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Abstract: The combined usage of high-resolution satellite images and thermal infrared (TIR) data
helps understanding the thermal effect of urban fabric properties and the mechanism of urban heat
island (UHI) formation. In this study, three typical urban functional zones (UFZs) of downtown
Shanghai were chosen for quantifying the relationship between fine-scale urban fabric properties
and their thermal effect. Nine land surfaces and 146 aggregated land parcels extracted from a
QuickBird image (dated 14 April 2014) were used to characterize urban fabric properties. The thermal
effect was deduced from land surface temperature (LST), intra-UHI intensity, blackbody flux density
(BBFD) and blackbody flux (BBF). The net BBF was retrieved from the Landsat 8 TIR band 10 dated
13 August 2013, and 28 May 2014. The products were resampled to fine resolution using a geospatial
sharpening approach and further validated. The results show that: (1) On the UFZ level, there is
a significant thermal differential among land surfaces. Water, well-vegetated land, high-rises with
light color and high-rises with glass curtain walls exhibited relatively low LST, UHI intensity and
BBFD. In contrast, mobile homes with light steel roofs, low buildings with bituminous roofs, asphalt
roads and composite material pavements showed inverse trends for LST, UHI intensity, and BBFD;
(2) It was found that parcel-based per ha net BBF, which offsets the “size-effect” among parcels,
is more reasonable and comparable when quantifying excess surface flux emitted by the parcels;
(3) When examining the relationship between parcel-level land surfaces and per ha BBF, a partial
least squares (PLS) regression model showed that buildings and asphalt roads are major contributors
to parcel-based per ha BBF, followed by other impervious surfaces. In contrast, vegetated land and
water contribute with a much lower per ha net BBF to parcel warming.
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1. Introduction

To date, intensive human activities and anthropogenic climate change occurring across local,
regional, and global scales have increasingly attracted concern [1–3]. Given the ongoing trends in
global warming and over half of the world’s population living in urban areas [4], urban dwellers in low
and middle latitude regions will be subject to increasing thermal stress during summer. The urban heat
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island (UHI) effect has therefore been a hot topic linking anthropogenic climate change and human
health risks [5–8], energy consumption and carbon emission [9] as well as urban adaption to climate
change [10].

Since the 1970s, satellite-based thermal remote sensing has been an important approach for
characterization of the impact of local and regional climate change induced by intensive human
activities, in particular modification of urban climate [11–13]. Recently, satellite thermal infrared
(TIR) data, including HCMM, MODIS, Landsat TM/ETM+ and ASTER imagery, have been widely
used to detect surface UHIs and depict spatial patterns of the urban thermal environment with
varied resolutions and accuracies [14–16] due to their advantageous spatial coverage and temporal
repetition. High-resolution TIR data, such as Landsat ETM+ (60 m) and ASTER (90 m) TIR data,
were used with downscaling methods to sharpen coarse-resolution (more than 100 m) land surface
temperature (LST) data to produce finer LST maps and thus enhance their application in regional
thermal monitoring [17–19]. Unfortunately, existing downscaling algorithms, which were developed
for sharpening images over rural and natural areas, have large errors when applied in urban areas [20].
Moreover, aforementioned high-resolution TIR data (60–90 m) are still too coarse to characterize
fine-scale thermal effects of urban fabrics. Urban fabric properties represent developed parcels with
buildings, vegetation and water and are used to determine fine-scale radiative balance and heat storage
capacity, which are closely related to UHI formation [21,22]. Thus, high- or very high-resolution LST
products (~m) are required for this research field. Several enhanced sharpening methods, which
combine high-resolution satellite images and thermal infrared (TIR) data, have been developed for
the production of high- or very high-resolution LST products [23,24]. However, applications of such
enhanced LST products indicating fine-scale urban fabric properties and their thermal effect are still
very scarce. Consequently, our understanding of the relationship between urban fabrics properties and
mechanism of UHI formation is limited. In fact, detailed knowledge of the relationship between urban
fabric properties and the mechanism of UHI formation is fundamental for the design of strategies to
mitigate the UHI effect, improve human comfort, reduce building energy consumption and curtail
carbon emissions.

This study aims to quantify the relationship between fine-scale urban fabric properties and
their thermal effect using an integrated approach of remote sensing, spatial analysis, and statistical
analysis. We hope to provide a practical approach for understanding the thermal effect of urban fabric
via fine-resolution indicators, which will help mitigate UHI effects in populated megacities such as
Shanghai and further enhance urban adaptability to climate change.

2. Study Area

The study area consists of three typical urban functional zones (UFZs) of downtown Shanghai,
including the urban center, the Xujiahui sub-center, and a mixture of residence and campus
(see Figure 1). A description of the three UFZs is shown in Table 1.

Table 1. Description of the three UFZs.

UFZ Description

Mixture of
residence
and campus

This UFZ is located in the Hongkou district. It mainly consists of the Tongji University south
campus, Peace Park, recreational landscaping, residential areas, and dense transport lines. It covers
an area of 2.00 km2 with a population density of approximately 35,698 people per km2 [25].

Urban center

This UFZ is located in the Huangpu district. It mainly consists of the Shanghai municipal
government, historical museum, great theater, the Nanjing road commercial and business area,
bituminous streets, parks and recreational landscaping, residential areas, and dense transport lines.
It covers an area of 5.97 km2 with a population density of approximately 33,333 people per km2 [25].

Xujiahui
sub-center

This UFZ is located in the Xuhui district. It mainly consists of the Xujiahui commercial and business
area, bituminous streets, Xujiahui Park, Hengshan Park, Song Ching-ling Mausoleum, recreational
landscaping, residential areas, and dense transport lines. It covers an area of 2.58 km2 with a
population density of approximately 20,265 people per km2 [25].
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3. Materials and Methods

3.1. Satellite Data

In this study, three pan-sharpened QuickBird images (resolution 0.61 m at nadir) dated 14 April
2014 were used for mapping fine-scale land surfaces, which was further used for correction of emissivity
values for land surfaces. The Landsat 8 TIR band data acquired on 13 August 2013 and 28 May 2014
were used for retrieval of land surface temperature (LST), intra-UHI intensity, blackbody/sensible
heat flux density (BBFD), blackbody/sensible heat flux (BBF), and net BBF. Table 2 lists the descriptive
information on Landsat 8 TIR band and pan-sharpened QuickBird data.

Table 2. Satellite data used in this study [26,27].

Satellite Acquisition Date Path/Row Spectral Bandwidth (µm) Spatial Resolution (m)

Landsat 8
13 August 2013

28 May 2014 118/38

Band 1—Coastal aerosol: 0.43–0.45 30
Band 2—Blue: 0.45–0.51 30

Band 3—Green: 0.53–0.59 30
Band 4—Red: 0.64–0.67 30
Band 5—NIR: 0.85-0.88 30

Band 6—SWIR 1: 1.57–1.65 30
Band 7—SWIR 2: 2.11–2.29 30

Band 8—Panchromatic: 0.50–0.68 15
Band 9—Cirrus: 1.36–1.38 30

Band 10—TIR1: 10.60–11.19 100 (30)
Band 11—TIR2: 11.50–12.51 100 (30)

QuickBird 14 April 2014 -

Band 1—Blue: 0.430–0.545

2.44 (0.61)Band 2—Green: 0.466–0.620
Band 3—Red: 0.590–0.710
Band 4—NIR: 0.715–0.918

Note: SWIR: shortwave infrared; NIR: Near Infrared; The Landsat TIR bands were originally acquired at 100 m
resolution and officially distributed by NASA with resampled product (30 m). The pan-sharpened QuickBird
composite image was resampled from 2.44 m to 0.61 m.

3.2. Methods

This section focuses on three aspects: (1) characterizing urban fabric properties with land surfaces
and land parcels; (2) indicating the thermal effect of urban fabric properties with LST, UHI intensity,
BBFD, BBF, and net BBF; and (3) quantifying the relationship between parcel-level net BBF and
land surfaces. To clearly illustrate our research interests and goals, a technical flowchart describing
preprocessing of remote sense data, classification, retrieval of LST, computation of UHI intensity and
UHI magnitude is shown in Figure 2.

3.2.1. Preprocessing, Classification, and Post-Classification of QuickBird Image

The pan-sharpened QuickBird image (resolution 0.61 m) was used to map fine-scale land covers of
the study area. With necessary preprocessing steps including atmospheric correction and georeference,
the object-oriented classification of the QuickBird image was performed. Based on the knowledge
from previous urban planning and in-situ investigations, nine land surfaces were classified (Table 3).
The overall accuracy before manual correction is 80%. The land surfaces product was then manually
corrected and validated in a field survey. Three group members independently tested the correction
accuracy, which was determined to be 93%.
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Table 3. Major land surfaces in this study.

Land Surface Description

Water Rivers, lakes, ponds, and dikes

Vegetation
Collection of trees, shrubs, and lawns including: (1) Evergreen and deciduous,
broad-leaved and coniferous trees; (2) Forest nurseries, hedges, and ornamental
plants; and (3) Open/enclosed playground and recreational landscaping with turfs

High-rise

This land surface consists of two categories including: (1) High-rise (8 stories or more,
usually up to 30 stories) painted with white and light color or exterior wall was
coated using light-colored materials; and (2) High-rise (8 stories or more, usually up
to 30 stories) for commercial use, glass curtain wall coats

Low building Old and low buildings (1–6 stories) and historical villas refurnished with
bituminous roofs

Mobile home Temporary home with light steel roof, which is usually set up for workers and
guards at construction sites

Asphalt road Traffic roads with asphalt concrete, bituminous streets

Land under construction/
for redevelopment

Enclosed land under construction or temporary vacant land with demolition
of buildings

Composite material
pavement Sport tracks, tennis courts, and playgrounds with composite material pavement

The shaded area Above-mentioned land surfaces shaded by neighboring higher objects, such as trees
and buildings

3.2.2. Recognition of Typical Land Parcels

The complicated land surfaces in urban settings may cause difficulties when interpreting the
relationship between fine-scale urban fabric properties and their thermal effect. Therefore, it is
necessary to classify varying land surfaces into acceptable categories to clearly explain the differential
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thermal effect of land surfaces and the mechanism of UHI effect formation. Given the massive
population aggregation and land development intensity, land parcels are defined in this study as
aggregated land units with regular shapes, such as residential community, business area, park and
recreational landscaping, which are enclosed by traffic roads, walls and other things with regular
shape. Three approaches were made to recognize typical land parcels of the study area. Firstly, with
reference to commercial GIS shapefiles [28] and field survey, a series of polygons enclosing the land
parcels was drawn and manually adjusted. Secondly, based on fine-scale land surfaces and building
properties (including building height, story, age and density), a hierarchical clustering analysis with
complete Euclidean distance was performed to subdivide these polygons into six groups. Thirdly, by
carefully checking the result of the second step, some misclassifications of land parcels were corrected.
Accordingly, the spatial extent of the polygons was manually adjusted. Finally, a total of 146 land
parcels divided into six groups were recognized (Table 4).

Table 4. Description of typical land parcels in this study.

Land Parcel Type Description

Type 1: Well-planned
residential community

Well-planned low-density residential community with high buildings.
Building density ranges from 25% to 35% with an average of 26%.

Type 2: Mixture of middle-density
residential community and
business area

Mixture of middle-density residential community and business area.
Building density ranges from 27% to 51% with an average of 38.9%.

Type 3: Unplanned
residential community

(1) High-density residential community with old and low buildings
(2–3-story apartments), building density ranges from 50% to 88% with
an average of 61%; (2) High-density residential community with old and
low buildings (single-story houses or 3–6-story apartments), building
density ranges from 46% to 66% with an average of 56%.

Type 4: Mixture of high-density
residential community, public
service and business area

Mixture of high-density residential community (low and old buildings)
and business area. Building density ranges from 49% to 60% with an
average of 53.9%.

Type 5: Land under construction/
for redevelopment

Enclosed land occupied by unfinished buildings or land under clearance
(with building demolitions) for redevelopment.

Type 6: Park and
recreational landscaping

Well-vegetated parks and recreational places. Building density ranges
from 2% to 20% with an average of 11.1%.

3.2.3. Assignment of Emissivity of Fine-Scale Land Surface

Correction of land surface emissivity is very important for the retrieval of LST from TIR bands.
Such a process is always subject to simplified emissivity of land surfaces and mixing effect of
neighboring pixels. Herein, specific emissivity values were assigned to fine-scale land surfaces (Table 5).
The estimated emissivity values for water and vegetation were 0.9925 and 0.95, respectively [29,30].
The emissivity values for other land surfaces were estimated according to the user guide of the UNI-T
thermal camera [31].

Table 5. Assigned emissivity of land surfaces in this study.

Land Surface Assigned Emissivity

Water 0.9925
Vegetation (tree, shrub and lawn) 0.95

High-rise building with light color 0.90
High-rise building with glass curtain wall 0.94

Low building with bituminous roof 0.85
Mobile home with light steel roof 0.66

Asphalt road 0.85
Land under construction/for development 0.83

Composite material pavement 0.92
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3.2.4. Retrieval of Fine-Scale LST

Two Landsat 8 images acquired during clear days of hot summertime (13 August 2013,
2:27 a.m. GMT) and early summertime (28 May 2014, 2:24 a.m. GMT) were used for LST retrieval.
As recommended, the TIR band 10 was used because band 11 is subject to higher uncertainty due to
telescope stray light disturbance [26]. Because the coarse resolution of TIR data is not good enough for
retrieving fine-scale LST, it is necessary to produce fine-scale TIR data. For this purpose, we applied
the co-Kriging method. Considering the extent of our study area, at least 5000–10,000 random points
were generated within the Landstat 8 TIR band 10 data layer covering the study area. These points
were then interpolated to raster layers with the co-Kriging method. Furthermore, the coarse resolution
of the LST product was resampled to fine-resolution (1 m, 3 m, 6 m, and 10 m). Pointwise checking
of overlapped maps of LST and land covers showed that the 1-m resolution LST product visually
provides more detailed information and better matches the fine-scale land cover. Compared with
the 1-m resolution LST product, the 3–10 m LST maps exhibit more fluctuating LST values at some
intersections of different land cover. Subsequently, the interpolated TIR data with 1-m resolution were
used for retrieval of fine-scale LST with the following procedure.

Firstly, to perform calibration of TIR data, the quantized and calibrated standard product pixel
values of interpolated TIR data were converted to at-sensor radiance or top of the atmospheric
(TOA) radiance.

Lsensor,λ “ MLQcal ` AL (1)

where Lsensor,λ is TOA radiance, which is measured in Watts/(m2¨ srad¨µm), ML is the band-specific
multiplicative rescaling factor from the metadata, AL is the band-specific additive rescaling factor from
the metadata, and Qcal is the quantized and calibrated standard product of pixel values [26].

Secondly, a generalized single channel method was applied for LST retrieval [32].

Lsensor,λ “ rελBλ pTSq ` p1 ´ ελq LÓatm,λs
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Thirdly, Ts was computed as follows:

Ts “
k2

ln
´

1` k1
BλpTSq

¯ (3)

where k2 and k1 are band 10 thermal conversion constants, which can be found in the metadata file
distributed by the USGS with the raw band data (k1_constant_band_10 and k2_constant_band_10) [26].

3.2.5. Validation of Fine-Scale LST

The comparison of the range of fine-scale Ts and original coarse Ts indicated significant offsets
between them. Therefore, potential outliers were identified as follows [34],

#

Outlier ą UBV ` 1.5ˆ pQ3 ´Q1q

Outlier ă LBV ´ 1.5ˆ pQ3 ´Q1q
(4)

where UBV and LBV are upper and lower boundary values of the box plot, respectively. Q3 is the third
quartile, Q1 is the first quartile, and Q3 ´ Q1 is the interquartile range. Three hundred random points
were generated for each LST layer and land cover map, which were overlapped for pointwise checking
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of extreme values falling within the assumed rejection intervals for outliers. Subsequently, the verified
outliers were deleted to make sure the range of fine-scale Ts is in good agreement with that of the
original coarse Ts (R2 = 0.63, RMSE = 2.26 K). Finally, ranges of the corrected LST maps were rescaled
to be consistent with those of the original coarse maps. Figure 3 shows an example illustrating before
and after validation of the fine-scale LST map (13 August 2013) of the urban center UFZ. To avoid
confusing cooling effect due to building’s shading and vegetation’s evapotranspiration, in this figure
the shaded areas were marked black and excluded from the range of LST.
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3.2.6. Measuring Intensity and Magnitude of Intra-UHI

In thermal remote sensing studies, both UHI intensity and magnitude are two widely used
indicators to quantify the thermal effect of urban built environment. Usually, UHI intensity can be
defined as the average LST difference between urban and rural areas. However, there is no available
QuickBird image covering rural area, which makes it impossible to produce sharpened LST data
for rural areas. Moreover, we focus on urban settings and their thermal effect in the context of built
environment. Therefore, intra-UHI intensity rather than generalized UHI intensity was used in this
study. Intra-UHI intensity was measured with the average LST difference between impervious surfaces
(e.g., building, asphalt road and other impervious pavements) and cooling surfaces (vegetated land
and water) within the downtown area.

Correspondingly, intra-UHI magnitude was measured using black body sensible heat flux (BBF)
because of two reasons. First, it is a reasonable choice representing heating of the atmosphere by
the urban land surface. Second, it bridges urban land surface thermal effect and energy demand for
cooling [35]. Because BBF is area-dependent, it is calculated as follows in this study:

BBFi “ ΦBBFDˆ Ai (5)

where BBFi is BBF (W) of the ith land parcel, Ai is area of the ith land parcel (m2).

ΦBBFD “

ż 11.19 µm

10.60 µm

C1

πλ5rexpp C2
λT qs

dλ (6)

where ΦBBFD is black body flux density (W¨m´2), C1 = 3.7404ˆ 108 (W¨µ4¨m´2), C2 = 14387, λ is TOA
radiance, and T is LST in Kelvin (K).

Therefore, net BBF is calculated as follows:

Net BBFi “ BBFi´BBFC (7)
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where Net BBFi is net BBF of the ith land parcel and BBFC is the average BBF of park and recreational
landscaping with cooling surface [35].

However, given the fluctuation of specific parcel sizes and their contribution to excess surface
flux emitted by the parcels, the converted per ha net BBF offsetting the “size-effect” is more reasonable
and comparable between different land parcels. Therefore, per ha net BBF rather than net BBF was
used to indicate parcel-specific contribution to excess surface flux.

3.2.7. Statistical Analysis

To quantify the potential relationship between parcel-level per ha net BBF and independent
variables, a partial least squares regression (PLS) model containing five components was used to
exclude potential co-linearity effects between independent variables. The PLS model is written
as follows:

Y “ α ` β1ˆX1 ` β2ˆX2 ` β3ˆX3 ` β4ˆX4 ` β5ˆX5 ` ε (8)

where Y is parcel-level per ha net BBF; α is a constant; β1–β5 are the associated coefficients of the
regressive items; X1–X5 are percentages of reclassified land surfaces, including building, asphalt
road, water, vegetation, and other land surfaces (composite material pavements and land under
construction/land for redevelopment), respectively; and ε is the random error term. Moreover, the
leave-one-out cross-validation method was used to select the optimal number of PLS factors included
in the regression models [36,37]. Both the coefficient of determination (R2) and the p value (0.01)
were used to validate the performance of the PLS regression model. These statistical processes were
performed using the commercial data processing system (DPS12.5) statistical package [38].

4. Results

4.1. UFZ-Level Land Surfaces and Their Thermal Effect

Figure 4 presents the overall spatial configuration of major land surfaces of the study area.
Table 6 shows that there was remarkable variation in the percentages of UFZ-level land surfaces.
When measured in individual land surfaces, the vegetation occupied the biggest share (24.2%–26.3%)
of all land surfaces across three UFZs, followed by varying ranks of high-rise (17.0%–21.7%), low
building (11.6%–23.2%) and asphalt road (13.6%–18.6%), which account for 55.0%–55.5% of impervious
land surfaces across three UFZs. It is noted that, on average, water only accounts for the least share
(1.19%) of all land surfaces. In summary, the spatial patterns of fine-scale land surfaces of three UFZs
were generally characterized by dominant impervious land surfaces and fragmented pervious land
surfaces (vegetation and water).

Table 6. Descriptive statistics of land surfaces in three UFZs.

Land Surface
UFZ

Mixture of Residence
and Campus Urban Center Xujiahui

Sub-Center

Vegetation 24.2% 25.7% 26.3%
Water 0.6% 1.6% 1.4%

High-rise 17.0% 21.7% 20.1%
Low building 23.2% 11.6% 21.4%
Mobile home 1.2% 1.4% 0.5%
Asphalt road 18.6% 23.6% 13.6%

Land under construction/for redevelopment 5.5% 2.8% 1.2%
Composite material pavement 0.0% 4.0% 1.4%

The shaded area 9.7% 7.7% 14.2%
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(c) Xujiahui sub-center.

Figures 5 and 6 show the overall pattern of LST in the study area for two dates. The range of LST
varied remarkably for different TIR data acquisition dates. Water, well-vegetated land (e.g., People
Park, mid Yan’an road Park, Huaihai Park, Taipingqiao Park, Peace Park and Xujiahui Park), high-rise
with light color and high-rise with glass curtain wall exhibit a relatively low LST. However, mobile
homes with light steel roofs, low buildings with bituminous roofs, asphalt roads and composite
material pavements show relatively higher LST values. Figure 7 displays UHI intensity measured with
the LST difference (mean ˘ standard deviation) between the cooling surfaces (water and vegetated
land) and other land surfaces with warming surfaces. On the two dates, UHI intensity between the
cooling surfaces and composite material pavement ranks the highest followed by mobile homes with
light steel roofs, old and low buildings with bituminous roofs and asphalt roads. While UHI intensities
between the cooling surfaces and light colored high-rise buildings with, land under construction or
redevelopment and high-rise buildings with glass curtain walls are much lower.
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Figure 7. Variation of UHI intensity (mean ˘ standard deviation) between the cooling surfaces and the
other land surfaces.

Figures 8 and 9 show the overall pattern of BBFD during hot summertime day (13 August 2013)
and early summertime day (28 May 2014) in the study area. Figure 10 further displays the variation
of average BBFD associated with specific land surfaces. Water, well-vegetated land, high-rise with
light color and high-rise with glass curtain wall exhibit relative low BBFDs, compared with mobile
home with light steel roof, low building with bituminous roof, composite material pavement and
asphalt road.
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Figure 9. Retrieved BBFD (W/m2) (28 May 2014, 2:24 a.m. GMT): (a) Mixture of residence and campus;
(b) Urban center; and (c) Xujiahui sub-center. Note: In this figure, the shaded areas were marked black
and excluded from the range of BBFD.
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4.2. Land Parcel Types and Their Thermal Effect

Table 7 shows six typical land parcel types and their percentages of the study area. Type 2 ranks
first and Type 6 ranks second followed by Types 4, 1 and 3, with nearly even intervals. Type 5 occupies
the lowest percentage. A description of land parcel types and their percentages at UFZ level is given
in Table 8.

Table 7. Typical land parcel types and their percentages.

Land Parcel Type Percentage

Type 1: Well-planned residential community 11.25%
Type 2: Mixture of middle-density residential community and business area 34.44%
Type 3: Unplanned residential community 8.76%
Type 4: Mixture of high-density residential community, public service and business area 14.21%
Type 5: Land under construction/for redevelopment 3.87%
Type 6: Park and recreational landscaping 27.47%

Table 8. Description of land parcel types and their percentages at UFZ level.

UFZ Description

Urban center
FID for the land parcels numbered 2–77 in which parcel areas range from 1.47 to
21.87 ha with an average of 7.36 ha. Parcel Types 1, 2, 3, 4, 5 and 6 account for 11.27%,
26.76%, 19.72%, 22.54%, 7.04% and 12.58%, respectively.

Xujiahui sub-center
FID for the land parcels numbered 2–31 in which parcel areas range from 0.82 to
14.61 ha with an average of 5.81 ha. Parcel Types 1, 2, 3, 4, 5 and 6 account for 20.69%,
51.72%, 6.90%, 10.34%, 3.45% and 6.90%, respectively.

Mixture of residence
and campus

FID for the land parcels numbered 2–41 in which parcel area ranges from 1.28 to
19.63 ha with an average of 5.64 ha. Parcel Types 1, 2, 3, 4, 5 and 6 account for 15.79%,
60.53%, 10.53%, 0.00%, 7.89% and 5.26%, respectively.

Note: FID means the feather’s ID of each specific polygon of the UFZs, which was automatically assigned in
ESRI ArcGIS software.

Figures 11 and 12 show the overall pattern of retrieved per ha net BBFs of the study area.
A remarkable temporal variation of parcel-specific net BBFs can be observed on two dates. As an
example, a generally much higher parcel-specific per ha net BBF and wider range (0.07–17.92 kW) was
determined for 13 August 2013. Land parcels characterized with park and recreational landscaping,
including Peace Park (numbered 22) of the mixture of residence and campus UFZ, People Park
(numbered 62), Mid-Yan’an road Park (numbered 28, 35, 36, 39, and 45) of the urban center UFZ,
Xujiahui Park (numbered 10) and Hengshan Park (numbered 15) of the Xujiahui sub-urban center UFZ
always exhibited the lowest per ha net BBFs for the two dates (on average 2.37 kW on 13 August 2013
and 1.86 kW on 28 May 2014). In contrast, unplanned parcels numbered 18 and 19 of the mixture of
residence and campus UFZ, parcels numbered 7, 8, 17 and 26 of the urban center UFZ and parcels
numbered 7 and 13 of the Xujiahui sub-center UFZ exhibited the highest per ha net BBFs on the
two dates (on average 12.23 kW on 13 August 2013 and 9.26 kW on 28 May 2014). Extreme low and
high ranges for parcel-level per ha BBFs on 13 August 2013, were 0.18–4.88 kW and 6.76–15.66 kW,
respectively. Extreme low and high ranges for parcel-level per ha BBFs on 28 May 2014, were
0.09–3.54 kW and 3.64–12.48 kW, respectively. This can be explained with seasonal variation of
weather conditions.
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Furthermore, Figure 13 generally shows remarkable variation of per ha net BBFs (mean˘ standard
deviation) of six land parcels on the two dates. During the hot summer day (13 August 2013) all of the
land parcels contributed higher per ha net BBFs than during the early summer day. On 13 August 2013,
the Type 3 parcel exhibited the highest per ha net BBF and the Type 4 parcel exhibited the second
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highest per ha net BBF, followed by Types 2, 5 and 1. Not surprisingly, Type 6 exhibited the lowest per
ha net BBF. On 28 March 2014, the overall ranks of parcel-level per net BBF were similar to that on
13 August 2013, with the exception of the Type 4 parcel. To summarize, the parcel of Type 3, which is
characterized by an unplanned residential community, contributed the highest per ha net BBF to parcel
warming. The parcels of Types 2, 3, 4, and 5 were also major contributors resulting in parcel warming
measured with per ha net BBF. In contrast, the parcel of Type 1 exhibited the lowest per ha net BBF
level among impervious landscaping, indicating such a land parcel may help decrease excessive heat
flux and potentially mitigate thermal stress of urban built environment.
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Figure 13. Average per ha net BBF (mean ˘ standard deviation) associated with land parcels of the
study area.

4.3. Relationship between Parcel-Level Land Surfaces and Per ha Net BBF

The PLS regression models in Table 9 indicate that there exists a significant positive correlation
between per ha net BBF and parcel land surfaces. The five-component models explain 66.0% and
68.0% of the variance in the predictors, respectively. The B-coefficients indicate the importance of each
predictor in the regression models, showing that the buildings and asphalt roads are major contributors
to per ha BBF, followed by others (composite material pavements and land under construction/land
for redevelopment). In contrast, vegetation and water exhibit relatively low LST. Thus, given their
minority in B-coefficients, they contribute much less per ha BBF to parcel warming.

Table 9. PLS regression models depicting the relationship between parcel-level land surfaces and per
ha net BBF.

Independent
Variable

13 August 2005 28 May 2014

B-Coefficient Summary Statistics B-Coefficient Summary Statistics

Constant ´5.26 ** ´4.20 **
Building (%) 19.27 ** 18.12 **

Asphalt road (%) 16.79 ** 15.78 **
Water (%) 3.33 ** 2.22 **

Vegetation (%) 3.86 ** 2.89 **
The others (%) 8.98 ** 7.44 **

Adjusted R2: 0.66 ** Adjusted R2: 0.68 **
F-statistic: 50.29 ** F-statistic: 54.75 **

Note: ** significant at p-level 0.01.



Remote Sens. 2016, 8, 541 16 of 20

5. Discussion

5.1. Implications for Mitigating the UHI Effect

In addition to prevailing meteorological conditions across local- and meso-scales, urban fabric
properties play the key role in formation of the UHI effect via complicated processes such as biophysical
features of the land surfaces, building layout and wind corridor, landscape heterogeneity, energy
consumption and anthropogenic heat emission [12,39–45]. In this study, we presented the differential
thermal effect of urban fabric properties, i.e., LST, UHI intensity and BBFD associated with varying
land surfaces at UFZ level. We also presented the differential thermal effect of parcel-level net BBF and
per ha net BBF associated with typical land parcel types, which reflects parcel warming potential and
UHI magnitude. Based on our findings and previous studies on mitigation of the UHI effect [17,46,47],
we discussed observations and countermeasures, which should be beneficial for mitigating the UHI
effect in downtown Shanghai and other megacities.

5.1.1. Reducing Impervious Surface Area

In practice, enhancing urban green spaces and water-covered areas (e.g., lake, pond, dike, etc.) is
an effective way to reduce urban impervious surface area. Unfortunately, there is very limited space
for new water-covered area in downtown Shanghai. Numerous creeks and channels disappeared
over the past 50 years when this city rapidly expanded [48]. Alternatively, enhancing the urban
green coverage ratio may be more practical. Since the 1990s, Shanghai has been a rapidly greening
metropolis. Many new green spaces emerged, in particular, the Taipingqiao Park, mid-Yan’an road
Park, the People Square, Century Park, the outer-ring greenbelt and numerous vest-pocket parks,
which enhance the spatial configuration of green landscape in an urban area. As a result, the present
green coverage ratio in downtown Shanghai is 38.4%, approximately 3.10-fold of that in 1990 [49].
However, according to our analysis, the overall vegetated land accounts for approximately 25.37%
of the three UFZs due to the uneven pattern of existing green spaces within downtown Shanghai.
Consequently, compared with the overall green coverage ratio of downtown Shanghai, these three
UFZs are subject to the UHI effect [9,50]. Moreover, rapid growth of urban population demands more
land for urban development, which results in land scarcity for expanding urban green space. Given the
extremely high costs of demolition and resettlement, it seems impractical to repeat construction of
parks such as the mid-Yan’an road Park (23 ha), which was designed by the municipal government to
improve urban center habitat quality and to mitigate the UHI effect [50]. It was firmly implemented
by removing many state-owned enterprises, public institutions and 11,000 households at the cost
of 2600 million RMB Yuan in 2000–2001. Therefore, green rooftop and vertical planting may be
alternatives to enhance the green coverage ratio in these populated UFZs with deficiency of vegetation
and thus enhance urban resilience to the UHI effect.

5.1.2. Enhancing Albedo of Urban Land Surfaces

Urban area often shows a lower albedo than surrounding rural area due to its dominant darker
surfaces, which results in lower thermal emittance and increase in the amount of solar radiation
absorbed [12]. Thus, increasing albedo of urban land surfaces has been another practical way for
mitigation of UHI, including using retroreflective materials in urban canyons [51] and changing the
conventional roofs to the highly reflective roofs with albedos close to 0.7–0.8 [52,53]. For example,
compared with “unmanaged” soil moisture, well-managed green roofs with relatively abundant soil
moisture will reduce the surface and near-surface UHIs to cool roofs with an albedo value of 0.7 [46].
Another study shows that increasing urban albedo by 0.1 might result in an average daytime air
temperature depression of approximately 0.3–0.5 ˝C [47]. In this study, we did not measure the albedo
of the land surfaces. However, we found that high-rise with light-color and high-rise with glass curtain
wall exhibit relatively lower LST, UHI intensity and BBFD, compared with asphalt road, low and
old buildings with bituminous roof and temporary homes with light steel roofs. Therefore, based
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on our findings, we recommend the replacement of dark wall coatings and roofs with light-colors to
effectively decrease the UHI effect.

5.1.3. Enhancing Parcel-Level Land Development Intensity

As shown in Section 4.2, the parcels of impervious landscaping contributed relatively higher net
BBF per ha to parcel warming during a typical summer day (13 August 2013). It is noted that when
measured with net BBF per ha, parcels of Types 3 and 4 are not significantly higher than that of Types 1,
2 and 5. However, given their higher building density and lower flat ratio in downtown Shanghai, we
propose that optimized land parcel design involving decrease of building density, increase of green
space and creating space for wind corridors should be considered to improve the thermal environment
in future urban regeneration planning.

5.2. Limitation of This Study

This study has a few intrinsic shortcomings because of several factors. Firstly, Landsat TIR
sensors are not specifically designed for fine-scale thermal remote sensing of urban built environment.
The coarse resolution of the TIR band is not good at capturing and differentiating thermal signals
between neighboring pixels, even the TIR band was visually enhanced using sharpening techniques;
Secondly, 16-day revisiting intervals for Landsat TIR sensors covering the area of interest and cloud
contamination limit the availability of images. Thus, two-date Landsat 8 TIR data used in this study
can only partly capture and reflect the limited thermal signal of downtown Shanghai. Thirdly, the
nighttime UHI effect is missing in this study because Landsat 8 TIR data only captures the daytime
signal. There is another free platform known as HJ-1 B satellite, which produces both daytime and
nighttime TIR data (300-m resolution) with revisiting intervals for 3–4 days. However, how to assimilate
the different TIR data and visually sharpen it to help understanding the fine-scale UHI effect is still a
great challenge; Finally, in this study, a potential problem may arise due to the mismatched acquisition
dates of QuickBird and Landsat 8 TIR data. For instance, in different seasons the location and extent of
the shaded areas may change. As a result, these changes may alter fine-scale LST pattern associated
with the shaded areas. Therefore, in order to fix the potential mismatched problem, it is better to use
high-resolution images and Landsat-8 TIR data acquired during the same or adjacent dates.

6. Conclusions

In this study, fine-scale urban fabric properties and their thermal effect in three typical UFZs
of downtown Shanghai, China, were quantified using a pan-sharpened QuickBird high-resolution
image and fine-scale TIR data retrieved from Landsat 8 band 10 data, which was sharpened with a
geostatistical method. The results show that: (1) Impervious land surfaces dominate the twelve land
surfaces of the study area. On UFZ level, water, well-vegetated land, high-rise with light color and
high-rise with glass curtain wall exhibit relatively low LST, intra-UHI intensity and BBFD. In contrast,
mobile homes with light steel roofs, low building with bituminous roof, asphalt road, and composite
material pavement exhibit relatively high LST, intra-UHI intensity and BBFD; (2) On parcel level,
based on analysis on per ha net BBF associated with land parcel types, it was found that, on average,
parcel-based per ha net BBF, which offsets the “size-effect” among parcels, is more reasonable and
comparable when quantifying excess surface flux emitted by the parcels and warming effect; (3) When
examining the relationship between parcel-level land surfaces and parcel-based per ha BBF, the PLS
regression models show that buildings and asphalt roads are major contributors to parcel-based
per ha BBF, followed by others (composite material pavements and land under construction/for
redevelopment). In contrast, vegetation and water contribute much lower per ha BBF to parcel
warming and have a cooling effect when compared with the other land surfaces.

In summary, we hope that our case study benefits researchers, planners and decision-makers who
are engaged in urban planning, land resource management, and urban thermal remote sensing.
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