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Abstract: Scene classification of high-resolution remote sensing (HRRS) imagery is an important
task in the intelligent processing of remote sensing images and has attracted much attention in
recent years. Although the existing scene classification methods, e.g., the bag-of-words (BOW)
model and its variants, can achieve acceptable performance, these approaches strongly rely on the
extraction of local features and the complicated coding strategy, which are usually time consuming
and demand much expert effort. In this paper, we propose a fast binary coding (FBC) method, to
effectively generate efficient discriminative scene representations of HRRS images. The main idea is
inspired by the unsupervised feature learning technique and the binary feature descriptions. More
precisely, equipped with the unsupervised feature learning technique, we first learn a set of optimal
“filters” from large quantities of randomly-sampled image patches and then obtain feature maps by
convolving the image scene with the learned filters. After binarizing the feature maps, we perform
a simple hashing step to convert the binary-valued feature map to the integer-valued feature map.
Finally, statistical histograms computed on the integer-valued feature map are used as global feature
representations of the scenes of HRRS images, similar to the conventional BOW model. The analysis
of the algorithm complexity and experiments on HRRS image datasets demonstrate that, in contrast
with existing scene classification approaches, the proposed FBC has much faster computational
speed and achieves comparable classification performance. In addition, we also propose two
extensions to FBC, i.e., the spatial co-occurrence matrix and different visual saliency maps, for
further improving its final classification accuracy.

Keywords: scene classification; filter banks; feature representation; binary coding; high-resolution
remote sensing images

1. Introduction

In recent years, an increasing number of commercial satellite sensors of high resolution have
been successfully launched, and a new era of “big data” for remote sensing is coming [1,2]. The more
and more mature remote sensing imaging technologies have made massive raw high-resolution (HR)
satellite and aerial image datasets available. Although the high-resolution remotely-sensed (HRRS)
images enable us to measure the Earth’s surface with more accuracy, the huge volume of images with
rich structures has also led to many new problems arising for the intelligent processing of remote
sensing data. In the context of “big data”, developing fast or even real-time remote sensing image
processing systems that are able to greatly enhance work efficiency is now attracting considerable
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attention [1-3]. These automatic real-time systems can bring great benefits for many applications that
need immediate monitoring and timely feedback, e.g., fire detection, weather forecast and earthquake
prediction.

Scene classification of HRRS images is regarded as a fundamental yet challenging task and has
attracted much attention in recent years [4-17]. Here, the “scenes” refer to some separated subareas
extracted from large satellite images. They usually consist of different types of land covers or objects
and possess specific semantic meaning, such as the residential area, industrial area, commercial area and
green land in a typical urban area satellite image. The scene-based semantic classification plays a
significant role in urban planning, land resource management, computer cartography, and many
more. The high complexity of spatial and structural patterns in the massive HRRS imagery make
the intelligent scene understanding and classification a challenging problem. In order to accurately
obtain the scene classes, generating discriminative holistic feature representation for each scene is a
key step and highly demanded.

Generally, different scene categories may share some identical thematic classes, which represent
a few land-cover types or object classes. For instance, tree, road and buildings; these three thematic
classes may appear both in the commercial area and in the residential area at the same time.
The bag-of-visual-words (BOW) [18,19] model, which represents each image scene with a histogram
where each bin counts the occurrence frequency of codewords (also called visual words) that are
formed by vector-quantizing local features using a clustering method (e.g., K-means), is probably
the most popular scene classification framework thanks to its simple operation and excellent
performance. There are three basic steps in the BOW pipeline for scene classification: extracting
local feature descriptors, generating the codebook (composed of all codewords) and encoding local
features on the codebook. Among the three steps, feature extraction is the core part and can
significantly influence the final classification performance. For the purpose of high classification
performance for different image scene datasets, it is crucial to choose or design powerful local feature
descriptors; see, e.g., [20-26]. However, designing good features needs too much human effort and
expert domain knowledge. Moreover, in the BOW framework, the step of generating the codebook,
where the codewords are typically generated by clustering (e.g., K-means) over local features,
is usually time consuming. Therefore, a high-efficiency feature coding method is desirable and even
an urgent need, especially in the industrial remote sensing scene analysis systems. Nowadays, many
binarized feature representation methods [21,27,28] have become increasingly popular, which are
very simple and efficient to compute at a fairly fast speed with limited computational resources.
Inspired by these binary local features, we develop a global feature representation method for scenes
in remotely-sensed images, which integrates the local feature extraction and feature coding stage in
an efficient way.

In this paper, we present a fast binary coding scheme for the feature representation of HRRS
image scenes. We first randomly sample an amount of local image patches from images in dataset
and apply proper unsupervised learning techniques to learn a dictionary, which is regarded as a
set of filters. Then, we convolve each image scene with the learned filters and binarize the filter
responses according to a predefined threshold. Finally, we convert the binary responses back into a
single decimal number and then compute the histogram of the decimal values for each image scene.
The final histogram is considered as the holistic feature representation of the image, which can be
fed into the classifier for training and testing. In contrast to the typical BOW pipeline, we neither
use any hand-crafted features, nor feature encoding techniques, and therefore, greatly improve
the computational efficiency. When the set of filters have been generated, the holistic histogram
of each image scene can be yielded extremely quickly on common CPUs. Extensive experiments
show that we can obtain comparable classification performance at a low computational cost. In
addition, to overcome the defects of fast binary coding (FBC), which are disregarding the spatial
layout information of images and having much redundancy in histogram representations, we attempt
to improve it by introducing the spatial co-occurrence kernel and saliency maps, respectively.
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The major contributions of this paper are summarized as follows:

- We develop a fast global feature representation method for image scenes, named fast binary
coding (FBC), which integrates the local feature extraction and feature coding stage. In the FBC
pipeline, we are free of any hand-crafted features, and the features are skillfully learned and
encoded in an unsupervised fashion.

- We achieve promising performance with extraordinarily low computational efficiency on scene
classification of HRRS images, which can make the FBC an effective and practical method for
an industrial scene analysis system.

- On the basis of FBC, we investigate how the spatial kernel extension and various saliency maps
can improve the classification performance.

A short version of this paper has appeared in [29]. The remainder of this paper is organized as
follows. In Section 2, we briefly review some related works, e.g., BOW-based scene classification
methods, binary feature descriptors and unsupervised feature learning. In Section 3, we first
introduce the global feature representation of HRRS scenes by FBC and then study various
unsupervised algorithms for learning linear filters. In Section 4, two extensions to FBC are presented.
The details of our experiments and results are presented in Section 5. Finally, we draw conclusions
for this paper with some remarks.

2. Related Work

Recently, several scene classification approaches have been proposed for HRRS images based
on the traditional BOW model [18,30]. In a typical pipeline of BOW, we apply the vector
quantization method on the extracted local features, to generate a group of clusters using K-means
clustering. Each cluster is regarded as a codeword (or visual word) that represents a specific
local pattern, and all of the codewords construct a codebook. By mapping the local features to
the codebook, we can represent each image scene as an unordered histogram representing the
frequency occurrences of codewords. The BOW model is a simple, but effective approach to
generate global feature representation for a whole image scene and, thus, remains a very prevalent
method for image classification in the computer vision community [31-34]. In order to further
improve the discriminative power of BOW, many variants and extensions have been presented.
The spatial pyramid matching kernel (SPM) [30] is a classical extension to BOW, which computes
a histogram for each subregion of the image and concatenates all of the histograms in a weighted
spatial pyramid way. The spatial co-occurrence kernel (SCK) [32], another important extension to
the BOW model, considers the spatial distribution of visual words. As an improved version of
SCK, the spatial pyramid co-occurrence kernel (SPCK) [7] captures both the absolute and relative
spatial arrangements of visual words and achieves good performance on overhead land use scene
dataset. Motivated by SPM and SCK, a pyramid-of-spatial-relations model [9] introduces a novel
concept to describe quantized relative relationship of a set of local features and outperforms both
BOW and SCK. Bolovinou et al. [35] proposed a bag-of-spatio-visual-words model (BoSVW),
which incorporates local context information into the BOW representation and can efficiently tackle
the problem of high-dimensional spatial feature clustering by introducing the spherical K-means
algorithm. In general, all of these methods strongly rely on the extraction of the hand-crafted
low-level features, learning the codebook and coding local features, which are usually highly time
consuming. In contrast with these BOW-based methods, the proposed fast binary coding method is a
unified feature representation framework integrating local feature extraction and feature coding, and
thus, it shows priority in computation speed.
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The local feature descriptors designed with binarized tricks, which have advantages in adequate
robustness while providing high computational efficiency, are very popular in image recognition and
face verification application [21,28,36]. Two of the representative features are the local binary pattern
(LBP) [21] and the local phase quantization (LPQ) [28], which were originally designed for texture
analysis. These two kinds of local feature descriptors are described by assigning a binary code to a
pixel’s neighborhood. Kannala et al. [36] improved the LBP and LPQ and proposed the binarized
statistical image features (BSIF) which is most related to our work. In [36], the binary codes are
generated by binarizing the convolutional response of the image and a set of linear filters. We follow
the same method as the BSIF to compute image features, but differ in generating the linear filters.
In contrast to the BSIF, where the linear filters are only learned via independent component analysis,
the proposed FBC comprehensively extends this work and the promising classification performance
demonstrates that many unsupervised learning algorithms can learn “good” filters.

Another topic related to our work is unsupervised feature learning (UFL) [37,38], which is
capable of automatically learning discriminative features or structures from a large amount of
unlabeled data by reasonable unsupervised learning algorithms. A general pipeline of UFL
methods is composed of two stages: learning model parameters (usually a dictionary) by a certain
unsupervised learning algorithm and encoding input examples to features. Several researchers have
applied the UFL methods to the land use scene classification. In [6], a UFL method in which the
sparse coding is used for learning sparse features is successfully applied to aerial scene classification.
Zhang et al. [39] presents a saliency-guided UFL framework for scene classification. In [39], neural
networks are used to train a set of feature extractors, with some techniques to reduce overfitting in
the feature learning stage. Hu et al. [40] propose an improved UFL pipeline where both learning
model parameters and encoding features are performed on a low-dimensional manifold. It is worth
mentioning that the latter two methods are free of any low-level hand-crafted features. In the FBC
pipeline, the linear filters are learned by certain unsupervised algorithms, and global features are
automatically generated following the binary coding scheme. On this front, the FBC is very similar to
UFL methods, where the learned linear filters are equivalent to the dictionary, and the binary coding
scheme can be regarded as a special feature encoding stage.

3. Fast Binary Coding For Scene Classification

In this section, we describe the FBC method for extracting the global feature representation of
image scenes in detail and theoretically analyze its computational complexity. We also present how
the suitable filters are learned via distinct unsupervised learning approaches.

3.1. Fast Binary Coding

Let [ : Q — RI*XMxN pe 3 d-channel image on the grid O = {0,1,..., M —1} x {0,1,...,N —1}
of size M X N. As we concentrate on describing the scene structures of the image I, we only consider
the intensity channel (i.e., the grayscale) in our case, meaning d = 1. Let {W®)} K | be K linear filters,
with W) = Qpy s RETHD X2+ swhere 27 4 1 is the number of pixels in one column or row of the
filter W), In this subsection, we concentrate on presenting the FBC pipeline,and left the learning of
the K linear filters {W(®) },Ile to Section 3.4. Thus, the k-th filter response f) (also referred to as the
feature map) is obtained by convolving the image I with the filter W(),

O =1+WH, k=1,... K ey

"

where “x” denotes the two-dimensional convolution operator,

(I *W(k))(x,y) = i i w (a,b)f(x—a,y—0b), Y(x,y) € Q, )

a=—Th=—T1
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where x, y denote the pixel position coordinates of the image I. Note that zero-padding is applied to I
before the convolution, in order to make the size of ) identical to I. Each value f*)(x, y) in the filter
response can be regarded as a descriptor of the local region {x — 7,..., x+ 1} x{y—7,...,y + 7}
centered on the corresponding pixel (x,y) in I. Finally, the image scene I outputs K real-valued
filter responses, and in other words, we can get a K-dimensional real-valued feature for each pixel.
We binarize all of the K responses { f¥) }K_| and obtain the binarized maps {B (k) M

B — p, (f<k>), k=1,...,K 3)

where 71 : v € R — {0,1} is a threshold function for binarizing the real-valued filter responses with
respect to a predefined threshold value ¢, which returns one if v > € and zero otherwise. When the
threshold ¢ is equal to zero, the threshold function then turns into the Heaviside step function [41].
We take ¢ = 0 as the default setting in experiments and will discuss the effect on classification
performance when the threshold e varies in Section 5.2.

For each pixel, the K-dimensional real-valued feature is now transformed into a K-bit binary
string. We can consider the binary strings as a binary-valued number and convert it back into a single
integer value by the following operation,

K
Ploy) = Y20 B0 (xy), Y(xy) €, )

k=1
where I is a new generated “image” after the conversion of binary maps. We can note that the value
of a pixel in I? is an integer within the range of [0,2X — 1]. In analogy to the conventional BOW
model, each integer value is regarded as a codeword, and thereby, the size of the codebook results
in 2K, A statistical histogram Y € R2" is computed on this codebook, which is the resulting global

feature representation for image I,

1
Y(m) = 3N

y 5(IB(x,y),m), m=0,1,...,2K -1 G)
(xy)eQ
where J(+, ) is a delta function, as §(a,b) = 1 if a is identical to b and 6(a, b) = 0 otherwise.

In the FBC method, the length of binary strings, i.e., the number of bits, depends on the number
of predefined filters K. In addition, the dimension of the final features for the image scene is also
closely related to K and exponentially grows with K. Our empirical experience suggests that we
should set a relatively small K to make the length of the global features acceptable, and avoid
parameters overfitting of the classifier. The whole stage for generating feature representation via
FBC is illustrated in Figure 1.

The proposed FBC is actually akin to the BOW model in nature. In FBC, the local features
are extracted densely at each pixel via straightforward convolutions; the binary coding stage can
be viewed as a simplified version of vector quantization, where the codebook is composed of the
consecutive integers, and the local features are then coarsely encoded into these integers (converting
the feature vectors to discrete scalar values). Figure 2 shows some examples of binary maps and
integer-valued maps. It can be noted that the integer maps still retain abundant useful information
that is helpful for recognition, in spite of such a “crude” coding scheme.
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Figure 1. Pipeline illustration of the fast binary coding (FBC) for global feature representation
of image scenes. The filters used in the FBC are preliminarily learned from a large amount of
randomly-sampled image patches via a specific unsupervised method. We convolve each image
scene with the learned filters to generate feature maps and then convert the binary-valued maps to
an integer-valued map. Finally, we generate a histogram of features by counting the frequency of
each integer.

Original

Figure 2. Illustrations of binary-valued maps and integer-valued maps. Here, we use eight filters
(of a size of 9 x 9 pixels) learned by spare coding to generate these binary maps for filter responses.
The corresponding integer-valued map is generated by converting each eight-bit binary string into
an integer value. The integer maps contain much useful details included in the original images,
such as clear edges and corners. These retained details are very informative and discriminative
for classification.

3.2. Analysis of the Computational Complexity of FBC

It is worth noticing that the overall feature extraction pipeline of the FBC algorithm only contains
quite simple mathematical operations at each procedure and can be numerically implemented with
high efficiency, as:

- Convolving an image scene with filters is a linear operation;

- Binarizing the filter responses is a thresholding operation;

- Converting binary maps to the integer map is a linear operation according to Equation (4);

- Obtaining the histogram features only needs to count the frequency of integers within [0,2K —1].
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All of these light procedures make the FBC method fast for feature representation of scenes.
Compared to the FBC algorithm, global feature representation obtained by the BOW model needs to
go through complex local feature extraction, time-consuming codebook learning and high nonlinear
feature coding. Therefore, it is obvious that the FBC has great superiority over the BOW model in
computational complexity intuitively.

To make the comparison of computational cost more clear, as shown in Table 1, we list the
concrete computational complexity for each stage of the BOW model and FBC. For the BOW model,
the computation cost of the feature extraction stage depends on which kind of local features are
extracted, and K-means clustering is used to generate the codebook by default. In the general
settings of the BOW model, Ny and Nj should be assigned a relatively large value (e.g., No = 1000,
Ni = 50,000), which ensures that a set of more representative visual words is learned. Hence, for the
BOW model, not only the local feature extraction is a complicated stage, but the codebook learning
and feature coding stage are really slow, as well. In contrast to BOW, the FBC seems to be far
more “lighter”, because the computational complexity simply lies on the size of image scenes and
the number of filters. In fact, the number of filters K is usually set to be a very small value, say
K < 12, for achieving good classification performance. One fundamental reason for the superiority
in computational complexity is that the FBC is a unified end-to-end feature extraction method, which
can directly generate global feature representation from the original image scene. We present the
evaluation of the computation time to verify the low computational cost of the FBC, the details of
which are shown in Section 5.2.

Table 1. Comparison of the computational complexity of the FBC and BOW model.

Method Feature Extraction Generating Codebook Histogramming

BOW - T-O(gNoNy) O(eNoNa2)
FBC O(MNK)

Here, ¢ denotes the length of local features; T denotes the number of iterations of K-means iterations (usually
T > 50); Np denotes the size of the codebook, i.e., the number of clusters learned by K-means clustering;
Nj denotes the number of local features for learning the codebook; N, denotes the number of extracted local
features of each image scene; M and N are the size of image scene; K denotes the number of filters.

3.3. Scene Classification

We now can efficiently compute the global features for each image scene in a dataset via
the proposed FBC method. These histogram features Y can be directly fed into an off-the-shelf
classifier for the classification task. The detailed FBC-based scene classification pipeline is completely
presented in Algorithm 1. In this paper, the SVM classifier with the histogram intersection kernel
(HIK) is utilized to train and predict labels for new image scenes. Given the histogram feature
representation for images i and j as Y; and Y}, respectively, the HIK is defined as:

2K
Kk (Y3, Yj) = Zlmin (Yi(p), Y(p)) (6)
o
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Algorithm 1 FBC-based scene classification framework.

Input:

The training set of image scenes and the corresponding ground truth labels, Z*, L;
The testing set of image scenes, Z;
A set of learned linear filters, {W(®)}K_

Output:

The predicted labels for testing image scenes, Lie;

For each image scene I!" € 7', convert it into a gray-level image;

Compute filter responses by convolving the image scene with filters { W) |y

Binarize all of the K response to obtain the binarized maps { B*) }]Ile;

Convert the binarized maps {B*) }K | to an integer-valued map I?, according to Equation (4);
Compute a statistical histogram Y/" of I? against the codebook of [0,2X — 1] integers;

Train model parameters of SVM classifier using the holistic histogram representations Y*';

For each image in the testing scene I* € Z'¢, compute the histogram Y/* by repeating
Steps 1,2,3,4,5;
8: Predict class labels for all testing image scenes by the trained SVM classifier with Y/¢;

9: return Lf¢;

3.4. Learning (W },Ile via Unsupervised Learning Methods

Above, we assume that {W(k)}f:1 is known. This section discusses how to learn such linear
filters {W(k)}llf=1 for FBC. In the FBC pipeline, it seems that any kind of linear filters can be used
to convolve with the image theoretically, and hence, we want to discover what kind of filters are
most suitable to FBC feature representation. Inspired by the unsupervised feature learning (UFL)
techniques, we attempt to adaptively learn suitable filters W) : Qpy — RETHD*27+1) by some
commonly-used unsupervised learning algorithms. In analogy to the UFL pipeline, we first perform
two indispensable pre-processing stages:

- Randomly extract a large number of S image patches with size of (2t + 1) x (27 + 1) from the
training image dataset;
- Normalize each patch to zero mean and unit variance.

After pre-processing all sampled image patches, we can train a dictionary /basis D via a proper
unsupervised learning method. In fact, the learned dictionary/basis is another pattern of linear filters
to some extent; hence, we can readily obtain the set of filters needed in the FBC, by choosing the
right number of entities from the dictionary/basis and resizing the entities to the size of image
patch samples. Here, we present how we learn suitable linear filters by unsupervised learning
algorithms. Eight conventional algorithms that will be tested in subsequent experiments are briefly
introduced below.

3.4.1. K-Means Clustering

Given the normalized patch vectors x(i),i = 1,2,---,5, K-means can learn a dictionary D
containing K cluster centers. The objective function is formulated by minimizing the distance between
training samples and their cluster centroids, which is defined as:

S
min Dcl) — x(0)2
i ;H 12 -
s.t.|DW|, =1, Vk,and, ||cV|jo =1, Vi

where c() is the assignment vector (or code vector) of the sample x(0) to the clusters and Hc(“ llo is the
number of non-zero elements in ¢(!). This objective is optimized by an alternating iteration over c(?)
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and D. Specifically, each learned centroid D®) can be regarded as a filter wk) by simply resizing it to
the original size of the image patch.

3.4.2. Orthogonal Matching Pursuit

We generalize the optimization problem for K-means described above by allowing more than
one non-zero element in ¢(!). This can enable each code vector to represent more complex patterns.
The improved optimization objective is defined by modifying Equation (8):

S
min Dc®) — x(1))2
nir ;II 12 ®
s.t.|DW |, =1, Vk,and, ||V o < A, Vi

where A is the maximal number of non-zero elements allowed to recover each x(!). However, this
problem is difficult to solve because of the non-convex property of the constraints. In order to
perform an alternating optimization like K-means, we utilize orthogonal matching pursuit (OMP) [42]
to compute code vector ¢ with at most A non-zeros (also known as OMP-A). Each entry Dk
of the learned basis D can be naturally considered as a linear filter W) like the one used in the
K-means case.

3.4.3. Sparse Coding

Sparse coding (SC) [43] is a biologically-inspired algorithm that aims to find a set of basis vectors
D(k), such that an input sample x(i) can be represented as a linear combination of these basis vectors.
All of the basis vectors form a dictionary. Given the normalized patch vectors x(),i = 1,2,---,8,
the objective of learning the dictionary D in the sparse coding scheme can be defined as:

S
min Da® — x@]12 4 Alla®
nin )| 13+ Al o

st |[IDW, <1, Vk

where & denotes the sparse vectors and A is the penalty weight. The L!-norm penalty encourages
more zero elements in «(!) controlled by A. We can easily optimize this objective by online learning
techniques [44] in recent years. When accomplishing the learning stage, each basis vector D*) in the
dictionary D becomes a learned linear filter W),

3.4.4. Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) was originally proposed for parts-based
decomposition of images and can be interpreted as a relaxed form of K-means. Very similar to
the optimization formulation, NMF minimizes the following cost:

S
i () — pali))2
mmE x o
D & | 12 (10)

s.t.D® >0, Vk,and, a® >0, Vi
where matrix D and the vectors a(?) are forced to have non-negative components. The methods for

addressing this problem are seen [45]. In practice, each entry of the factor matrix D is viewed as a
linear filter WK,
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3.4.5. Gaussian Mixture Model

Another unsupervised clustering algorithm is the Gaussian mixture model (GMM), which
supposes that the data are generated from K Gaussian distributions:

K
P(x) =Y meNi(x; pie, Zi) (11)
k=1

where 71 are prior probabilities of x sampled from each distribution and puy, X; are the mean
and covariance of the k-th component distribution. Expectation-maximization (EM) can efficiently
estimate parameters (y, %, 7r). In the FBC case, we view the mean y of each distribution as the linear
filter WK,

3.4.6. Principal Component Analysis

PCA is probably the most common unsupervised linear dimensionality reduction technique.
The main goal of PCA is to iteratively find orthogonal directions maximizing the variance of samples
or it can be cast as a low-rank matrix factorization problem:

min || X — UU " X2
u
(12)
stUUu’ =1

where U is an orthonormal matrix, I is the identity matrix and X is a matrix of concatenating all
training patch vectors, i.e., X = [x(l), x(z), s, x(s)]. The solution to Equation (12) is that the columns
of matrix U are the eigenvectors of matrix XX . We view the first K principal eigenvectors of matrix
ho'dl (i.e., the first K columns of U) as the set of linear filters.

3.4.7. Locality-Preserving Projection

Locality-preserving projection (LPP) [46] is another widely-used linear dimensionality-reduction
algorithm and is also a linear approximation to the classic Laplacian eigenmap (LE). LPP aims to
find a linear mapping matrix M that can embed input data on a low dimensional space. M can be
generated by solving the following generalized eigenvalue problem:

XLX"'m = AXDX'm (13)

where X is the set of input patch vectors, A, L and D denote the eigenvalue, Laplacian matrix and
diagonal matrix, defined identically in LE, and m is the eigenvector. We choose the first K eigenvectors
as linear filters according to the eigenvalues in ascending order.

3.4.8. Auto-Encoder

An auto-encoder (AE) [37,47] is a special structure of neural network consisting of input layer
x, hidden layer z and output layer £. We compute hidden layer z = S(DMx + b(1)) with trainable
parameters D(!) and b(1), where S(-) is a nonlinear function. The output layer is then computed by a
similar affine transformation £ = D®)z 4+ b(2). The objective is formulated by ensuring £ to be a good
reconstruction of input x:

S . .
min_ Y ID@S(DWx) 451y 4 p2) — 23 (14)
DU b\

We can use the off-the-shelf numerical solver to train this single layer network with the gradients
computed by the back propagation algorithm. Each column of the weight matrix D() is used as a
learned linear filter W(¥),
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The approach of learning filters via independent component analysis (ICA) [48] has been
provided in [36], so we do not repeat the details here. The visualization results of the various
learned filters are shown in Figure 3. It is obvious that each set of filters shows distinctive responsive
characteristics to others.

Figure 3. Examples of a set of learned filters using different unsupervised leaning methods from large

quantities of image patches. Each entity of the learned basis is resized to the size of image patches
(10 x 10 pixels). Note that the some Gabor-like filters can be achieved by K-means, orthogonal
matching pursuit (OMP), sparse coding (SC) and auto-encoder (AE). The noise-like filters shown
in (10), called random projection (RP) filters [49], are generated from an independent zero-mean,
unit-variance normal distribution.

4. Extensions to FBC

Although the proposed FBC can generate holistic feature representations for image scenes in an
efficient way, there still remain two evident defects in the FBC pipeline:

1. FBC lacks sufficient representative power to depict the spatial layout information of
image scenes;

2. FBC counts all of the codewords to construct the histogram feature, whereas some of the
codewords are probably not helpful to the descriptive ability of histogram features and even
have a negative influence on the final classification performance.

Therefore, in terms of these two aspects, we try to improve the FBC with elaborate methods
that are able to consider spatial context information or to provide good codeword candidates. In this
section, the spatial co-occurrence kernel and saliency-map-based coding scheme, as two extensions
to the FBC, are discussed.

4.1. Spatial Co-Occurrence Kernel

As described previously, we can generate a new “coding image” I® by converting the binary
map to integer values. Now, each pixel in the I® can be viewed as a codeword p; € D at pixel
location (x;,y;), and obviously, the size of D is 2K according the coding scheme of FBC. Following the
instruction of [32], which discovers the spatial dependence of the visual words inspired by gray level
co-occurrence matrices (GLCM), a codeword co-occurrence matrix (WCM) for I is defined as:

WCM(m,n) = #{(p;, pj)|(pi = m) A (p; = n) Adist(p;, p;) } (15)

1 \/(xi — X))+ (yi—y)* <

0 otherwise

dist(p;, p]-) = (16)
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where #{-} denotes the cardinality of set and r is a constant measuring the co-occurrence property of
two codewords. Figure 4 illustrates the scheme of computing the WCM. The definition shows that
WCM computes the number of codeword pairs that satisfy the spatial distance constraint, and the
size of WCM leads to 2K x 2K, Such a definition also infers that WCM is a symmetric matrix.
The visualized examples of WCMs are displayed in Figure 5.

.
——o// -+ o ;/ A\

\\ ! (] /‘/
<& 7
e — @

@ Codewordm @ Codeword n

Figure 4. Illustration of computing the spatial codeword co-occurrence matrix WCM(m, n). Only the
codeword pairs within the distance constraint r are valid. In this way, we can discover the local spatial
properties of the coding image.

(a) Agriculture | (b) Airplane | -

v
%

Figure 5. Two visualized examples of WCMs. The WCMs for airplane and agriculture show a
distinct appearance, which means that the WCM itself has some discriminative power for representing
the image scene. The highlights in WCM denote the frequent pairwise patterns of codewords.
(a) Agriculture; (b) Airplane.

The spatial co-occurrence kernel is computed from the intersection of two WCMs, analogous to
the definition of HIK:

Kscx (WCM;, WCM;) = Y )" min(WCM;(m, n), WCM;(m, n)), (17)
m n

where WCM;, WCM,; is the final WCM for image i and j. Although the SCK can be solely used for
SVM instead of HIK, we still can compute a joint kernel combining the SCK and HIK together:

Kjoint ({Yi, WCM;}, {Y;, WCM;}) = Kk (Y, Yj) + Kscx (WCM;, WCM;). (18)
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The codebook used for the WCM can be different from the codebook for generating histogram
representations. Otherwise, we perform L2 normalization to the histogram Y and WCM before
computing these kernels, since the scale of Y and WCM between images is not uniform.

4.2. Feature Coding Based on the Saliency Map

In the FBC pipeline,the feature maps of each image scene are generated by convolving the image
with a set of filters. Actually, the “convolution operation” of the image indicates that we extract local
features via a dense sampling strategy with the sampling stride being one pixel.

Recently, saliency detection has been widely used in many computer vision applications, and in
particular, several works [39,50,51] have reported that saliency-based sampling can help to improve
the performance in scene classification. Visual saliency is the perceptual ability of a vision system
(e.g., human) to focus on the interesting information while ignoring irrelevant information. Saliency
detection is to detect the most attention-grabbing objects or salient regions that stand out relative
to their neighbors in a scene. Generally, saliency detection models output a saliency map where
each pixel value measures the degree of saliency belong to the salient object. Zhang et al. [39] were
first to introduce a context-aware [52] saliency detection algorithm to guide the sampling in scene
classification of high-resolution remote sensing images and show its effectiveness in a UFL-based
classification framework. However, it remains unclear how this strategy can act on the performance
in other classification framework. In contrast with [39], where only one saliency detection method
(context-aware) is evaluated, we investigate fifteen kinds of typical methods, which are AC [53],
attention by information maximization (AIM) [54], context-aware (CA) [52], context-based (CB) [55],
discriminative regional feature integration (DRFI) [56], frequency-tuned (FT) [57], graph-based visual saliency
(GBVS) [58], IM [59], low rank matrix recovery (LRR) [60], maximum symmetric surround (MSS) [61],
rarity-based saliency (RARE) [62], salient segmentation (SEG) [63], self-resemblance (SeR) [64], spectral
residual (SR) [65] and saliency using natural statistics (SUN) [66], and present detailed comparative
experiments for them. We do not review these methods due to the limited space, and details of each
method can be found in its corresponding paper. The saliency map examples generated by these
state-of-the-art methods are shown in Figure 6.

D

Original (2 AIM (6)FT (7) GBVS

(8)IM (9) LRK (10) MSS (11) RARE (12) SEG (13) SeR " (14) SR (15) SUN

Figure 6. Saliency maps computed by different state-of-the-art saliency detection methods (1-15).
Most maps highlight the edges of the salient object (airplane), and are of low resolution compared to
the original scene.

Note that the saliency map I** of each image scene has the same size as its coding image I?,
and thus, we try to use to the saliency map of a scene to guide the coding strategy of histogram
representations: only the codewords whose saliency value exceeds a threshold ¢ are counted in the
histogram, while the rest of the codewords are left out. We define the threshold ¢ as:

o = mean (I”l) — A(mean (Isal> — min (IS“Z>) (19)
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where A € [0,1] is a scale parameter and mean(-) and min(-) denote the mean and minimum of I5%.
When A = 0, we obtain the maximal threshold. As the A increases, more codewords contribute to
build the histogram representation. The saliency map has no effect on the coding map as A = 1.

5. Experiments and Analysis

In this section, we provide the detailed experimental setup, and the results on two public datasets
are also discussed. Additionally, numerous experiments are presented to show how the SCK and the
saliency maps exactly influence classification performance.

5.1. Experimental Setup

We evaluate the proposed FBC method on two public land use scene datasets, which are:

- UC Merced Land Use Dataset. The UC Merced dataset (UCM) [32] contains 21 typical scene
categories, each of which consists of 100 images with a size of 256 x 256 pixels. Figure 7 shows
two examples of each class included in this dataset. This dataset shows very small inter-class
diversity among some categories that share a few similar objects or textural patterns (e.g., dense
residential and medium residential), which leads the UCM dataset to be a challenging one.

- WHU-RS Dataset. The WHU-RSdataset [4] is a new publicly-available dataset, which consists of
950 images with a size of 600 x 600 pixels uniformly distributed in 19 scene classes. All images
are collected from Google Earth (Google Inc.). Some example images are shown in Figure 8.
We can see that the variation of illumination, scale, resolution and viewpoint-dependent
appearance makes each scene category more complicated than the UCM dataset.

B LE R R

Agricultural Airplane Baseball Diamond Beach Buildings Chaparral Dense Resndemlal

I Q= i (122 05 550

Forest Freeway Golf Course Harbor Intersection Medium Residential Mobile Home Park

% uEE;’ ;
—_— O L

3 3 “pu N AR | Sy =
Overpass Parking Lot River Runway Sparse Residen(ial Storage Tanks Tennis Courts

Figure 7. Two examples of each scene category in the UC Merced dataset.

We introduce ten commonly-used unsupervised learning methods, which are GMM, K-means,
PCA, ICA, LPP, SC, OMP, AE, NMF and random projection (RP) [49], to learn a set of filters
prepared for FBC, aiming to find the most appropriate method that can explore the natural statistical
properties of image patches. These methods can learn different linear filters that have various filtering
properties. Since we only consider two-dimensional filters learned from image patches in grayscale,
thus, all of the original colored image scenes (with RGB channels) in the dataset are first converted
to grayscale. In our experiments, the randomly-sampled image patches used for learning filters are
beforehand mean-removed. The threshold ¢ used for binarizing filter responses is fixed to be 0, if not
specified. At the classification stage, all of the classes included in the dataset are used for classification,
and we randomly choose samples of each class for training and make the rest for testing: the ratio of
the training set/testing set is 4:1 for the UCM dataset and 3:2 for the WHU-RS dataset. An off-the-shelf
SVM library [67] is used for SVM training and testing. The resulting average classification accuracy
is obtained over 100 runs.

Some open source libraries are used to implement the unsupervised learning methods
mentioned above: VLFeat [68] for K-means and GMM; SPAMS [44] for SC, OMP and NMF; the DR
toolbox [69] for PCA, LPP and AE; publicly available ICA package [70] for ICA. All experiments in
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our work are implemented via MATLAB on the Windows 7 platform, with a 2.93-GHz hexa-core Intel
Xeon CPU.

Football Field

Farmland Forest

Mountain

Rallwy » " Residential River " Viaduct

Figure 8. Examples of each category in WHU-RS dataset.

5.2. Experimental Results

5.2.1. Results of FBC

The classification results with different learned filters (the filter size is set to 9 x 9) are reported in
Figure 9. The results show that ICA performs better than other unsupervised techniques consistently
on two datasets when the filter size is less than or equal to nine. When the filter size is greater than
nine, PCA, NMF, LPP and ICA show comparative performance on the UCM dataset; LPP has the
leading performance on the WHU-RS dataset. We can also note that the GMM obviously leads to the
worst performance. This is probably because only using mean vectors of each Gaussian component
is not an optimal way of generating filters in the GMM case and seriously weakens the advantage of
the GMM. On the whole, the performance gradually improves as the number of filter increases. In
addition, it is amazing that the RP whose filters are generated from zero-mean, unit-variance normal
distribution achieves the best mean accuracies with 83.45% in all experiments. This encouraging
result indicates that we can easily obtain a set of suitable filters without any learning procedure. In
fact, there are several works [11,49,71,72] that have also shown similar observations that random
filters can be very effective in texture and scene classification, and our promising results of RP filters
further support this evidence. We also compare the capability of the hand-engineered filters with
the learned filters in the FBC framework. The maximum response filters (MR) [73] and the Schmid
filters (S) [74], which are specially designed for texture recognition, are investigated; the results in
Figure 9a show that a majority of learned filters perform far better (over 10 percent accuracy) than
these two specially-designed filters.
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Figure 9. Classification results on two datasets with different learned linear filters. The MRSET and
SSET denote the set of maximum response (MR) filters and the Schmid (S) filters, respectively, both of
which are hand-designed filters and were originally designed for texture classification task. Here,
we not only compare the filters learned by different unsupervised algorithms, but also compare the
learned filters with the hand-designed filters in the FBC framework. (a) Classification accuracies on
the UCM dataset; (b) classification accuracies on the WHU-RS dataset.

The effect of the filter size on classification performance is shown in Figure 10. Filters learned
by K-means and SC are respectively evaluated here. The results show that classification performance
consistently improves as the number of filters grows, except for some rare cases. In general, we can
see that performance severely decreases with too small or too large a filter size. The optimal size of
filter by K-means and SC is different: filters of a size of 5 X 5 yield the best accuracy when learned by
K-means; filters of a size of 7 x 7,9 x 9, 11 x 11 lead to comparative performance when learned by
SC. We can infer that filters learned via different learning algorithms determine differentially the best
filter sizes.
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Figure 10. Results with different filter sizes when the filters are learned via K-means and
sparse coding. (a) Classification results with K-means filters; (b) classification results with sparse
coding filters.

In the above experiments, the threshold value ¢ for binarizing filter responses is empirically
fixed to be zero. In fact, the threshold ¢ is a key parameter in FBC, because it directly controls
all of the generated binary maps and further relates to the final image representations. Hence, we
also investigate the effect of the binarization threshold on classification performance, and the results
are shown in Figure 11. An interesting observation from the results is that the final performance
changes highly symmetrically when & varies from —100-100. It appears only the absolute value of ¢
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influences performance. We can also note that the performance increases first and then gradually
drops with the increase of |¢|. The best performance consistently occurs at |e] = 5 for the two
datasets. Thus, in contrast to the previous setting of ¢ = 0, we can achieve an obvious performance
gain (especially for the WHU-RS dataset) at |¢| = 5. This reveals that the threshold ¢ indeed has a
substantial impact on final performance, and the empirical value ¢ = 0 is not the best choice for the
two datasets.

L80r 4
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4100 50 20 -10 -5 0 5 10 20 50 100

Binarization Threshold

Figure 11. The effect of binarization threshold e on classification performance. Here, the SC and
K-means filters are tested on the UCM dataset; the SC and locality-preserving projection (LPP) filters
are tested on the WHU-RS dataset. We evaluate the classification accuracy with 10 filters of a size of
9 x 9 when the threshold ¢ varies within a wide range.

Note that when the filters are obtained, the whole stage of feature representation by FBC for
images scenes is fairly fast because FBC is a totally feed-forward process and does not contain the
extraction of low-level features, as well as complex feature encoding and pooling steps compared
to the typical scene classification pipeline. Figure 12 shows the run time of the FBC for generating
global features of all image scenes in the UCM data. We achieve the results by testing filters learned
by SC with different sizes and numbers. We can note that time consumption increases approximately
linearly with the size and number of filters. At the best performance point with 10 filters of 9 x 9
(according to Figure 10b), it only takes less than 50 s to extract features for all 2100 images of the
UCM dataset, and this is beyond 60x faster than the BOW model (taking more than one hour
on our computer). This intuitive evaluation on the running time experimentally demonstrates the
superiority of the FBC in the aspect of computational complexity. The promising results also show
that FBC has fair potential to become a practical industrial scene classification tool.
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Figure 12. Time consumption of global feature representation with different filter sizes and filter

numbers on the UCM dataset. The coordinate point of “best performance” represents that when the

SC filters are tested, we achieve the best classification accuracy with 10 filters of a size of 9 x 9 pixels.
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We also compare our method to the off-the-shelf methods that have reported classification
accuracy on the UCM dataset, shown in Table 2. We can note that our method can outperform
the traditional BOW-based methods (BOW, SPM, SCK, SPCK++), as well as the newly-published
methods based on unsupervised feature learning (SC + pooling, SG+ UFL). The encouraging
results demonstrate the FBC is apparently superior to the BOW model and the UFL-based model,
both in accuracy and computational cost. Although COPD [12], which is an object-oriented
scene classification framework, presents better performance than ours, it contains very complex
pre-training to discover discriminative visual parts from images in the aspect of computational
efficiency. The UFL-SC [40], which outperforms our method, also encompasses time-consuming
manifold learning, nonlinear dictionary learning and a feature encoding stage. In other words,
the proposed FBC is a compromise method that achieves a balance in accuracy and efficiency.
Moreover, due to the surprising speed of representing image scenes, the FBC can be hopefully applied
to a practical scene analyzing system for quickly predicting scene classes.

Table 2. Mean classification accuracy comparison on the UCM dataset. SPM, spatial pyramid
matching kernel; SCK, spatial co-occurrence kernel; SPCK, spatial pyramid co-occurrence kernel; UFL,
unsupervised feature learning.

Methods Classification (%)
BOW [7] 71.86
SPM [30] 74
SCK [32] 72.52
SPCK++ [7] 77.38
SC + pooling [6] 81.67 +1.23
SG+ UFL [39] 82.72 £ 1.18
NFNC [71] 87.67
UFL-SC [40] 90.26 + 1.51
COPD [12] 91.33 £ 1.11
FBC (¢ = 0) 83.45 + 1.6
FBC (J¢| = 5) 85.53 + 1.24

5.2.2. Results of SCK

We have evaluated the performance of HIK, SCK and the joint kernel on the basis of the proposed
FBC. Since the size of the codebook is determined by the number of filters K, i.e., 2K the K also plays
an important role in the performance of SCK and the joint kernel. For each dataset, two codebooks of
different sizes are used to compute the co-occurrence matrices for SCK: 64 and 128 for the UCM
dataset (six and seven filters are used accordingly); 128 and 256 for the WHU-RS dataset (seven
and eight filters are used). Here, we only study the cases of filters learned by K-means and SC.
The constant parameter r is set to 50 empirically through all experiments.

Table 3 presents the accuracies of only SCK used for classification on the two datasets, and we
note that SCK performs better than HIK on UCM and worse than HIK on WHU-RS for both dictionary
sizes. The joint kernel, i.e., the SCK combined with HIK, outperforms the single HIK consistently
on the two datasets, shown in Figure 13. It is obvious that the joint kernel improves performance
notably when the number of filters K is small, but the performance gap is gradually reduced as K
increases. We can see that when K = 10,11, the performances of the two kernels are very close on
the UCM dataset. Figure 13 also shows us that the joint kernels with different SCK have very similar
performance along with K varying, which is especially reflected in WHU-RS. On the whole, the SCK
is a helpful spatial extension to the traditional non-spatial HIK for scene classification.
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Figure 13. Results on two datasets with the histogram intersection kernel (HIK) and joint kernels with
different filter settings. (a) Results on the UCM dataset with SC filters (9 x 9 pixels); (b) results on the
WHU-RS dataset with SC filters (9 x 9 pixels); (c) results on the UCM dataset with K-means filters
(7 x 7 pixels); (d) results on the WHU-RS dataset with K-means filters (7 x 7 pixels).

Table 3. Performance comparison between SCK and HIK.

UCM Dataset WHU-RS Dataset
Codebook Size 64 128 128 256
Kernel Type SCK HIK SCK HIK SCK HIK SCK HIK
K-Means Filters 75.73 £ 1.85 71.87 +2.00 78.05 £+ 1.96 74.69 + 1.90 58.67 +2.07  67.21 £1.99 59.54 +2.19 69.42 + 2.04
SC Filters 7721 £1.94 71.84 +1.88 80.31 4+ 1.69 76.06 + 1.89 60.64 4+ 2.25 67.64 +1.78 63.26 +1.91 70.88 +2.14

5.2.3. Results of Saliency-Based Coding

In this part, we evaluate fifteen kinds of saliency detection algorithms and discover how their
saliency maps affect the classification performance under different saliency thresholds. We conduct
experiments only on the UCM dataset (certainly, these trials can be replicated on WHU-RS or other
datasets) and fix the training and testing set for the sake of concentrating only on the effect of the
saliency map on performance. Ten filters of a size of 9 x 9 learned by sparse coding are used to
generate the coding images for all image scenes. In this parameter configuration, the classification
accuracy through the standard FBC pipeline is 84.29%, which is considered as a baseline accuracy.

The performances of the 15 saliency detection methods are shown in Table 4, where 10 saliency
threshold scales are tested. We can see that the GBVS leads to the best performance overall among all
methods. For each method, although fluctuating in some cases, the performance gradually improves
as A increases in general. This is because more non-salient codewords that may be helpful to the
representative power of the histogram are counted when the saliency threshold becomes small,
especially for some scene categories, which consist of textural structures and do not contain any
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salient objects or region, such as agricultural and chaparral. The results also show that we should
set a proper A in order to get a better performance than the baseline. The best A is varying for each
saliency detection model. It is worth noticing that some models lead to worse performance than the
baseline whatever the A is set to, e.g., AC, CB and SR. This reveals that not all of the saliency detection
methods can work as a beneficial guide to the coding stage in the FBC-based classification scenario.

Table 4. Comparison of the classification performance of saliency-based coding via different
saliency detection methods. AIM, attention by information maximization;, CA, context-aware;
CB, context-based; DRFI, discriminative regional feature integration; FT, frequency-tuned; GBVS,
graph-based visual saliency; LRR, low rank matrix recovery; MSS, maximum symmetric surround;
RARE, rarity-based saliency; SEG, salient segmentation; SeR, self-resemblance; SR, spectral residual;
SUN, saliency using natural statistics.

Saliency Detection Methods
scaleA AC AIM CA CB DRFI FT GBVS IM LRR MSS RARE SEG SeR SR  SUN

0 79.29 83.1 7333 7119 77.38 7857 84.05 77.62 75 78.81 74.52 81.9 78.81 7476 7571
0.1 80.71 83.1 76.9 7333  78.81 79.05 83.33 79.05 7571  80.71 74.29 81.67 80.71 7524 76.9
0.2 81.19 8286 7714 7238 7786  79.05 84.52 79.76 7833  81.19 75.24 84.76 8048  76.19 78.1

0.3 81.9 82.14 7976 7214 77.38 79.52 85.24 8143 7881 80.71 77.62 8548 8024 77.62 80
0.4 81.67 83.1 80 72.38 79.29 80.71 84.76 82.14 81.9 83.1 76.9 84.52 81.9 78.57  81.19
0.5 81.9 83.81 83.1 72.38 80 81.43 83.81 83.1 83.1 83.1 80 8429 82,62 79.76  83.81

0.6 8143 8452 83.1 74.05 79.05  82.62 83.81 83.33 8357 8452 81.43 8429 8214 81.67 8357
0.7 8238 8476 8357 7476 78.1 82.86 84.76 84.76 8548 8429 82.86 84.52  84.29 83.1 84.29
0.8 8238 8476 8476 7524 79.05  84.05 85.24 8548  84.05 84.52 83.81 8429 8429 8286 83.81
0.9 81.67  83.57 85 79.76 82,62  83.33 85.48 84.76 85 83.57 84.29 8429 8429 84.05 8429

6. Discussion

From the comparative experiments of different learned filters in Figure 9, we can observe that the
learned filters outperform the hand-designed filters by a large margin, showing that we can obtain
statistically meaningful structures or patterns from local image patches by employing unsupervised
learning methods rather than manual design. Except for the GMM and AE, other methods evaluated
in this paper generally result in comparable performance. A fairly interesting observation is that even
with random filters, the FBC can still achieve impressive performance. This characteristic makes FBC
a versatile method that can be straightforwardly adapted for new datasets because the FBC does not
need any learning strategies when generating image representations.

We can also note from Figure 10 that the two parameters, i.e., the size of filters and the number
of filters, have a large impact on final performance. It shows a stable upward trend in performance
with the increasing number of filters. However, too large a number of filters is not desirable: on
the one hand, it increases the computational cost with limited performance gain; on the other hand, it
exponentially increases the dimensionality of the final image representations (as described previously,
the dimension of the image representation is 2X) and, thus, results in highly redundant features that
may be adverse at the stage of the training classifier. Our experiments show that the number of filters
ranging from 9-11 is suitable for the tradeoff of speed/accuracy. In addition, it appears that we suffer
a great loss with too small or too large a size of filters. The filter size ranging from 5 x 5-11 x 11 can
always result in good performance.

Figure 13 and Table 3 show that although the SCK does not always outperform HIK, combining
SCK and HIK consistently leads to performance gain and demonstrates that the SCK, which considers
relative spatial information indeed, helps to improve classification performance in the pipeline of
FBC. Table 4 shows that not all of the saliency detection methods can work as a beneficial guide
to the coding stage in the FBC pipeline. With proper parameter settings, we can obtain better
performance than the original FBC. For instance, when A = 0.9, the GBVS results in an accuracy of
85.48%. Another interesting observation is that with increasing A (i.e., decreasing threshold o), we
count more non-salient codewords into the histogram feature, and the final performance improves
gradually. It reveals that the non-salient regions in image scenes are also very useful for classification.
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The proposed FBC has a substantial superiority in computational speed compared to the
state-of-the-art methods since it requires no complex feature coding strategy and even no training
procedures. However, it is noted that some state-of-the-art methods outperform FBC by an obvious
margin. In future works, we plan to improve FBC by elaborating more effective learning schemes
jointly capturing local and global information.

7. Conclusions

This paper presents a fast, but effective method, called FBC, for extracting global feature
representations of remote sensing image scenes in a straightforward way. In the FBC pipeline,
we introduce unsupervised learning techniques to automatically learn a set of optimal filters from
large quantities of randomly-sampled image patches, and through binarizing the feature responses,
we can readily compute the feature representations for image scenes in a computationally-efficient
way. The overall feature extraction stage is free of any hand-crafted features and can be computed
straightforwardly. The number of filters and filter size are two important parameters in FBC,
and we conclude that relatively more filters with a moderate size will result in better performance.
Filters learned via different ways also lead to much different classification performance, and it is
surprising that we can even achieve a promising accuracy of 83.45% on the UCM scene dataset
with random filters, which are simply obtained from a normal distribution. Extensive experiments
show that the FBC-based classification model can achieve encouraging performance and at the
same time save much computation cost compared to the classic BOW scene classification models
and newly-published UFL-based models. In addition, we also show that on the basis of FBC,
spatial co-occurrence matrices and the saliency maps can improve performance to some extent.
On the whole, the FBC is a promising method for scene classification in terms of accuracy and
computational cost, and it can be a practical tool in some industrial scene analysis systems.
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