rrs(λ) between Nechad, Ruddick and Park [60]
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and the SASM model stems from the computation of ω1b(λ) by each individual model. The details of
reflectance models comparison between Nechad, Ruddick and Park [60] and SASM is presented in
Supplementary Material.

2.3.3. Consolidation of Reflectance and Inherent Optical Properties Model

Equation (7) can be established in terms of ω1b(λ) using the relationship from Equation (8)
as follows:

xpλq “
ω1bpλq

1`ω1bpλq
or ω1bpλq “

xpλq
1´ xpλq

(13)

Substituting Equation (13) into Equation (12) gives:

TSSpλq “
C1pλq

´

xpλq
1´xpλq

¯

1´ C2pλq
´

xpλq
1´xpλq

¯ (14)

where x(λ) is the positive root of the solution of the quadratic function shown as Equation (6), which is
as follows:

xpλq “
´g1 `

b

pg1q
2
` 4g2rrspλq

2g2
(15)

The constants C1 (λ) and C2 (λ) in Equation (14) will be derived using regression analysis between
in situ TSS measurements and x (λ).

2.4. Conversion of DALEC Remote Sensing Reflectance to Sub-Surface Remote Sensing Reflectance

Fact that DALEC and MODIS have different spectral resolutions and the SASM uses rrs in its
model, it is necessary to convert DALEC Rrs to MODIS equivalent below-water surface rrs. Thus,
in situ DALEC-measured Rrs were convolved to MODIS band 1 (B1) and band 2 (B2) equivalent
Rrs using spectral response functions of the MODIS-Aqua following the method described in [60].
The MODIS B1 and B2 equivalent Rrs were then converted to rrs using the relationship defined in
Equation (3). Herein, in situ DALEC Rrs convolved to MODIS band equivalent Rrs and converted to
sub-surface remote sensing reflectance will be referred as rrs(B1) and rrs(B2) for MODIS band 1 and
band 2 respectively.

2.5. Regional Empirical Model

Many regional algorithms that are used in estimating the TSS concentration from remote sensing
image-derived reflectance or in situ reflectance use either linear or exponential models [79]. To compare
the performance of the SASM with empirical models the simple form of linear and exponential models
were selected as represented by Equations (16) and (17) respectively.

TSSpλq “ axpλq ` b (16)

TSSpλq “ aebxpλq ` c (17)

where x is rrs(B1) and rrs(B2) and various combinations of the two bands and a, b, and c are coefficients
derived from regression analysis between TSS and x.

2.6. Model Calibration and Model Uncertainty Estimates

To calibrate the SASM and empirical models in Equations (14), (16), and (17) we used TSS and
rrs(B1) and rrs(B2) and various combinations of the two bands from the data of the first two field
trips. From the 69 TSS samples collected during the first two field campaigns only 48 stations afforded
the appropriate match-up pair with Rrs data collected by the DALEC. For all TSS and Rrs match-up
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pairs, the TSS concentrations varied from a minimum of 2.4 mg/L to a maximum of 69.6 mg/L
and mean of 9.89 mg/L. In calibrating a model, it is desirable to have separate data sets for model
calibration and testing collected independently of each other. However, due to the limitation of only
acquiring 48 match-up pairs, we decided to use all 48 pairs for model calibration and validate using the
leave-one-out cross-validation (LOOCV) procedure of Stone [80]. The LOOCV method is a commonly
used statistical method in small sample size to allow for whole samples to be used in training and
validations [81]. In this procedure, one pair of data is left as a validation data set and the remaining
data are used in calibrating the model. This procedure is repeatedly executed excluding the pair
that has been picked in previous validations and recalibrated using the new remaining data until all
48 pairs are validated.

Using all 48 match-up pairs the SASM in Equation (14) and empirical models in Equations (16)
and (17) were calibrated. From the results discussed in Section 3.2, the different bands or their
combinations were not at par in retrieving TSS when compared with the MODIS-Aqua band 1, thus we
selected MODIS-Aqua band 1 for this study. Finally, all three calibrated models from Equations (14),
(16), and (17) are presented below for MODIS-Aqua band 1.

TSSpB1q “
23.47ˆ

´

xpB1q
1´xpB1q

¯

1´ 0.69ˆ
´

xpB1q
1´xpB1q

¯ , pR2 “ 0.85q (18)

TSSpB1q “ 612.72ˆ rrspB1q ´ 4.83, pR2 “ 0.85q (19)

TSSpB1q “ 2.41ˆ expr40.12ˆ rrspB1qs ` 0.89, pR2 “ 0.85q (20)

The LOOCV method provides overall model accuracy but does not produce assessment of
uncertainty in the results derived by the model [81]. The bootstrap method of Efron [82] as
discussed in [81] provides a means to generate the confidence in models as a result of uncertain
determination of model parameters, uncertainties in in situ measurements, and assumptions in the
model formulations [81]. Following Efron [82], 1000 sets of data were generated using re-sampling via
a re-substitution method, and 65% confidence limits and upper and lower bound of the derived TSS
products were generated for all three models considered. The 65% confidence interval was obtained
by the percentile method by taking the upper and lower 17.5% (the 17.5% and 82.5% quantiles) of the
results from the bootstrap distribution.

2.7. Accuracy Assessment for Model Performance

The accuracy assessment was performed by comparing model-derived and in situ measurements
with Root Mean Square Error (RMSE), the correlation coefficient (R), and Mean Absolute Relative Error
(MARE), which are defined in Equations (21)–(23).
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MARE “

n
ř
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|pxi ´ yiq {yi|

n
ˆ 100% (23)

where n is the total number of samples, xi is the model-derived TSS and yi is the measured TSS.
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3. Results and Discussion

3.1. Spectral Characterization of Field Spectral Measurements

The DALEC measured spectral reflectance signatures for different concentrations of TSS show that
in the blue region of the spectrum (400–495 nm) there is little distinct separation between Rrs spectra
for low and high TSS concentrations (Figure 2). In the green (495–570 nm) and the yellow (570–590 nm)
spectral regions there are general trends in the increment of the magnitude of Rrs with increases in
TSS concentration. In addition, there is a tendency for the wavelength of maximum Rrs to increase
with increasing TSS concentration, from about 570 nm at 3 mg/L to 590 nm at 69.6 mg/L. For the red
spectral region (620–750 nm), there is a distinct increment of the magnitude in Rrs spectra with increase
in TSS concentration. For the case of the NIR region (>750 nm) there is no clear difference among Rrs

spectra for TSS less than 13 mg/L, but for higher TSS there is a distinct increment in magnitude of Rrs

with the NIR Rrs exhibiting an increasingly more distinct peak at ~810 nm.
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than 13 mg/L. The correlation coefficients (r) between Rrs and TSS at the blue, green, red, and NIR 
regions of the spectrum were 0.66, 0.42, 0.84, and 0.77 respectively, indicating the presence of a strong 
linear relationship between reflectance and TSS at red and NIR wavelengths.  

3.2. SASM Calibration and Validation  

The validation of the results for rrs(B1) and rrs(B2) and various band combination results obtained 
from the LOOCV method are shown in Table 1. The results in Table 1 show that rrs(B1) alone has 
better results than rrs(B2) or combinations of the two bands. The poor performance result for rrs(B2) 
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Figure 2. In situ DALEC spectral reflectance plots for different ranges of TSS concentration.

The selection of the red band and NIR bands for SASM are in agreement with [61] in considering
band’s responsiveness to TSS concentration in establishing a good retrieval model. In our spectral
data, the reflectance at the red and NIR bands responds well with TSS concentration, as shown by the
distinct increase in the magnitude of red band reflectance with increase in TSS concentration for all
TSS concentrations, while the NIR band shows distinct increments for TSS concentrations greater than
13 mg/L. The correlation coefficients (r) between Rrs and TSS at the blue, green, red, and NIR regions
of the spectrum were 0.66, 0.42, 0.84, and 0.77 respectively, indicating the presence of a strong linear
relationship between reflectance and TSS at red and NIR wavelengths.

3.2. SASM Calibration and Validation

The validation of the results for rrs(B1) and rrs(B2) and various band combination results obtained
from the LOOCV method are shown in Table 1. The results in Table 1 show that rrs(B1) alone has better
results than rrs(B2) or combinations of the two bands. The poor performance result for rrs(B2) may be
because most of the available TSS measurements in our data set were lower. At low TSS concentrations
and in the NIR wavelengths where the reflectance measurements are relatively low, results may be
better modelled with a simple linear model which works well in low TSS concentrations [27,47].
However, in the waters with higher TSS concentrations and spectral regions where reflectance are
high, the reflectance are not linearly related to the TSS concentration [52] so a different approach than
a simple linear regression has to be taken. Thus, applying the SASM in MODIS band 1 to a region with
low TSS concentration can avoid the lower reflectance issues in MODIS band 2 and also the SASM can
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address the problem of non-linearity between TSS and reflectance when using a simple linear model
for higher TSS concentrations.

Table 1. Validation results from the LOOCV results for the SASM for MODIS-Aqua band 1, band 2 and
their combinations.

Bands rrs(B1) rrs(B2) rrs(B2/B1) rrs((B1 + B2)/2)

RMSE (mg/L) 5.75 28.66 15.95 6.32
MARE (%) 33.33 82.90 102.78 38.52

r 0.89 ´0.51 0.08 0.86

The results of the SASM uncertainty obtained using the bootstrap method discussed in Section 2.6
is presented in Figure 3. The upper and lower bounds in Figure 3, shown by the grey shading
represent the highest and the lowest TSS values obtained in the bootstrap results. The upper and lower
bounds simply express the model uncertainty in deriving TSS concentration because of uncertainty
in estimating model parameters from in situ data. The 65% confidence limit represented by dashed
lines in Figure 3 defines a narrow band and closely follows the model curve indicating that the TSS
retrieved by the SASM is closer to the expected TSS from the SASM. In Figure 3, the uncertainty
estimates defined by the 65% confidence limits and upper and lower bounds are smaller at the lower
concentration end of the curve and wider at the middle and upper part of the concentration curve. The
smaller uncertainty at low TSS concentration is due to the availability of larger numbers of match-up
(Rrs and TSS) pairs while the higher uncertainty at high TSS is due to the limited number of match-up
pairs. The future endeavour in collecting in situ TSS and Rrs should be focused on collection of more
match-up pair that are evenly distributed throughout the range of different TSS concentrations.
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Figure 3. The SASM curve for rrs(B1) (Equation (18)) is shown by the solid line. The in situ data points
are shown by open circles. The 65% confidence limits obtained through the bootstrap method are shown
by dashed lines. The greyed region represents the upper and lower bound for 1000 bootstrap runs.

3.3. SASM Comparison with Empirical Models

The accuracy assessment results for the SASM, the linear, and the exponential models obtained
through the LOOCV process described in Section 2.6 are presented in Table 2. The results show that
the SASM and the exponential models perform relatively better than the simple linear model in all
three accuracy assessment categories. The comparison between the SASM and the exponential model
are quite similar, however the SASM performs marginally better than the exponential model in all
three assessment categories. Figure 4 shows TSS values derived from each model using the LOOCV
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method with respect to the in situ TSS values. Assessment of Figure 4 shows that all three models
underestimate TSS when compared with in situ TSS for TSS greater than 30 mg/L. We can speculate
that underestimation is due to our calibration data set having more low TSS values, 75% of in situ TSS
data collected were less than 10 mg/L. Further, in the region where TSS were less than 30 mg/L there
is no clear case supporting which model estimated TSS values better considering the large spread in
the model-derived TSS by all three models.

Table 2. Results for the SASM, linear and exponential models for MODIS-Aqua band 1.

Model MARE (%) RMSE (mg/L) r

SASM 33.33 5.75 0.89
Linear 59.17 7.39 0.80

Exponential 39.29 6.16 0.87
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The results of model uncertainty defined by the upper, lower, and 65% confidence limits generated
by the bootstrap method discussed in Section 2.6 are presented in Figure 5a,b for the linear and
exponential models respectively. In addition to the confidence interval and the extreme bounds of
each model, the relative errors (RE) for the lowest, median, and the largest TSS concentrations from
the bootstrap distribution are also presented in Table 3 for the SASM, linear, and exponential models.
The median value of the bootstrap results was used because of the random re-sampling procedure
employed in the bootstrap methods results of extreme cases (possibly outliers) that affects the mean
of whole distributions. The median RE value for all three models are similar to the MARE from the
LOOCV method (shown in Table 2) which agrees with the results from the bootstrap method.

Table 3. Absolute relative error for the SASM, linear and exponential models derived from the bootstrap
distribution of the TSS results.

Model Lowest RE (%) Median RE (%) Largest RE (%)

SASM 1.20 30.93 228.15
Linear 2.20 53.64 349.90

Exponential 1.03 38.39 195.55
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Figure 5. The empirical model curve for rrs(B1) is shown by the solid line, in situ data points shown
by open circles for both (a) the linear model and (b) the exponential model. In both the figures the
65% confidence limit obtained through the bootstrap method are shown by dashed lines. The greyed
region represents the upper and lower bound for 1000 bootstrap runs. The upper and lower bound
for exponential model has been limited to 95% CI because few high values of TSS were in excess of
several thousand mg/L. The box at the bottom right in (a) and middle left (b) is a blow out of the
TSS < 10 mg/L and rrs(B1) < 0.025 sr´1.

From the results in Table 3 we observe that the lowest and largest RE is slightly better for the
exponential model when compared with the SASM, but the mean RE is better for the SASM when
compared with the exponential. The RE results of the linear model are all lower than the SASM and
exponential model in all three categories of RE results. The bootstrap results of RE indicate slightly
better performance for the exponential model. However, on considering the 65% confidence interval
and upper and lower bounds of the bootstrap results in Figures 3 and 5 we observe that the SASM has
a smaller 65% confidence interval and significantly smaller upper and lower bounds when compared
with the exponential model.

Considering the retrieval error of TSS concentrations from MODIS algorithms is in the range
of ~18.0% to ~61% for many studies conducted in the last decade, all three models looks feasible in
estimating the TSS concentrations in the coastal waters of northern Western Australia. However, we
must exercise caution when using any model, particularly when extending the application beyond the
limits of the calibration data. A simple linear regression model depends on the linearity between TSS
concentration and reflectance, which is observed to weaken as the turbidity of the water increases [52].
Without the proper calibration data for lower reflectance values, the linear model starts to yield negative
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TSS values at Rrs of ~0.0042 sr´1 in MODIS band 1 and underestimates TSS at higher Rrs values, as
shown in Figure 5a. The exponential model gives closer values to the SASM than a simple linear model.
Similar result between the SASM and exponential model might be because the non-linear relationship
of reflectance and TSS concentration given by bio-optical models closely approximates the exponential
curve [57]. However, we must caution using the exponential model within proper calibration data
because for even zero Rrs the exponential model in our study gives minimum value of 3.308 mg/L
for and over estimates TSS at higher Rrs values. In reality, even with the zero contributions from the
constituents in the water there is still backscattering from water molecules, which when modelled
using HydroLight gives Rrs of ~0.000085 sr´1 in MODIS band 1 for no contributions from in-water
constituents. At this Rrs value the SASM, linear and exponential models give TSS of 0.002 mg/L,
´4.778 mg/L, and 3.308 mg/L respectively. In real world applications, the values provided by the
linear and exponential models are not theoretically sensible whereas those TSS values provided by the
SASM are closer to the values we would expect for near zero reflectance.

Considering the results from the LOOCV and bootstrap methods, the SASM is more suitable
for the application of deriving TSS concentration using MODIS band 1 in coastal waters of northern
Western Australia. However, when applied to sensors other than MODIS the SASM model would
need to be recalibrated for that sensor. The collection of hyperspectral Rrs measurements using the
DALEC and knowledge of the sensor band response functions makes this possible. We also have to be
mindful that the error in TSS concentration is also impacted by factors such as atmospheric correction
and sensor calibration, where a 5% error in radiance at-sensor results in 50 percent error in Rrs [23].

3.4. Application to MODIS Imagery

3.4.1. Atmospheric Correction

The difference between the standard MODIS high resolution SWIR and MUMM atmospheric
correction methods was significant, as shown in Figure 6 for 6 July 2015 Rrs data. The default MODIS
l2gen atmospheric correction method for high resolution MODIS imagery underestimated Rrs on
average by 39.2% while MUMM underestimated by only 5% in MODIS band 1 when compared with
DALEC Rrs.
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The analysis of the MODIS-Aqua band 1 data corresponding to AVD30, AVD60, and AVD90 to
estimate the error in reflectance derived from the satellite resulted in AVD30 with the least error in
satellite derived reflectance with MARE of 9.7% while the highest is for AVD90 with 27.58%, and
AVD60 with MARE of 21.99%. The correlation coefficients between DALEC Rrs and MUMM derived
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Rrs were 0.98, 0.86, and 0.67 for AVD30, AVD60 and AVD90 respectively. Analysis of these results
shows that as time the difference between satellite sensors and DALEC measurement decreases the
difference between DALEC measured Rrs and MODIS Rrs also decreases. These results support the
view amongst the remote sensing community that comparison between satellite sensor and in situ
measurement can be improved by narrowing the time difference between the two. For this study,
we used respective error for each AVD to account for the atmospheric correction error in subsequent
analysis of the results in estimation of the TSS concentration.

3.4.2. MODIS-Aqua Validation

In order to consider the validation of the SASM results against the in situ TSS data, we have
considered the contribution of two sources of error on the retrieval of TSS concentrations from
MODIS-Aqua reflectance, namely the errors in the calibration of model parameters and errors
arising from atmospheric correction. Notwithstanding the errors from other sources specifically,
such as satellite sensor calibration, time difference between satellite image acquisition, and errors in
in situ TSS measurements, the total error for AVD30, AVD60, and AVD90 were 43.03%, 55.32%, and
60.91% respectively. The total error is obtained from the following sources: MARE of 33.33% as a
model error from the SASM in MODIS band 1 plus respective error for the AVD30, AVD60 and AVD90
from the atmospheric correction process presented in Section 3.4.1.

The validation of the TSS concentration derived using SASM in MODIS-Aqua band 1 shows that
AVD30 has the better performance with a MARE of 35.39% while AVD60 and AVD90 had MARE of
94.38% and 78.62% respectively. As the duration between satellites overpass timing and measurement
increases, the mismatch between the in situ and satellite derived TSS also increases depending on
the spatial variability and water dynamics influenced by ocean currents and wind. To account for
the source of error of TSS due to time difference between satellite image acquisition and in situ
measurement, we calculated the average TSS for different pixel window widths. Figure 7a–c show
the validation results between the observed TSS and SASM-derived TSS for AVD30, AVD60 and
AVD90 respectively. As the time difference between MODIS-Aqua overpass and in situ data collection
increases the spatial variability in the SASM-derived TSS also increases, as indicated by the error bars
displayed on each data point tending to lengthen as we move from AVD30 to AVD90. The effect of
TSS spatial variability can be minimised by using an aggregate of larger pixel window sizes. However,
using larger window width can also result in higher variability in TSS, especially in waters that vary
rapidly in the spatial domain, a common characteristic of waters associated with dredging operations.
For our study site, on the second field trip, we visually observed that high spatial variation in TSS was
present in a small spatial domain.
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computed in 3 × 3 and 5 × 5-pixel window widths.  

3.4.3. Temporal Analysis of 2013 MODIS Imagery 

The daily and monthly TSS averages for SG, DA and CA were computed and are shown in 
Figure 8a,b respectively. In MODIS-Aqua daily TSS plots we see that SG and DA TSS are consistently 
higher than CA, which is expected because of the location of CA being further from the coast, further 
from the dredge operation, and in deeper waters thus have less re-suspension of TSS from local tidal 
influences. The monthly average of MODIS-Terra derived TSS in DA is higher than SG from the 
beginning of 2013 until June 2013 and then comparable to SG from July 2013 until the end of 2013. 
After June 2013, the MODIS-Aqua derived TSS in DA is slightly higher than SG for all months except 
July and October. However, the differences in monthly averaged TSS concentration between SG and 
DA after June 2013 are not different than monthly averaged TSS concentration before June 2013 (refer 
to Figure 8a,b for details). The apparent shift in TSS, in MODIS-Aqua data, from SG being lower in 
the early half of 2013 and increasing in the later part of 2013 may be as a result of the increasing load 
of spoil in the SG. Further, the effect of river outflow from the Ashburton River and intermediate 
streams created by heavy rain might be a cause of DA being higher in TSS when compared with SG 
during the early half of 2013. Rainfall data for Onslow Airport shows there was higher rainfall from 
January to June 2013 when compared with July to December [83]. 

Figure 7. Validation between the SASM-derived TSS from MODIS-Aqua band 1 reflectance for
(a) AVD30; (b) AVD60; and (c) AVD90. The error bar indicates the minimum and maximum TSS
computed in 3 ˆ 3 and 5 ˆ 5-pixel window widths.

3.4.3. Temporal Analysis of 2013 MODIS Imagery

The daily and monthly TSS averages for SG, DA and CA were computed and are shown in
Figure 8a,b respectively. In MODIS-Aqua daily TSS plots we see that SG and DA TSS are consistently
higher than CA, which is expected because of the location of CA being further from the coast, further
from the dredge operation, and in deeper waters thus have less re-suspension of TSS from local tidal
influences. The monthly average of MODIS-Terra derived TSS in DA is higher than SG from the
beginning of 2013 until June 2013 and then comparable to SG from July 2013 until the end of 2013.
After June 2013, the MODIS-Aqua derived TSS in DA is slightly higher than SG for all months except
July and October. However, the differences in monthly averaged TSS concentration between SG and
DA after June 2013 are not different than monthly averaged TSS concentration before June 2013 (refer
to Figure 8a,b for details). The apparent shift in TSS, in MODIS-Aqua data, from SG being lower in the
early half of 2013 and increasing in the later part of 2013 may be as a result of the increasing load of
spoil in the SG. Further, the effect of river outflow from the Ashburton River and intermediate streams
created by heavy rain might be a cause of DA being higher in TSS when compared with SG during the
early half of 2013. Rainfall data for Onslow Airport shows there was higher rainfall from January to
June 2013 when compared with July to December [83].



Remote Sens. 2016, 8, 556 17 of 23
Remote Sens. 2016, 8, 556 17 of 23 

 

 
(a)

 
(b)

Figure 8. Daily (a) and monthly averaged (b) TSS derived from the SASM for 2013 MODIS-Aqua data. 
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speed on different days and TSS for all three study regions. In general, for wind speeds less than 7 
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speeds greater than 8 m·s−1, and for two and three days before the TSS dates, there was strong 
correlation observed between TSS and wind speed at all three regions. The results show that for 
MODIS-Aqua derived TSS, a lag of three days gives the highest correlation (r = 0.92) for the DA. The 
correlation results between wind speed and TSS indicates that the re-suspension of sediments from 
wind speed greater than 8 m·s−1 tends to take about three days to build to a maximum before settling 
down. Specific TSS anomalies in the time series, such as those observed on days 15 (15 January) and 
61 (2 March) in Figure 8a correspond to the effects of tropical cyclone Narelle which moved as close 
as 330 km off the coast of Exmouth on 12 January 2013 and severe tropical cyclone Rusty which made 
landfall on 27 February 2013 in Port Hedland which is located at 389 km north east of Onslow [84]. 
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Aqua using the SASM. January was impacted by tropical cyclone Narelle, which crossed the study 
site on 11 and 12 January 2013, thus the average TSS levels are relatively high and widespread. The 

Figure 8. Daily (a) and monthly averaged (b) TSS derived from the SASM for 2013 MODIS-Aqua data.

Figure 8a shows a number of anomalies in daily TSS when compared with the respective trend,
apparent as “spikes” in the data. Such anomalies were examined with respect to the wind speed of the
study site to study the potential links to re-suspension of sediment in the water column. From the daily
mean average wind speed in 2013 acquired from the Bureau of Meteorology (http://www.bom.gov.au)
for Onslow Airport, we performed a correlation analysis between wind speed on different days and
TSS for all three study regions. In general, for wind speeds less than 7 m¨ s´1 there was no significant
correlation between wind speed and TSS for any of the regions. For speeds greater than 8 m¨ s´1, and
for two and three days before the TSS dates, there was strong correlation observed between TSS and
wind speed at all three regions. The results show that for MODIS-Aqua derived TSS, a lag of three
days gives the highest correlation (r = 0.92) for the DA. The correlation results between wind speed
and TSS indicates that the re-suspension of sediments from wind speed greater than 8 m¨ s´1 tends to
take about three days to build to a maximum before settling down. Specific TSS anomalies in the time
series, such as those observed on days 15 (15 January) and 61 (2 March) in Figure 8a correspond to
the effects of tropical cyclone Narelle which moved as close as 330 km off the coast of Exmouth on
12 January 2013 and severe tropical cyclone Rusty which made landfall on 27 February 2013 in Port
Hedland which is located at 389 km north east of Onslow [84].
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Figure 9 show a series of monthly average TSS images spanning 2013 derived from MODIS-Aqua
using the SASM. January was impacted by tropical cyclone Narelle, which crossed the study site on
11 and 12 January 2013, thus the average TSS levels are relatively high and widespread. The monthly
images show that TSS levels in the SG and DA begin to increase from May and maintain high levels
until October, then tend to decrease during November and December. The increase in TSS in both
the SG and DA from May is likely due to dredging activities being carried out starting in May and
continuing until October 2013. The maximum monthly TSS averages were observed in October in the
SG with a TSS concentration of 2.88 ˘ 0.52 mg/L, in the DA the maximum was 3.73 ˘ 1.21 mg/L in
May, and the CA displayed a maximum of 0.79 ˘ 0.04 mg/L in October amongst the MODIS-Aqua
derived monthly TSS averages. The monthly TSS averages were higher in SG and DA from May to
December than the January to March, despite the higher rainfall in the first six months of 2013 [83].
This is a strong indication of the impact of the dredge process causing higher TSS concentrations.
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4. Conclusions  

In this paper we developed a semi-analytic sediment model (SASM) that is both physically 
sensible in its general form and adapted to the northern Western Australian coastal waters in 
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Figure 9. 2013 monthly averaged TSS images derived from MODIS-Aqua 250 m band 1 (January to
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4. Conclusions

In this paper we developed a semi-analytic sediment model (SASM) that is both physically
sensible in its general form and adapted to the northern Western Australian coastal waters in retrieving
TSS from 250 m MODIS-Aqua band 1 reflectance. We assessed the inherent uncertainty due to
combined model and atmospheric correction effects in the retrieved TSS product to be 43.03% to
60.91% for MODIS-Aqua. We demonstrated the application of the SASM TSS concentration product
in analysing MODIS-Aqua data for 2013 and associated this with the dredge activities at Onslow in
Western Australia. The 250 m imagery was successful at highlighting the impact of cyclones and
dredge activities on dredge spoil grounds and dredge operation areas. Further, daily anomalies in
temporal data were able to be linked to specific causes, including dredge activities, cyclone events,
wind-induced re-suspension, and increased river outflow. Thus, we have shown that the SASM, in
conjunction with an appropriate atmospheric correction method for MODIS-Aqua band 1, should be
sufficient for monitoring TSS in Onslow waters or waters with similar optical properties before, during
and after dredging operations. The SASM developed in this study can be applied to other regional
waters of Western Australia or waters with similar optical properties, but the application of the SASM
beyond the regional waters of Western Australia should be carried out with recalibration of the SASM
parameters. The merits of the SASM are the ease in calibration using in situ TSS concentration for
particular regions of interest, akin to fully empirical algorithm, but also the robustness based on a
physical foundation of the radiative transfer theory.



Remote Sens. 2016, 8, 556 19 of 23

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/7/556/s1,
Figure S1: (a) Scatter plot for modelled and HydroLight ω1b (650 nm); (b) ω1b (650 nm) as a function of TSS,
Figure S2: (a) Scatter plot for modelled and HydroLight ω1b (790 nm); (b) ω1b (790 nm) as a function of TSS, Table S1:
Six different water types grouped based on CHL concentration and CDOM, Table S2: Comparative ω1b (494 nm)
results for the NRP and SASM models (all p < 0.005), Table S3: Comparative ω1b (566 nm) results for the NRP
and SASM models (all p < 0.005), Table S4: Comparative ω1b (650 nm) results for the NRP and SASM models (all
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Appendix A The optical depth for MODIS sensor band 1 simulated using HydroLight.

To ascertain how far below the water’s surface MODIS can “see” in MODIS band 1, we simulated
diffuse attenuation coefficients (Kd) for the near surface waters for different chlorophyll (CHL) and
CDOM for a range of TSS concentrations using HydroLight 4.2 [44]. From the simulated Kd results,
with the assumption that 90% of the diffuse light comes from a water column of depth of 1/Kd [85],
MODIS band 1 can only penetrate 1.9 m at a TSS concentration of 3.9 mg/L for even very low CHL
and CDOM. For high CHL and CDOM concentrations, the penetration depth of MODIS band 1 is only
1.5 m even for zero TSS. Thus, the TSS data collected from a depth of ~1.9 m may be unsuitable for
remotely sensed TSS algorithm development or validation.
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