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Abstract: For many environmental applications, an accurate spatial mapping of land cover is a major
concern. Currently, land cover products derived from satellite data are expected to offer a fast and
inexpensive way of mapping large areas. However, the quality of these products may also largely
depend on the area under study. As a result, it is common that various products disagree with
each other, and the assessment of their respective quality still relies on ground validation datasets.
Recently, crowdsourced data have been suggested as an alternate source of information that might
help overcome this problem. However, crowdsourced data still remain largely discarded in scientific
studies due to their inherent poor quality assurance. The aim of this paper is to present an efficient
methodology that allows the user to code information brought by crowdsourced data even if no prior
quality estimation is at hand and possibly to fuse this information with existing land cover products
in order to improve their accuracy. It is first suggested that information brought by volunteers can
be coded as a set of inequality constraints about the probabilities of the various land use classes at
the visited places. This in turn allows estimating optimal probabilities based on a maximum entropy
principle and to proceed afterwards with a spatial interpolation of these volunteers’ information.
Finally, a Bayesian data fusion approach can be used for fusing multiple volunteers’ contributions
with a remotely-sensed land cover product. This methodology is illustrated in this paper by focusing
on the mapping of croplands in Ethiopia, where the aim is to improve the mapping of cropland as
coming out from a land cover product with mitigated performances. It is shown how crowdsourced
information can seriously improve the quality of the final product. The corresponding results also
suggest that a prior assessing of remotely-sensed data quality can seriously improve the benefit of
crowdsourcing campaigns, so that both sources of information need to be accounted together in order
to optimize the sampling efforts.
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1. Introduction

Land cover is an important categorical variable for spatial environmental modeling and especially
cropland, which is required in a wide variety of applications, such as ecosystem modeling, food
security or global environmental change. Land cover products derived from satellite data are expected
to provide an accurate spatial mapping of cropland that can be used afterwards for those goals.
However, these land cover products might suffer from a limited accuracy, which impairs their use in
applications that rely on the correct selection of the cropland class [1–4]. Moreover, in several regions
of the world, cropland is not easily mapped from remotely-sensed data alone [5].

Several attempts have been made in order to overcome this lack of accuracy. Among others, some
authors suggest using jointly various land cover products with the aim of preserving the highlights of
each product while attenuating at the same time their respective weaknesses [2,6–9]. Other authors
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suggest the use of census data that can be combined with these products [10–12]. More recently, [1]
highlighted the use of crowdsourced data as an alternate way of spatially predicting cropland, and
studies are currently focusing on the way crowdsourcing information can be fused with existing land
cover datasets [3].

Crowdsourcing information consists of geospatial data created by citizens on a voluntary basis [1].
Indeed, there is an increasing amount of information that is spatially referenced by citizens on a volunteer
basis. The use of crowdsourced information is currently studied in land mapping applications [13],
but its value is also assessed in other fields, such as climate and atmospheric sciences [14] or disaster
management and response (e.g., earthquakes, hurricanes, rapid floods, etc.) [15–17] where there is a need
for up-to-date information. Moreover, volunteers largely contribute to updating geographic databases
for companies, such as OpenStreetMap, TomTom or NAVTEQ [18]. The potential of crowdsourcing is
also of interest for national government organizations for improving their own mapping products [19].

Although citizens that are contributing in land mapping crowdsourcing exercises might not be
remote sensing experts, these crowdsourced data can be an inexpensive way of improving the quality
of land cover products. Obviously, this raises concerns about the quality of these crowdsourced data
that lack clear quality assurance [20–22]. In many cases, the quality of the volunteer’s contribution
is difficult to assess, and this crowdsourced information is thus simply discarded from further
processing [23].

The aim of this study is to present an efficient methodology that allows the user to code
information brought by crowdsourcing even if no quality assurance is at hand, with the aim of
combining afterwards this information with existing land cover products in order to improve their
final accuracy. The information brought by volunteers is coded in terms of inequality constraints
about the probabilities of the various classes, leading afterwards to an estimation of the volunteer’s
performance based on the maximum entropy/minimum divergence principle [24]. A Bayesian data
fusion approach allows us to fuse multiple volunteers’ opinions at the same specific location. With the
help of spatial interpolation procedures that are explicitly accounting for the associated performances
of the various volunteers, this information can then be interpolated and combined with an existing
land cover product [25,26].

The case of cropland mapping in Ethiopia illustrates this theoretical framework and shows
the advantage of combining crowdsourced information and land cover data by emphasizing their
respective benefits. Food insecurity is an issue in Ethiopia [27] where there is a major need of efforts
in acquiring data about cropland. Accordingly, Ethiopia is identified as one of the priority areas for
actualized cropland mapping [28]. Based on our results, it is shown how crowdsourced information
can seriously improve the quality of the final product. These results also suggest that a prior assessing
of remotely-sensed data quality can improve the benefit of crowdsourcing campaigns in general,
by properly identifying locations where this additional information is likely to be the most helpful.
This clearly suggests too that remotely-sensed data and crowdsourcing campaigns design need to be
considered together from the very beginning of the study, in order to maximize the benefits of using
them jointly when it comes to producing an improved land cover product.

2. Theory and Methods

This section will present the main framework for the processing of crowdsourced information
with the aim of accounting for various volunteer’s information and with the final goal of improving a
final classification map. The methodology is thought to be general enough in order to be applied to a
wide variety of situations and will be presented hereafter in a sequential way. Starting from a single
volunteer, it will be shown how it is possible to account for the corresponding information by a proper
probabilistic recoding. This case will be extended to the situation where some information is at hand
about the volunteer’s performance, as well as for the situation where several volunteers are providing
information about the same location. Based on these results, it will be shown how this information can
be spatially interpolated first and then fused afterwards with another land cover map.
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2.1. Recoding Volunteers Opinions When Lacking Information about Their Performance

A common way for assessing volunteers’ performances is by inner-annotator agreement or by
comparing volunteers’ contributions with known expert labels [29]. This requires of course that
some information about volunteers’ performance is already available prior to the study or that this
performance can be assessed during the study itself. As a natural consequence, when no information is
made available about a volunteer, his or her contributions tend to be discarded for further processing
in favor of other volunteers having better documented performances.

It will be shown here that the maximum entropy principle can be helpful in this situation, since
it allows us to estimate volunteers’ performances and to use their contributions even if no quality
assurance is at hand. The benefit of the maximum entropy principle in our context is its ability to
build probability distributions based on frugal information, like, e.g., inequality constraints about the
corresponding probabilities. More conceptual details can be found in [24]. It is worth noting that this
methodology has already been successfully applied in other environmental contexts, e.g., to rebuild a
probability table for predicting the extent of a Benzene groundwater contamination plume [30] and
to integrate lithology information for predicting drainage classes in the Belgian Lorraine [24]. In this
paper, it will be used to estimate volunteers’ performances in a crowdsourcing context when facing a
binary choice. More complex cases involving categorical variables with more than two categories can
be found in [24,30].

In order to illustrate the idea, let us focus on a simple binary (i.e., Bernouilli) random variable
Z with z ∈ {0, 1} that corresponds to the presence/absence of a property at an arbitrary spatial
location. If no prior information is available, selecting probabilities P(Z = 1) = P(Z = 0) = 0.5 is
a logical non-informative choice. Let us assume now that the i-th volunteer has provided his or her
opinion about the presence or absence of this property at the same location, i.e., Ei = 1 or Ei = 0,
respectively. In order to translate this opinion in terms of the random variable Z of interest, let us
consider that when Ei = 1, this is recoded as P(Z = 1|Ei = 1) > P(Z = 0|Ei = 1), or equivalently
p1 = P(Z = 1|Ei = 1) > 0.5 and p0 = P(Z = 0|Ei = 1) < 0.5, with p0 + p1 = 1. This could be
interpreted as follows: when the i-th volunteer chooses to set Ei = 1 (presence), it is assumed that the
presence (Z = 1) is more likely than the absence (Z = 0). Symmetrically, Ei = 0 will then be translated
as P(Z = 0|Ei = 0) > P(Z = 1|Ei = 0). The rational of this coding is to account for the volunteer’s
opinion (as we have reasons to believe that presence/absence is more likely to happen when the
volunteer’s choice is to consider presence/absence), while at the same time avoiding directly setting
values for the corresponding probabilities. No spurious information is then accounted for the specific
values of p0 and p1, but they are merely linked to each other by the inequality constraint p1 > p0.

For the case where Ei = 1, let us consider again the vector of unknown probabilities p = (p0, p1)

subject to the inequality constraint p1 > p0. The maximum entropy principle aims at selecting the best
estimate for p based on the minimization of the expected divergence E[D(p||Q)] over Q, where Q is
the set of probability vectors that fulfill this inequality constraint. Again, the rational is to select the best
estimate for p that stays as close as possible to the “no prior information” situation (i.e., p0 = p1 = 0.5)
while at the same time honoring the inequality constraint p1 > p0. In practice, by relying on the
divergence D(p||q) defined as:

D(p||q) = ∑
i

pi ln
pi
qi

(1)

we can compute the expected divergence for any specific choice of p, with:

E[D(p||Q)] =
∫

S∩C
D(p||q) f (q)dq (2)
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where f (q) is the probability density function of Q defined over the intersection of the simplex
S = {p : p0 ∈ [0, 1], p1 ∈ [0, 1], p0 + p1 = 1} with the domain generated by the inequality constraint
C = {p : p1 > p0}. As computing the expected divergence requires that the distribution of Q is
specified, the consistent choice based on the maximum entropy principle is to use a uniform distribution
for Q over S ∩ C. The solution of this optimization problem is thus an estimated probability vector p̂,
such that:

p̂ = arg min
p

E[D(p||Q)] (3)

2.2. Accounting for Information about Volunteers’ Performance

Though the procedure presented in the previous section yields an estimate of p for a single
volunteer when lacking information about its performance, it is of some concern to extend this
approach for situations where this information exists, based on a validation dataset. Starting from a
uniform distribution f (q), a standard Bayesian updating procedure allows us to additionally account
for a given number of validation points.

In order to do so, let us consider in general the vector n = (n0, ..., nk) where each ni is the number
of validation points falling in the i-th category for a given contributor (with two categories here
for our specific problem). We can thus compute the likelihood of observing this sample n from the
corresponding multinomial distribution, where the probabilities of the various categories are given by
q, with:

P(N = n|q) = n!
∏i ni!

∏
i

qni
i (4)

where n = n0 + · · ·+ nk. A direct application of the Bayes theorem leads to the updated (i.e., the
posterior distribution) f (q|N = n), with:

f (q|N = n) ∝ Likelihood× Prior = P(N = n|q)× f (q) (5)

As a conclusion, when facing a total lack of prior knowledge due to the lack of validation points, a
natural choice based on the maximum entropy principle is to use the uniform f (q). More meaningful
choices are however possible when validations points are at hand, so that an updated distribution
f (q|N = n) can be used instead. This flexibility is particularly interesting in a context where we
need to handle at the same time volunteers with no performance assessment (i.e., using f (q)) along
with volunteers for which performance assessment is at hand through validation points (i.e., using
f (q|N = n)). Clearly, this number of validation points may also vary from one volunteer to another
one. Additionally, volunteers’ performance with respect to the same number of validation points may
also widely vary from one volunteer to another one. All of these possibilities are handled through the
use of Equation (5), so that a specific distribution can be used for each volunteer.

For an arbitrary number of categories and starting from a uniform prior f (q) over the simplex,
the prior distribution f (q) corresponds to a Dirichlet distribution with a vector of parameters
α = (α0, . . . , αk), such that αi = 1 ∀i, and the corresponding posterior distribution is also Dirichlet
distributed over the same simplex. In our specific case where only two categories related to
presence/absence are involved, the prior distribution for either q0 or q1 is uniform over [0, 1], and the
corresponding posterior distribution is Betadistributed. This is illustrated in Figure 1, which shows
how the shape of the (truncated) Beta posterior distribution is changing as the number of validation
points is increasing. The fact that we start here from the uniform distribution over [0.5, 1] instead
of [0, 1] is linked to the additional constraints q1 > q0 to be fulfilled, so that values q1 < 0.5 are
impossible under this constraint.
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Figure 1. Modification of f (q1) as the number n of validation points increases for a volunteer who
always identifies correctly the true category (i.e., n1 = n and n0 = 0, with n0 + n1 = n).

2.3. Bayesian Data Fusion to Combine Multiple Volunteers’ Opinions at the Same Location

The Bayesian data fusion (BDF) methodology has been successively applied in various
environmental contexts for combining multiple information sources relative to the same variable
of interest, with the aim of increasing the final quality of the prediction. It has been widely studied
for the prediction of continuous variables ([31–33]), and an extension was proposed in Gengler and
Bogaert (2015) for categorical variables, as well.

Let us assume a categorical random variable Z where z0 corresponds either to the
presence/absence of cropland at the corresponding location x0, so that z0 ∈ {0, 1}. Let us consider
another set of categorical variables E0,1, . . . , E0,m defined over the same set of categories and available
at the prediction location x0, with observed values e0 = (e0,1, . . . , e0,m), where in our context, each
e0,i corresponds to the cropland presence/absence as assigned by the i-th volunteer (i.e., e0,i ∈ {0, 1}
again). What we seek for are the conditional probabilities:

p(z0|e0) =
p(e0|z0)p(z0)

p(e0)

=
p(z0)

p(e0)

n

∏
i=1

p(e0,i|z0)

=
p(z0)

p(e0)

n

∏
i=1

p(z0|e0,i)p(e0,i)

p(z0)

=
1
A

p(z0)
1−n

n

∏
i=1

p(z0|e0,i)

(6)

where the equality p(e0|z0) = ∏n
i=1 p(e0,i|z0) corresponds to the mutual independence between the Ei’s

conditionally to Z (see [26]) and where A = p(e0)/ ∏i p(ei,0) is a normalization constant ensuring that
∑ p(z0|e0) = 1. Clearly, the probabilities p(z0|e0,i) (with z0 ∈ {0, 1}, too) correspond to the previously
described coding for each volunteer’s opinion about cropland presence/absence, i.e., the values for p0

and p1. The probabilities p(z0) are our prior information at that location before any volunteer opinion
is made available. In this sense, Equation (6) allows us to update this prior information by accounting
for the volunteers, and each ratio p(z0|e0,i)/p(z0) is measuring the information content brought by the
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i-th volunteer with respect to the prior probability. Clearly, the more p(z0|e0,i) differs from p(z0), the
more this volunteer will impact the final result. Finally, it is worth remembering again that the various
p(z0|e0,i)

′s can be different, so that Equation (6) allows us to account at the same time for volunteers
with varying performances.

2.4. Bayesian Maximum Entropy to Interpolate the Fused Volunteers Opinions

In order to get a map from the finite set of locations where crowdsourced information is at hand,
it is needed to rely on a sound interpolation procedure. The Bayesian maximum entropy (BME)
methodology allows us to do this from the fused volunteers’ opinions at various locations thanks
to its ability to process the corresponding probabilistic (i.e., soft) information [34]. Indeed, we are
here dealing with probability distributions p̂ = (P̂(Z = 1|e), P̂(Z = 0|e)), so that BME shows serious
advantages compared to other classical interpolated methods as, e.g., the inverse distance weighted
interpolation method that was used in [3]. In our case, the conditional probability distributions over the
whole of Ethiopia are computed using the knowledge of the probability distributions at neighboring
locations. The bivariate probabilities between the two classes as a function of the distance between the
corresponding locations need to be estimated for this goal, and this was done according to the method
advocated in [35].

2.5. Bayesian Data Fusion to Combine the Interpolated Map with the Land Cover

The BME methodology is providing us with a map solely based on the crowdsourced information,
while on the other hand, we have a land cover product as derived from remote sensing. It is thus
needed to get a single final map that would be based on these two information sources. This fusion
of the BME interpolated map and the land cover product can be done using the BDF methodology
again. Indeed, this corresponds to a particular case of the general BDF methodology, where no spatial
structure needs to be taken into account and where the data sources are spatially exhaustive (i.e., the
values are at hand for any arbitrary selected set of spatial locations). Xu et al. (2014) used a similar
methodology for merging different land cover products, and their study can also be viewed as a
particular case of the BDF equations [9].

Let us define L0 as a categorical variable that corresponds to the cropland presence/absence
as assigned by the land cover product at the prediction location, so that l0 is its observed
value. Similarly, let us consider Ep

0 as a categorical variable where ep
0 corresponds to the

cropland presence/absence at the prediction location as assigned by the interpolated map based
on crowdsourced information. What we seek for is thus p(z0|e

p
0 , l0), i.e., the probability of

presence/absence given the information provided both by the land cover product and the
crowdsourced map. Using elementary probability properties, it thus comes that:

p(z0|e
p
0 , l0) =

p(z0, ep
0 , l0)

p(ep
0 , l0)

=
p(z0)p(ep

0 , l0|z0)

p(ep
0 , l0)

=
p(z0)

p(ep
0 , l0)

p(ep
0 |z0)p(l0|z0)

=
p(z0)

p(ep
0 , l0)

p(z0|e
p
0 )p(ep

0 )

p(z0)

p(z0|l0)p(l0)
p(z0)

= A
p(z0|e

p
0 )p(z0|l0)

p(z0)

(7)

where the equality p(ep
0 , l0|z0) = p(ep

0 |z0)p(l0|z0) corresponds to the mutual independence between L
and Ep

0 conditionally to Z and where A = p(ep
0 )p(l0)/p(ep

0 , l0) is a normalization constant.
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3. Results and Discussion

In order to illustrate the use of the proposed approach, we will focus on the spatial mapping of
cropland in Ethiopia. For doing this, three sources of information were at hand, namely: (i) a land
cover map as obtained in 2010 from the Climate Change Initiative land cover (CCI-LC) with a spatial
resolution of 300 m [36]; (ii) an extensive crowdsourcing campaign that took place in 2012 and that
involved data collection over the whole country; and (iii) a set of 1000 validation points as coming
from an independent expert over the whole country, as well.

For the crowdsourcing campaign that was held in 2012, a Geo-wiki team asked volunteers to
indicate the degree of cropland presence in samples of 1 km2 that were taken all over Ethiopia using
Google Earth images. These data were collected using a simplified version of Geo-wiki [4]. A total
of 32 volunteers indicated their opinion, and 77,465 contributions were collected. Three volunteers
recorded more than 75% of these contributions (Table 1). The classification was initially made using four
classes of cropland occurrence, ranging from the absence of cropland to a high degree of cultivation [3].
For the present study, only two classes are defined by grouping the low, medium and high cultivation
classes together. The variable of interest is thus a binary (i.e., Bernouilli) variable that corresponds to
the absence/presence of cultivated land in Ethiopia (Figure 2). In parallel, from the Climate Change
Initiative land cover product obtained in 2010, the same binary variable of interest was also derived.
The label “presence of cultivated land” was associated with all land cover classes that contain cropland,
i.e., rainfed, irrigated and post-flooding cropland and mosaic cropland. The remaining classes were
labeled as “absence of cultivated land” (Figure 3). Finally, a validation dataset based on satellite data
interpretation was built using a trained expert. A total of 1000 pixels randomly sampled over the
whole of Ethiopia were investigated by this expert (Figure 4). This includes a subset of 500 locations
where crowdsourced data were at hand. They are used to recode crowdsourced data (Section 3.1).
Table 1 shows the number of validation points available for each of the 10 main contributors in the
crowdsourcing exercise (these 10 main contributors representing 96.8% of the total crowdsourced data).
The remaining 500 locations are not used in the calibration process. They are only used to assess the
accuracy of the produced land cover maps (Section 3.5).

Table 1. Volunteers’ contributions and validation points for the ten main contributors.

Contributor ID Number of Contributions Number of Validation Points

#1 20,497 279
#2 20,311 317
#3 19,238 284
#4 5575 83
#5 3311 49
#6 1536 29
#7 1534 16
#8 1427 11
#9 901 10

#10 659 10
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Figure 2. Locations for the crowdsourced information; light grey dots correspond to the “no cropland”
class, while black dots correspond to the “cropland” class (for a total of 32,781 pixels with an average
density of 0.03 pixels/km2).

Figure 3. Cropland map based on the Climate Change Initiative land cover (CCI-LC) product for the
year 2010; light grey dots correspond to the “no cropland” class, while black dots correspond to the
“cropland” class.
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Figure 4. Locations for the 1000 validation points; light grey dots correspond to the “no cropland”
class, while black dots correspond to the “cropland” class.

The CCI-LC product is far from being good for the specific cropland class, since this product is
characterized by an overall accuracy of 76.8% (Table 2). Although the land cover has a fairly high
user’s accuracy for the “no crop” class, this is not the case for the “crop” class. Indeed, if a pixel
is labeled as “crop” by the land cover, the probability of actually observing a crop as measured by
P(Z = 1|CCI = 1) is only 51.9%. This means that no meaningful information can be obtained from the
CCI-LC product when CCI = 1 is occurring. As suggested in See et al. (2013), these errors could be
explained by the similar spectral signatures exhibited by the cropland and grassland classes. In order
to improve the land cover product, making use of crowdsourcing information is a possible alternative,
especially in areas where the CCI-LC product is indicating the presence of crops.

Table 2. Confusion matrix for the CCI-LC product (for a total of 500 pixels).

CCI-LC

Crop No Crop Producer’s Accuracy (%)

Validation Crop 110 14 88.71
No crop 102 274 72.87

User’s Accuracy (%) 51.89 95.14 76.80

3.1. Recoding Crowdsourced Data

In order to combine crowdsourced information with this land cover product, contributors’
performances need to be estimated. The minimum divergence principle implemented by iterated
MinNormapproximations is thus applied here to evaluate the quality of each contributor. When no
information about a volunteer’s performance is at hand, a consistent choice is to use a uniform
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distribution f (q) over S ∩ C, which leads to estimated values for the probabilities p(z|ei) (subject to
the aforementioned inequality constraint) that are given by:

P̂(Z = 1|Ei = 1) = 0.8 P̂(Z = 0|Ei = 1) = 0.2

P̂(Z = 1|Ei = 0) = 0.2 P̂(Z = 0|Ei = 0) = 0.8
(8)

However, validation points are also at hand for 20 volunteers, so that more informative estimations
for their performance can be obtained. In our specific problem, n = (n0, n1) where n1 is the number of
validation points that were assigned to the “crop” class, while n0 are the assigned to the “no crop” class.
The initial uniform distribution f (q) can then be modified accordingly using the classical Bayesian
updating procedure (Figure 1), where the posterior distribution f (q|N = n) may differ from one
volunteer to another one depending on their respective performances.

As an illustration of the methodology and results, the case of Volunteer #6 is presented here in
details For this volunteer, a total of 29 validation points are at hand, with seven points where this
contributor is assigning the “crop” class (and so the “no crop” class was assigned for the 22 other
validation points). In this particular case, n = (n0 = 0, n1 = 7) when Volunteer #6 is assigning the
“crop” class and n = (n0 = 21, n1 = 1) when Volunteer #6 is assigning the “no crop” class. When this
contributor is in favor of the presence of crop at a specific location (E6 = 1), the constraint to be
considered is thus C = {p : p1 > p0}. Let us start from the uniform distribution f (q), so that with
q = (q0, q1), this reduces here to considering that:

f (q) =


2 ∀ (q0, q1) ∈ S ∩ C

0 otherwise
(9)

where S = {p : p0 ∈ [0, 1], p1 ∈ [0, 1], p0 + p1 = 1}, where n0 = 0 is the number of validation
points attesting absence (the contributor is wrong at these locations), and n1 = 7 is the number of
validation points attesting presence (the contributor identifies correctly the true category at these
locations). According to Equation (4), the likelihood of observing the sample n = (n0 = 0, n1 = 7) is
thus given by:

P(N = (0, 7)|q) = 7!
(0!)(7!)

(q0)
0(q1)

7 (10)

From Equation (5), it is possible to update the prior f (q) based on the validation points available,
leading to:

f (q|N = (0, 7)) ∝


7!

(0!) (7!)
(q0)

0(q1)
7 × 2 ∀ (q0, q1) ∈ S ∩ C

0 otherwise.

(11)

Similarly, the same calculus can be done when the contributor is in favor of the absence of crop
at a specific location (i.e., when E6 = 0), so that the constraint now becomes C = {p : p0 > p1}.
For the sake of illustration, Figures 5 and 6 show: (a)the initial uniform prior when no information
about the volunteer’s performance is taken into account; (b) the likelihood of observing a sample
n, i.e., P(N = (n0, n1)|q1); (c) the corresponding updated distribution f (q1|n); and (d) the expected
divergence E[D(p||Q)] when Contributor #6 is in favor of the presence and the absence, respectively.
As the same procedure can be applied for every volunteer, Table 3 summarizes the results for the
ten main contributors by providing the values for p̂ that correspond to the minimum value for the
expected divergence E[D(p||Q)].
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Table 3. Minimum divergence approximations for the performances of the ten main contributors.

Contributor ID E = 1 E = 0

#1 P(Z = 1 | E) 0.992 0.017
P(Z = 0 | E) 0.008 0.983

#2 P(Z = 1 | E) 0.990 0.044
P(Z = 0 | E) 0.010 0.956

#3 P(Z = 1 | E) 0.992 0.034
P(Z = 0 | E) 0.008 0.966

#4 P(Z = 1 | E) 0.831 0.089
P(Z = 0 | E) 0.169 0.911

#5 P(Z = 1 | E) 0.969 0.017
P(Z = 0 | E) 0.031 0.983

#6 P(Z = 1 | E) 0.931 0.066
P(Z = 0 | E) 0.069 0.934

#7 P(Z = 1 | E) 0.911 0.046
P(Z = 0 | E) 0.089 0.954

#8 P(Z = 1 | E) 0.931 0.103
P(Z = 0 | E) 0.069 0.897

#9 P(Z = 1 | E) 0.922 0.103
P(Z = 0 | E) 0.078 0.897

#10 P(Z = 1 | E) 0.857 0.164
P(Z = 0 | E) 0.143 0.836

Figure 5. (a) Initial uniform prior when no information about the volunteer’s performance is taken into
account; (b) likelihood of observing a sample n, i.e., P(N = (n0, n1)|q1); (c) the corresponding updated
distribution f (q1|n); and (d) the expected divergence E[D(p||Q)] for the case where E6 = 1.
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Figure 6. (a) Initial uniform prior when no information about the volunteer’s performance is taken into
account; (b) likelihood of observing a sample n, i.e., P(N = (n0, n1)|q0); (c) the corresponding updated
distribution f (q0|n); and (d) the expected divergence E[D(p||Q)] for the case where E6 = 0.

3.2. Fusion of Multiple Contributions at a Specific Location

During the crowdsourced exercise, volunteers investigated a total of 32,781 pixels, including
293 pixels that were labeled by a single volunteer only; while the vast majority of the pixels were
inspected by at least two contributors. Therefore, multiple volunteers opinions can be combined at
each location using the BDF methodology. For doing this, let us consider a specific pixel where a total
of n volunteers whose performances are unknown give their opinion on the presence of cropland, so
that there are n0 volunteers assigning Ei = 0, i.e., there are n1 = n− n0 volunteers assigning Ei = 1.

The prior distribution is assessed based on the validation set at hand, leading to P̂(Z0 = 0) = 0.768
and P̂(Z0 = 1) = 0.232. Accordingly, Equation (6) reduces now to:

P̂(Z = 0|e) ∝ 0.7681−n(0.8)n0(0.2)n−n0 (12)

P̂(Z = 1|e) ∝ 0.2321−n(0.2)n0(0.8)n−n0 (13)

If all volunteers agree with each other at a specific location, it is expected that the quality of
the fused contributions increases with the number of volunteers [37]. This is the case with the BDF
methodology, since the result will converge towards zero if P̂(Z = 1|Ei = 1) < 0.5 ∀i, while it will
converge towards one if P̂(Z = 1|Ei = 1) > 0.5 ∀i.

3.3. Fused Opinions Interpolation

Once multiple contributions are fused at each location, the Bayesian maximum entropy (BME)
methodology for soft information is applied to interpolate the crowdsourced data over the whole
of Ethiopia. Computations to estimate the spatial structure of the data are made on the basis of
the 500 validation points where crowdsourced data are at hand along with the locations where the
fused volunteers’ opinions that can virtually be considered as hard data, i.e., for locations where the
probability P̂(Z = 0|e) > 0.99 or those where P̂(Z = 1|e) > 0.99. The interpolation is computed on
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the basis of the crowdsourced data only (no validation point is used at this step). The corresponding
interpolated map is presented in Figure 7.

Figure 7. Cropland map based on the crowdsourced data showing the probability of observing the
“crop” class over Ethiopia.

The quality of the interpolation depends on the spatial density of the crowdsourced information
and on the spatial structure of the data. In our specific case, the quality of the interpolation is expected
to be high, since crowdsourced data were sampled with a very high spatial density. However, in
many cases, crowdsourced information is not available with such a high spatial density. In those
cases, the interpolation may lead to poor results, and the fusion will only be possible locally, where
crowdsourced data are available. When only a few crowdsourced data are available, they can be used
locally to update the land cover product at a few locations where the crowdsourcing information is
available, but they can also be an alternative source for collecting training samples and be used in
combination with the satellite imagery itself to generate a land cover map [38,39].

3.4. Combining the Interpolated Map with the CCI-LC Product Using BDF

This interpolated map then needs to be combined with the CCI-LC product through
the BDF methodology by relying on a conditional independence hypothesis, so that
p(ep

0 , l0|z0) = p(ep
0 |z0)p(l0|z0). Stated otherwise, at the prediction location x0, the categories derived

from the CCI-LC product and the crowdsourcing data are independent from each other conditionally
on the true category. As the results that one will obtain for the fused map rely on this conditional
independence hypothesis, it is of some concern to test if it holds true. In order to test this assumption
from the crowdsourced data at hand, a likelihood test of conditional independence has been used [40].
Generally speaking, let us consider that r, s and t are respectively the number of categories for the
crowdsourced data, for the land cover product and for the validation set (with r = s = t = 2 in our
specific case). Let us consider i ∈ [1, · · · , r], j ∈ [1, · · · , s] and k ∈ [1, · · · , t]. Under the conditional
independence null hypothesis (H0), the conditional probabilities are given by:
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H0 ≡ pij|k = pi|k pj|k

H1 ≡ ∃pij|k 6= pi|k pj|k

→ AH0 ≡ G2 ≤ χ2
1−α(r− 1)(s− 1)t (14)

where the log-likelihood ratio G2 is chi-squared distributed, with:

G2 = 2 ∑
i,j,k

Nijk ln
Nijk

n p̂ijk

n→ ∞∼ χ2(r− 1)(s− 1)t (15)

with n = 500 here and where Nijk is the observed count of crowdsourced data where categories i, j
and k are jointly observed. For our data, the conditional independence hypothesis is clearly acceptable,
since G2 = 0.2511 < χ2

0.95(2) = 5.991, corresponding to a p-value (pv) equal to 0.8820. This result
ensures that BDF is a suitable methodology to fuse the interpolated crowdsourced contributions and
the land cover product in our context (see Figure 8).

Although there is no theoretical need for a very large crowdsourced dataset in order to use the
method, it is however clear that the impact of the crowdsourced data on the update of the previous
land cover product will be less significant if only a few crowdsourced data are at hand. The benefit of
the method will of course be impacted by the amount of crowdsourced data. In our specific case, the
benefit of the fusion is expected to be high, since crowdsourced data are sampled with a very high
spatial density. However, in many cases, crowdsourced information is not sampled with such a high
spatial density, and the benefit of the fusion will only appear locally, where few crowdsourced data are
at hand.

Figure 8. Cropland map based on the fusion of the crowdsourced data with the land cover product
showing the probability of observing the “crop” class over Ethiopia.
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3.5. Comparison of the Three Land Cover Maps

In our specific case, three different products are thus compared for the cropland mapping over
Ethiopia: the map derived from the land cover product only, the interpolated map based on the
crowdsourced data only and the final fused map that combines the two previous ones. Table 2 indicates
high errors of commission for the land cover product, since it assigns the “crop” label to many pixels
where no cropland is found. It can be calculated that if the land cover product indicates the presence
of crop, the probability of actually observing a crop is only 51.89% (P(Validation = 1|CCI = 1) = 0.52).
However, the land cover product shows better results when assigning the “no crop” label, with
P(Validation = 2|CCI = 2) = 0.95. On the other side, the interpolated map based on the crowdsourced
data performs better than the land cover product for correctly assigning the “crop” label with
P(Validation = 1|crowdsourcing = 1) = 0.82, and the “no crop” label is assigned with a similar
performance than for the land cover product with P(Validation = 2|crowdsourcing = 2) = 0.92.

In our specific case, it is expected that combining the crowdsourcing information with the land
cover product might not lead to a significant improvement for the accuracy compared to the results
obtained from the crowdsourced data alone. Indeed, the land cover product does not have a significant
impact in the fused map in areas where the land cover assigns the label crop since it performs poorly
compared to the crowdsourcing information. Moreover, the land cover product and the crowdsourced
information generally agree with each other in areas where the land cover assigns the “no crop” label.
For these very specific reasons that apply here, the fused map is expected to lead to results similar to
those from the interpolated map based on the crowdsourced data.

In order to compare the quality of those three products, confusion matrices are computed for
each of them (Tables 2, 4 and 5). For the two maps produced with crowdsourcing information, these
matrices do not indicate significant differences according to a chi-square test based on the comparison
of two multinomial distributions with related samples (χ2

obs = 0.667, p-value = 0.4142). These maps
show a higher overall accuracy (98%) compared to the map based on the land cover product only
(76.8%). A McNemar’s test [41] confirms that this difference is highly significant (pv ' 10−10).

Table 4. Confusion matrix for the interpolated map based on crowdsourced data (for a total of
500 pixels).

Interpolation
Crowdsourcing

Crop No Crop Producer’s Accuracy (%)

Validation Crop 95 29 76.61
No crop 21 355 94.41

User’s Accuracy (%) 81.90 92.45 98.00

Table 5. Confusion matrix for the cropland map based on the fusion of the CCI-LC product and the
crowdsourced data (for a total of 500 pixels).

Fusion
CCI-LC-Crowdsourcing

Crop No Crop Producer’s Accuracy (%)

Validation Crop 94 30 75.81
No crop 20 356 94.68

User’s Accuracy (%) 82.46 92.23 98.00

In order to ease the visual comparison and to illustrate the results, a smaller area around Lake Tana
is considered for comparing the three cropland maps (Figure 9). Both maps including crowdsourced
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data show very similar patterns, with differences that appear in areas where the land cover map assigns
the “no crop” label, opposite of the map based on crowdsourced data only. It can be seen that that, for
the fused map, the limits of Lake Tana are better defined than they are for the crowdsourced map.

During the crowdsourced exercise held in 2012, the 77,465 pixels that were investigated by
volunteers were randomly selected over the whole country [3]. However, since the land cover product
performs well when it assigns the “no crop” label, the crowdsourcing campaign could have been
optimized by focusing on areas where the land cover product is known to perform badly (i.e., areas
where it assigns the “crop” label). In the CCI-LC product, 40.8% of the pixels are labeled as cropland.
As there is little expected benefit of investigating the other pixels, the sampling could have been
restricted to these pixels only, increasing in this way the amount of useful crowdsourced information
for the same sampling effort.

Figure 9. Cropland maps around Lake Tana showing the probability of observing the “crop” class
based on (a) the CCI-LC product; (b) the interpolated map based on the volunteers’ opinions and
(c) the fusion of the CCI-LC product and volunteers’ opinions.

During the 2012 campaign around Lake Tana, out of the total number of 2091 pixels that were
investigated by volunteers, only 857 pixels were labeled as “crop” by the CCI-LC product. If all of the
sampling effort had been concentrated on these “crop” labeled pixels, the quality of the product could
have been significantly improved at no extra cost. To illustrate the potential benefits of an optimized
crowdsourcing campaign, two volunteers were asked to investigate 2091− 857 = 1234 additional pixels
among those “no crop” labeled pixels (Figure 10). The map resulting from the fusion that now accounts
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for these 1234 extra crowdsourced pieces of information illustrates the corresponding improvement
(Figure 11).

Figure 10. Sampled pixels around Lake Tana (a) for the crowdsourced exercise held in 2012 and
(b) when the sampling is optimized based on the performance of the CCI-LC product.

Figure 11. Cropland maps around Lake Tana showing the probability of observing the “crop” class
based on (a) the fusion of the CCI-LC product and volunteers’ opinions and (b) the fusion of the
CCI-LC product and volunteers’ opinions when the sampling is optimized based on the performance
of the CCI-LC product.
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4. Conclusions

An accurate spatial mapping of cropland is compulsory for many applications, but cropland maps
solely based on land cover products as obtained from satellite data are far from being perfect. In this
paper, it is suggested that integrating crowdsourced data with land cover products might improve the
accuracy of the final cropland map. However, assessing the quality of a volunteer’s contribution in a
crowdsourcing exercise might be difficult in many cases.

In this paper, it is shown how contributors’ performances can be assessed through the minimum
divergence and the maximum entropy principles. The information brought by contributors is
first coded in terms of inequality constraints, and performance estimation is computed afterwards.
Results shown in this paper suggest that it is worthwhile to include crowdsourced data in the spatial
prediction of cropland, even if no prior information about the contributors performances is at hand.
The map obtained from the fusion of the CCI-LC product with crowdsourced information shows a
better overall accuracy compared to the cropland map based on the CCI-LC dataset only. However, for
the specific case of cropland mapping over Ethiopia that was presented here, the fused map is close to
the cropland map based on the crowdsourced data only. Differences appear only in a few areas where
the land cover product disagrees with the crowdsourced map by assigning the “no crop” label. This is
a direct consequence of the fact that the CCI-LC product performs poorly when assigning the “crop”
label, while the performances of the crowdsourced information is close to the CCI-LC product when
the “no crop” label is assigned.

Clearly, the low benefit of the fused map over the cropland map based on crowdsourced data
only can be viewed as a consequence of the fact that both source of information were collected in
a totally independent way. Indeed, the crowdsourcing campaign was held regardless of the land
cover product results, though a prior assessment could have been done prior to the crowdsourcing,
so that the crowdsourcing campaign could have been easily optimized at no extra cost by focusing
on areas where the CCI-LC product is known to be deficient (i.e., when it assigns the “crop” label).
A sound prior assessment of remotely-sensed data quality can thus seriously improve the benefit of
subsequent crowdsourcing campaigns and the benefit of fusing information afterwards, by maximizing
the benefit of using each source of information. Based on this single application of cropland mapping
in Ethiopia, we believe that our paper also emphasizes the high potential of crowdsourced data for
improving land cover products. With this goal in mind, the BDF methodology and the corresponding
processing framework that was proposed appear to offer a promising alternative compared to more
traditional approaches.
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