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Abstract: Information on ice is important for shipping, weather forecasting, and climate monitoring.
Historically, ice cover has been detected and ice concentration has been measured using relatively
low-resolution space-based passive microwave data. This study presents an algorithm to detect ice
and estimate ice concentration in clear-sky areas over the ocean and inland lakes and rivers using
high-resolution data from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi
National Polar Orbiting Partnership (S-NPP) and on future Joint Polar Satellite System (JPSS) satellites,
providing spatial detail that cannot be obtained with passive microwave data. A threshold method is
employed with visible and infrared observations to identify ice, then a tie-point algorithm is used to
determine the representative reflectance/temperature of pure ice, estimate the ice concentration, and
refine the ice cover mask. The VIIRS ice concentration is validated using observations from Landsat 8.
Results show that VIIRS has an overall bias of ´0.3% compared to Landsat 8 ice concentration, with
a precision (uncertainty) of 9.5%. Biases and precision values for different ice concentration subranges
from 0% to 100% can be larger.
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1. Introduction

Observations of ice cover and ice concentration—the fraction of an area covered by ice—are
important for commercial transportation, short-term weather forecasting, water management, and
damage control, and climate change studies. Arctic sea ice has changed dramatically in the past few
decades [1]. Sea ice extent has been decreasing significantly [2], associated with changes in sea ice
thickness and age [3,4]. Sea ice in the Antarctic has also been changing, with positive trends in sea
ice extent and area [5]. Sea ice interacts with other physical components in the polar climate system.
Studies have linked the shrinking of summer/fall sea ice with surface warming [6], a less stable lower
troposphere [7], increased cloud amount [8,9], mid-latitude weather and extreme events through
teleconnection between Arctic and mid-latitude [10–12], and other changes [13].

Sea ice products using satellite observations in the microwave portion of the electromagnetic
spectrum have been used for decades. Several widely used sea ice algorithms are the NASA Team
(NT) algorithm [14], the enhanced NT algorithm [15], the Bootstrap (BS) algorithm [16], and the
ARTIST Sea Ice (ASI) algorithm [17]. More details on the microwave sea ice products can be found
in [18,19] and references therein. Advantages of passive microwave data include its high temporal
coverage and all weather capability. However, the spatial resolutions of these data sets are relatively
coarse. For example, sea ice concentration (SIC) products at a grid cell size of 25 km ˆ 25 km from the
scanning multichannel microwave radiometer (SMMR) onboard the Nimbus-7 satellite, the Special
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Sensor Microwave/Imager (SSMI) onboard the Defense Meteorological Satellite Program (DMSP)
F8, F11, and F13 platforms, and the Special Sensor Microwave Imager Sounder (SSMIS) onboard
the DMSP F17 platform [20,21] are the most common products. Ice products using the Advanced
Microwave Scanning Radiometer—Earth Observing System (AMSR-E) onboard the Aqua satellite and
the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation
Mission 1st (GCOM-W1) satellite can have higher spatial resolution [22,23]. This spatial resolution may
be satisfactory for climate studies, but may not be adequate for navigation and small-scale studies of ice
dynamics and meteorology. Active microwave observations, e.g., space-borne synthetic aperture radar
(SAR), can make an important contribution to sea ice concentration retrieval and sea ice monitoring
with its high resolution and all-sky capability [24,25].

Visible and infrared (hereafter “visible/IR”) data provide the possibility of higher spatial
resolution ice concentration products, with the shortcoming that they are only available under clear-sky
conditions. Visible/IR data may also produce more accurate summertime ice concentrations, which
are difficult to obtain with passive microwave data due to the similar emissivities of melt ponds and
open water. The shortcoming of the ice concentration from visible data is that they are only available
in the daytime. Methods have been developed to estimate ice concentration from visible/IR imagers
such as the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging
Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS) [26–32].
VIIRS, which is currently onboard the Suomi National Polar Orbiting Partnership (S-NPP) satellite
and will fly on future Joint Polar Satellite System (JPSS) satellites, provides an opportunity to better
monitor the ice routinely due to its high spatial resolution, better signal-to-noise ratio, and a wider
swath than its heritage sensors [33]. In addition, the combination of VIIRS and MODIS will provide
a long time series of ice information that can be used to study the role of ice in the climate system.

Here, we present an algorithm that will be used operationally by the U.S. National Oceanic and
Atmospheric Administration (NOAA) to generate ice cover mask and ice concentration products over
the oceans, lakes, and rivers from JPSS VIIRS. It is also being implemented for S-NPP VIIRS, to run in
parallel with the current operational product that is generated by the NOAA Interface Data Processing
Segment (IDPS). This new algorithm, one of NOAA’s “Enterprise” algorithms, was first developed
for use with the future Geostationary Operational Environmental Satellite-R (GOES-R) Advanced
Baseline Imager. It builds on previous algorithms developed for AVHRR, MODIS, and VIIRS, notably
the IDPS ice concentration algorithm [34]. The methodology is applied to sea ice in the Arctic Ocean
and freshwater ice in the Great Lakes. Also presented is a robust examination of the product accuracy
using high-resolution visible/IR imagery from Landsat 8. A comparison to ice concentration derived
from low-resolution passive microwave SSMIS and AMSR2 data provides a useful perspective on the
difficulties of validating ice concentration products.

2. Data and Method

A high level processing flow diagram illustrates the main processing sections of the ice cover
mask and ice concentration algorithm (Figure 1). Details of input data and methods are explained in
this section.
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Figure 1. High level processing flow diagram of the ice cover mask and concentration algorithm. 
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imagery bands (the “I” bands, 375 m spatial resolution at nadir), 16 moderate resolution bands (“M” 
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The VIIRS swath width is 3000 km. The VIIRS reflective solar band radiometric uncertainties are 
within 2% [33]. The horizontal sampling interval at the scan edge grows by a factor of two compared 
to nadir, which results in a bow-tie effect. VIIRS applies bow-tie deletion to remove duplicated pixels 
in the off-nadir part of the scan [33,34]. The geolocation error for the I and M bands is around 1% of 
the pixel size in mean and less than 20% of the pixel size in root mean squared error [35]. 

Inputs to the ice concentration algorithm include reflectances at 0.67 μm, 0.86 μm, 1.6 μm at the 
top of the atmosphere (TOA) without a solar zenith angle correction, and split-window brightness 
temperatures at 10.7 and 11.8 μm (more generally referred to as 11 and 12 μm), which are VIIRS 
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Table 1. Summary of the Visible Infrared Imaging Radiometer Suite (VIIRS) Band Numbers and 
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VIIRs cloud mask is derived using multiple threshold methods [36]. For future JPSS satellites, a 
Bayesian cloud mask will be employed [37]. There are four categories in both cloud mask products: 
cloudy, probably cloudy, probably clear, and clear. Ice concentration is only retrieved for pixels that 
are clear and probably clear. 

Figure 1. High level processing flow diagram of the ice cover mask and concentration algorithm.

2.1. Algorithm Data Input

2.1.1. Instrument Input

S-NPP was launched on 28 October 2011. S-NPP is a polar orbiting satellite with an early afternoon
ascending equator crossing time of 1:30 p.m. local time. S-NPP orbits the polar regions 14 times
a day and provides complete coverage of the polar regions twice daily. VIIRS has 22 spectral bands
covering wavelengths from 0.4 to 11.8 µm. Of the 22 bands, there are five high resolution imagery bands
(the “I” bands, 375 m spatial resolution at nadir), 16 moderate resolution bands (“M” bands, 750 m
spatial resolution at nadir), and one Day/Night Band (DNB, 750 m spatial resolution). The VIIRS
swath width is 3000 km. The VIIRS reflective solar band radiometric uncertainties are within 2% [33].
The horizontal sampling interval at the scan edge grows by a factor of two compared to nadir, which
results in a bow-tie effect. VIIRS applies bow-tie deletion to remove duplicated pixels in the off-nadir
part of the scan [33,34]. The geolocation error for the I and M bands is around 1% of the pixel size in
mean and less than 20% of the pixel size in root mean squared error [35].

Inputs to the ice concentration algorithm include reflectances at 0.67 µm, 0.86 µm, 1.6 µm at the
top of the atmosphere (TOA) without a solar zenith angle correction, and split-window brightness
temperatures at 10.7 and 11.8 µm (more generally referred to as 11 and 12 µm), which are VIIRS band
M5, M7, M10, M15, and M16 (Table 1). Inputs also include geolocation, solar zenith angle, and satellite
zenith angle.

Table 1. Summary of the Visible Infrared Imaging Radiometer Suite (VIIRS) Band Numbers
and Wavelengths.

Band Number Band Wavelength (µm)
Horizontal Sample Interval (km)

Nadir End of Scan

M5 0.672 0.75 ˆ 0.75 1.60 ˆ 1.58
M7 0.862 0.75 ˆ 0.75 1.60 ˆ 1.58
M10 1.602 0.75 ˆ 0.75 1.60 ˆ 1.58
M15 10.729 0.75 ˆ 0.75 1.60 ˆ 1.58
M16 11.845 0.75 ˆ 0.75 1.60 ˆ 1.58

2.1.2. Derived Products

A cloud mask and a clear-sky ice surface temperature product are also used. The current
S-NPP VIIRs cloud mask is derived using multiple threshold methods [36]. For future JPSS satellites,
a Bayesian cloud mask will be employed [37]. There are four categories in both cloud mask products:
cloudy, probably cloudy, probably clear, and clear. Ice concentration is only retrieved for pixels that
are clear and probably clear.
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The ice surface temperature is retrieved using brightness temperatures in split window bands at
11 and 12 µm, and satellite sensor scan angle. The retrieval algorithm is explained in detail in [38,39].
The ice/snow surface skin temperature (IST) is calculated as

Ts “ a ` bT11 ` cT12 ` d rpT11´T12qpsecθ´ 1qs (1)

where Ts is the estimated surface skin temperature (K), T11 and T12 are the brightness temperatures
(K) at 11 µm and 12 µm bands, and θ is the sensor scan angle. Coefficients a, b, c, and d are derived for
the temperature ranges T11 < 240 K, 240 K < T11 < 260 K, and T11 > 260 K. The coefficients are based
on modeled radiances using Arctic and Antarctic temperature and humidity profiles, and angular
emissivity models for snow [39], and the S-NPP VIIRS spectral response functions. Coefficients for
S-NPP VIIRS are given in Table 2; they will be updated for JPSS VIIRS. More details on the derivation
of the coefficients can be found in [38,39]. In Equation (1), the sensor scan angle is derived from the
sensor zenith angle as

θ “ arcsinrsinλˆRe{pRe ` Asatqs (2)

where λ is the sensor zenith angle, Re is the equatorial radius of the Earth, and Asat is the nominal
altitude of the satellite. The root-mean-square error with the bias removed is less than 1.0 K when
compared to observations from an aircraft-mounted downward-looking pyrometer.

Table 2. Values of coefficients in Equation (1) for Suomi National Polar Orbiting Partnership (S-NPP) VIIRS.

Temperature Range a b c d

Arctic
<240 K 7.560993 1.031344 1.248151 0.406514

240–260 K 8.918637 1.036658 0.514256 2.111948
>260 K 6.872886 1.028288 1.019783 2.340682

Antarctic
<240 K 2.398863 1.010777 0.225380 0.457090

240–260 K 9.688947 1.040270 0.463295 2.862228
>260 K 9.016985 1.036905 0.330130 2.595204

2.1.3. Ancillary Data

As the ice concentration algorithm is only run over water, a surface type mask is needed.
Surface types included in the VIIRS cloud mask are land/desert, land no desert, inland water, sea
water, and coastal. Those surface types are further categorized into four values in a surface mask used
as input to this algorithm: ocean, inland water, land (including land/desert, land no desert, and coast),
and all other pixels. Ice concentration is retrieved for pixels with ocean and inland water surface types.
All the input parameters, including instrument inputs, derived products, and ancillary data, have the
same spatial resolution as the M band (750 m at nadir).

2.2. The Enterprise VIIRS Ice Concentration Algorithm

The purpose of this algorithm is to detect ice and to estimate ice concentration, i.e., the fraction of
a satellite field-of-view that is covered by ice. Ice is first detected by a group-criteria method. Then ice
concentration is retrieved after the visible band reflectance and ice surface temperature of pure ice are
determined through a tie point algorithm. The ice cover mask is then further refined based on the
retrieved ice concentration. This algorithm has a solid physical foundation and is capable of identifying
ice cover mask and retrieving ice concentration in both day (sunlight) and night (dark) conditions.
It runs automatically and can be applied globally. Because the surface is obscured by clouds in the
visible and infrared observations, the ice cover mask and concentration can only be determined in
clear-sky areas.

The accuracy of the algorithm is therefore influenced by the quality of the cloud mask. Pixels that
are clear but identified as cloud do not introduce errors in the ice concentration estimates, as these
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pixels are excluded from the retrieval. In contrast, pixels that are cloudy but identified as clear, called
“leakage”, do contribute to errors in ice concentration, as they may be labeled as ice due to their high
visible reflectance and/or low temperature. The leakage rate is not known for sea ice scenes, but tests
over Greenland show a leakage rate of up to 2.4% with the original VIIRS cloud detection algorithm,
and as low as 0 with more recent improvements [36]. How this impacts errors in ice concentration is
difficult to determine, as it depends on the proportions of ice and clouds in any given scene as well
as the actually ice concentration under the pixels that were misidentified as clear. The performance
of cloud mask in the polar regions in daytime is generally better than that during nighttime due to
more available spectral information in daytime. This difference can lead to cloud mask discontinuity
in regions that include the terminator, the boundary between the sunlit and dark portions of the earth,
and hence a discontinuity in the ice cover mask and ice concentration retrievals.

2.2.1. Ice Detection

On the microphysical scale, surface albedo depends strongly on the internal structure of ice, such
as brine pockets and air bubbles in the near surface layers [40]. These internal structures change
with season, the state of the near surface layers, and the age of ice. Absorption and scattering in the
snow and ice are determined by their internal inhomogeneities [40,41]. Sea ice and snow albedo are
very high at visible wavelengths and are low at wavelengths longer than 1.4 micrometers in both
Arctic and Antarctic due to stronger absorption and less backscattering in the shortwave infrared,
with higher visible albedo for snow surface, as shown in Figures 9 and 10 in [41], and Figures 1 and 2
in [42]. This feature is shared by lake ice and snow-covered lake ice in both theoretical simulations
and observations, as shown in Figures 2–5 in [43], and Figure 12 in [44]. Surface albedo is much
lower for surfaces with melting ice and surfaces with melt ponds, with a maximum albedo in the
0.4–0.5 micrometer region and a steep decrease between 0.5 and 0.8 micrometers [41,45]. Some ice
types, such as clear lake ice, grease ice, and sea ice with melt ponds, can be difficult to detect due to
the very low contrast with open water [41,43].

In the absence of sunlight, we have to rely on temperature to distinguish ice from liquid water.
Surface skin (radiating) temperatures over ice are lower than the melting point (273.15 K for fresh
water and around 271.35 K for salt water), when the sea ice/its snow cover is not melting.

Traditionally, the Normalized Difference Snow Index (NDSI) is used to detect snow and ice.
NDSI is defined as

NDSI “ pR1´R2q{pR1 ` R2q (3)

where R1 is the visible channel reflectance (e.g., 0.55 µm, 0.67 µm, or 0.86 µm) and R2 is the reflectance
in a shortwave infrared channel (e.g., 1.6 µm or 2.2 µm). Ice is identified when NDSI is larger than some
threshold. In this algorithm, 0.86 µm and 1.6 µm are used for R1 and R2, which are VIIRS bands M7
and M10. One advantage of 0.86 µm over 0.55 µm is that NDSI calculated with the 0.55 µm reflectance
is high for water that is high in green pigment, causing a false snow/ice detection, while NDSI from
0.86 µm is not.

In the daytime, defined here as solar zenith angles lower than 85˝, a pixel is identified as ice
covered if the NDSI value is larger than 0.45, the reflectance at 0.865 µm is higher than 0.08 [46–48],
and the surface temperature is lower than 275.0 K over both freshwater and ocean water. The reason
for not using the melting temperature is that ice-covered pixels with some liquid water (leads, melt
ponds, or near the ice edge) may have temperatures above the melting point. At night, defined here as
solar zenith angles of 85˝ and higher, a pixel is identified as ice covered if the surface temperature is
lower than 275.0 K over lakes, rivers (fresh water), and oceans (salt water).

Over melting ice and melt ponds, the surface albedo is low between 0.5 and 0.8 micrometers,
which may cause the NDSI to misidentify melting ice and melt pond as water. When the ice is melting
or very thin, the ice surface temperature is close to the melting point, which can lead to errors in the
ice/no ice identification. Meanwhile, the uncertainties in the derived ice surface temperature and
VIIRS reflectances can also lead to errors in the ice/no ice identification.
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2.2.2. Tie Point Algorithm

The ice concentration (fraction) in any given pixel is calculated as Equation (4). Reflectances and
brightness temperatures of 100% ice and 100% water are needed. These are referred to as “tie points”.
However, ice characteristics can vary considerably over space and time so it is not possible to specify
fixed reflectance and temperature tie points for ice. While the spectral properties of ice vary with
illumination and viewing geometry, air temperature, and the physical characteristics of ice, the main
reason for variability within an image is the variation in ice concentration. Therefore, the methodology
is to use a search window around each pixel and build histograms of reflectance and brightness
temperature in order to identify pixels that are 100% ice. The water tie point is parameterized, as
described later.

If an ice tie point can be found, then ice concentration for a pixel, Cp, at the location is calculated by

Cp “ pBp´Bwaterq{pBice´Bwaterq (4)

where Bwater is the reflectance or temperature of pure water pixels, Bice is the reflectance or temperature
of pure ice pixels (tie point reflectance or temperature), and Bp is the observed reflectance or
temperature of the pixel. The reflectance in the visible band at 0.67 µm is used because it gives
excellent spectral separation between ice (or snow on ice) and open water. In this algorithm, the visible
reflectance is used during the day, and ice surface temperature is used at night.

Figure 2 is an RGB (red-green-blue) image from the Landsat 8 Operational Land Imager (OLI)
and VIIRS over the Kara Sea just east of Novaya Zemlya. The original spatial resolutions of the
Landsat 8 OLI and VIIRS are 30 m and 750 m, which are remapped to 50 m and 1 km using
the Equal-Area Scalable Earth (EASE)-Grid using the MODIS Swath-to-Grid Toolbox (MS2GT)
(http://nsidc.org/data/modis/ms2gt/index.html). This scene shows pixels that are open (unfrozen)
water, partially ice-covered, and fully ice-covered.
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ice concentration. In a square, sliding search window with a size of N × N original VIIRS M band 
pixels, the ice reflectance/temperature probability density function (PDF) is calculated using all 

Figure 2. (left) Natural-color RGB image combination of Landsat 8 Operational Land Imager (OLI) band
5 (1.6 µm, red component), band 4 (0.86 µm, green component) and band 3 (0.64 µm, blue component)
resampled to 50 m resolution; and (right) VIIRS M-band natural-color RGB image combination of band
M10 (1.6 µm, red component), band M7 (0.86 µm, green component), and band M5 (0.67 µm, blue
component) resampled to 1 km resolution. The images cover the Kara Sea east of Novaya Zemlya
at 7:59 a.m. UTC on 25 June 2013. Sea ice and snow-covered sea ice are cyan; water is black; clouds
are white.

Determining the reflectance/temperature ice tie point at a location is the key to calculating the ice
concentration. In a square, sliding search window with a size of N ˆ N original VIIRS M band pixels,
the ice reflectance/temperature probability density function (PDF) is calculated using all ice-covered



Remote Sens. 2016, 8, 523 7 of 20

pixels identified by the methodology in the previous section. N is set to 51 with the location of interest
at the center. Retrieved tie point values are found to be insensitive to N for 31 < N < 51. This PDF
is presented as a histogram; i.e., it is visualized as a relative frequency histogram. For temperature,
the minimum central bin value is 215 K with a bin width of 0.5 K, and a total number of bins of 121.
For reflectance, the minimum central bin value is 0.0 with bin width of 0.02; the total number of bins
is also 121 to be consistent with temperature. The PDF is then smoothed using a boxcar filter with
a width of 5 bins, in which a sliding integral is calculated over the original PDF. Figure 3 shows the
PDF of reflectance of all the ice-covered pixels of the scene in Figure 2.
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Figure 3. Probability density distribution of 0.67 µm reflectance for the ice covered pixels shown in
Figure 2.

The PDF in individual search windows resembles the PDF shown in Figure 3, with
narrower distributions. The ice reflectance/temperature tie point in a search window is the
reflectance/temperature with the maximum probability density in the smoothed PDF, i.e., the
maximum sliding integral. The ice reflectance/temperature tie point is assigned to the central pixel.
It should be noted that the tie point algorithm is run only under the constraint that at least 10% of
the pixels in a search window are clear-sky ice-covered pixels, and the central pixel is ice covered.
The sliding search window moves 1 pixel each time to determine the tie point at each every pixel in
a scene. Figure 4 shows the reflectance at 0.67 µm and the derived tie points. This tie point algorithm
is adapted from a similar algorithm in [49], with the assumption that 100% ice concentration occupies
enough of all the available clear-sky ice-covered pixels in a search window that an ice tie point can be
derived, and ice characteristics in the search window are homogeneous. When these assumptions are
not satisfied, the ice concentration can have large uncertainties in regions like the marginal ice zone,
and transition zones between melt pond covered and melt pond free sea ice. Due to the constraints on
the available clear-sky ice-covered pixels, this tie point algorithm does not work on very small bodies
of water.

While the tie point of open water could be obtained dynamically in the same way as the ice tie
point, the reflectance and temperature of water within or near the ice pack does not vary as much
as ice of varying thicknesses. Therefore, the water reflectance tie point is simply parameterized as a
function of solar zenith angle, with a value of 0.05 for solar zenith angles less than 65˝, and 0.07 for
solar zenith angles greater than or equal to 65˝ and less than 85˝. The water temperature tie point
changes with the water salinity, being 273.15 K for freshwater and 271.35 K for salt water.

After the reflectance/temperature ice tie point is determined, ice concentration is calculated
following Equation (4), where ice concentration is 100% if the observed reflectance is higher or the
temperature is lower than the tie point, or 0% if it is lower (reflectance)/higher (temperature) than the
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water tie point. Figure 5 shows the linear relationship of the 0.64 µm reflectance and ice concentration
derived from Landsat 8, which demonstrates that using Equation (4) to calculate the ice concentration
is a valid approach. The large spread of 0.64 µm reflectances for ice concentrations near 0% may be
due to cloud contamination, errors in the land cover data, and/or geo-location errors. Details of the
Landsat 8 ice concentration calculation are given in the next section.

As the last step, the ice cover mask from the ice identification step is refined as the final ice cover
mask. If the retrieved ice concentration is below 15%, the pixel is relabeled as water in the ice cover
mask. This is done because the uncertainty of the estimates for low ice concentrations is 15%–20%
(see next section), and to be consistent with passive microwave ice concentration products, which
traditionally use the same criterion.
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2.3. Validation Data

Given the lack of in situ data for validation of the VIIRS ice concentration product, the approach
used here is to use very high resolution satellite data, label each pixel as either ice or open water,
then calculate the percentage of ice pixels in an area the size of a VIIRS pixel. Landsat 8 is employed
because it is high resolution and accessible. All Landsat 8 scenes in 2013 and 2014 containing Arctic
sea ice and that are 90% or more clear sky were obtained from the U.S. Geological Survey (USGS) data
server. There are a total of 181 Landsat scenes, with a scene size of 170 km by 185 km. For each scene,
visible and thermal channel observations at 30 m spatial resolution are available from the OLI and
the Thermal Infrared Sensor (TIRS). Only daytime images are used because of the larger calibration
uncertainty associated with 12 µm band of TIRS, which is needed for surface temperature retrieval
and hence nighttime ice concentration estimates. Therefore, validation with Landsat is restricted to the
months of February through October.

Each pixel at the original Landsat spatial resolution is identified as either ice covered or open water
using the tests detailed in Section 2.2.1. A pixel is identified as ice covered if the NDSI value, calculated
from band 5 and band 6 of Landsat 8, is larger than 0.45, and if the reflectance at 0.865 µm, band 5
of Landsat 8, is higher than 0.08. The surface temperature constraint is not used. Ice concentration
at the 1 km spatial resolution was calculated as the ratio of the number of 30 m Landsat ice-covered
pixels to the total number of pixels in a 1 km grid cell. For each of the Landsat scenes, a corresponding
VIIRS scene is found for time differences less than 1 h. This resulted in 155 matches (Figure 6).
Ice concentration for all VIIRS pixels in those scenes was calculated using algorithms in Sections 2.2.1
and 2.2.2, and then remapped to 1 km EASE-Grid.
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A daily mean sea ice concentration product was also obtained from the SSMIS onboard the DMSP
F17 satellite. The product has a 25 km resolution in a polar stereographic grid and is based on the
NASA Team algorithm [20] from the National Snow and Ice Data Center (NSIDC). Lastly, we applied
the NASA Team 2 sea ice concentration algorithm [15] to AMSR2 cases in winter, spring, and summer
for an additional comparison to VIIRS ice concentration.

3. Results

The algorithm described above was applied to the 155 matched VIIRS scenes. In addition, ice
concentration is produced routinely for every overpass in both poles. VIIRS ice concentration daily
composites are generated by remapping individual overpasses of VIIRS ice concentration to a 1 km
EASE-Grid with newer cloud free data replacing older cloud free data. An example of VIIRS ice
concentration for a single S-NPP overpass over the Arctic is shown in Figure 7.
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3.1. Sea Ice Concentration and Fresh Water Ice Concentration Result

Figure 8 shows the ice concentration for the scene in Figure 2, for both Landsat 8 and VIIRS.
No retrievals were done from VIIRS on the left boundary of the scene because the VIIRS land mask
indicates that it contains land over Novaya Zemlya, while the Landsat ice concentration does not
exclude that land area. Both ice concentrations show very similar spatial distributions and values.
The Landsat 8 ice concentration gives more detail, of course, with more distinct ice edges and smaller
areas of open water inside the pack ice.
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Figure 8. (left) Sea ice concentration derived from the Landsat image in Figure 2; and (right) the
calculated sea ice concentration using the Suomi NPP VIIRS data in Figure 2. White areas denote pixels
flagged out as either land or cloudy.

Figure 9 shows ice concentration from SSMIS at 25 km resolution and from a VIIRS daily composite
comprised of multiple orbits at 1 km resolution on 20 February 2015. Both products show very high
ice concentrations over the pack ice in the central Arctic Ocean. The passive microwave product shows
relatively low concentration toward the ice edge and also near the North Pole. The ice concentration
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transition from high to low values is not as obvious in VIIRS product as in SSMIS, except in the southern
portion of Baffin Bay. The fast ice along the Russian coast seems to have a sea ice concentration close to
100% in the VIIRS SIC map compared to the SSMIS map. This also applies to both the Kara as well as
the Laptev Seas. In general, the SSMIS ice concentration product does not show much detail within
the pack ice mainly due to its low spatial resolution.

In contrast, VIIRS shows much detail, particularly sea ice leads (fractures). This is illustrated in
Figure 10, which shows the area from the North Pole to the Laptev and East Siberian Seas. Leads can
be seen in the VIIRS product but not in the SSMIS ice concentration. Additionally, the somewhat lower
concentration area near the North Pole in the SSMIS product is not seen in the VIIRS product, though
there are some leads in that area. We would not expect such a large area of ice concentrations less
than 90% in February around the North Pole, and do not see it in the VIIRS data. This reduced sea ice
concentration may be caused by snow properties and variations in the ice–snow interface feeding back
to the microwave emissivity of the sea ice [18].
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Figure 9. Ice concentration from SSMIS (left); and a daily ice concentration composite from VIIRS
(right) over the Arctic on 20 February 2015. White areas in the SSMIS image denote pixels flagged as
either land or the area around the pole that is not covered by the instrument. White areas in the VIIRS
data denote pixels flagged as land, ice-free ocean, or cloud.

Ice concentration over fresh water in lakes and rivers is also retrieved. Ice detection, the tie point
algorithm, and the ice concentration calculation are done using the same approach as detailed in
Sections 2.2.1 and 2.2.2. Figure 11 (left) is a true-color image from Aqua MODIS 1 km Level 1b data on
28 March 2015, showing mostly clear conditions over the Great Lakes. The Great Lakes, between 41˝

and 49˝ latitude and ´75˝ and ´93˝ longitude, include five interconnecting large lakes, one small lake,
four connecting channels, and the St. Lawrence Seaway, and contain the largest supply of freshwater
in the world. The Aqua MODIS data is from the Level 1 and Atmosphere Archive and Distribution
System (LAADS) at the Goddard Space Flight Center. The MODIS NDSI is calculated with band 2
(0.85 µm) and band 6 (1.6 µm) for Terra, and band 2 and band 7 (2.1 µm) for Aqua, as Aqua band 6 is
essentially unusable. Ice surface temperature is calculated as Equation (1) based on MODIS bands 31
and 32 (11 µm and 12 µm) and viewing angles with coefficients for MODIS Terra and Aqua. A pixel is
identified as ice covered if the NDSI value is larger than 0.45, and the reflectance at 0.865 µm is higher
than 0.08. The surface temperature constraint is employed. The tie point method is applied to MODIS
band 1 (0.64 µm), and ice concentration is calculated as Equation (4). Details of the ice cover can be
seen in the eastern portions of all the lakes. Ice concentration using the algorithm presented here but
with MODIS data is shown in Figure 11 (right), demonstrating the capability of detecting relatively
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small areas with ice coverage over the Lake Michigan and Lake Ontario, and more extensive coverage
over Lake Erie, Lake Huron and Lake Superior.
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MS2GT. Besides the very different spatial resolution of these two products, differences in their ice 
concentrations come from differences in instrument sensitivities (visible/IR versus passive 
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Results from comparisons with AMSR2 in January through August 2015, Arctic and Antarctic, 
are given in Table 3. Two days from each month were examined. The bias is defined as the average 
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Figure 10. Ice concentration from SSMIS (left); and from VIIRS daily composite (right) over portion of
the Arctic (longitude: 90–180, latitude: 70–90) on 20 February 2015. The North Pole is in the lower left
corner. White areas in the SSMIS denote pixels flagged as either land or the area around the pole that
is not covered by the instrument. White areas in the VIIRS data denote pixels flagged as either land
or cloudy.
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3.2. Comparison of VIIRS and AMSR2 Ice Concentration

Sea ice concentration and an ice cover mask are being generated routinely and compared to
similar products from other datasets, e.g., the ice concentration from SSMIS as shown in Figure 9 and
from AMSR2. Sea ice concentration retrievals from VIIRS and the daily passive microwave product
are collocated through remapping to a 25 km EASE-Grid with the nearest neighbor interpolation
for the passive microwave data, and a weighted average for interpolation of VIIRS as detailed in
MS2GT. Besides the very different spatial resolution of these two products, differences in their ice
concentrations come from differences in instrument sensitivities (visible/IR versus passive microwave),
instrument field-of-view, and fundamental differences in the retrieval algorithms.

Results from comparisons with AMSR2 in January through August 2015, Arctic and Antarctic,
are given in Table 3. Two days from each month were examined. The bias is defined as the average
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difference between observations of the two products. The root-mean-square error (RMSE) is the
square root of the mean squared difference of the two products. RMSE is also calculated with the
bias removed, which is the square root of the average squared deviation of the errors from the mean
error, or the standard deviation of the errors. For some applications, the absolute values of the bias,
the RMSE, and the RMSE with the bias removed, are termed as measurement accuracy, measurement
uncertainty, and measurement precision, respectively. This terminology is used in the JPSS program.
Biases (accuracies) range from 0.25% to 3.2%. RMSE (precision) values are in the range 8%–20%.

Table 3. Statistics for a comparison of VIIRS and AMSR2 ice concentration for cases in 2015.

Date
Arctic Antarctic

Accuracy Precision Cases Accuracy Precision Cases

30 January 1.61 8.76 123,747 0.50 21.45 22,776
31 January 1.62 9.10 124,514 1.53 22.03 19,556

27 February 2.05 9.91 122,376 1.04 20.19 20,101
28 February 2.03 9.35 120,343 0.21 20.88 22,256

30 March 2.45 10.01 122,108 1.52 14.90 48,343
31 March 2.12 9.39 118,841 2.48 15.24 43,737
30 April 3.02 11.98 88,959 1.85 12.64 79,228
31 April 3.01 11.87 79,756 2.24 12.62 82,094
30 May 3.20 11.46 65,418 2.19 13.03 99,093
31 May 3.22 11.92 70,990 1.80 12.97 104,142
30 June 2.19 14.05 56,864 1.55 11.08 121,964
31 June 1.89 14.41 55,580 1.56 11.78 123,805
30 July 1.89 18.33 35,577 2.43 12.62 142,350
31 July 2.53 18.20 38,069 2.58 12.34 138,524

30 August 0.25 18.48 28,727 2.79 11.87 133,027
31 August 0.61 17.19 27,315 2.95 12.71 142,208

3.3. Ice Concentration Validation with Landsat in Daytime

A more direct validation of VIIRS sea ice concentration is done with the use of higher resolution,
rather than lower resolution, data. Bias and RMSE of ice concentration from VIIRS in comparison to
Landsat 8 are calculated using the 155 collocated cases described in Section 2.3.

The ice cover mask is binary mask that can be determined from the ice concentration products
following the convention that a pixel is ice covered with 15% or more ice concentration. The 155 matched
VIIRS-Landsat sea ice concentration scenes pairs correspond to 2,812,734 valid, clear sky match-ups.
We count the number of pixels with SIC < 15% and denote them as class “open water” and we count the
pixels with SIC > 15% and denote them as class “ice”. Table 4 shows the distribution of case numbers
of open water and ice from Landsat 8 and VIIRS. The overall agreement is measured as the detection
accuracy, 100 ˆ (Nice + Nwater)/N, where Nice and Nwater are the number of ice pixels and water pixels
in agreement. Detection accuracy has range of 0 to 1, with 1 as the perfect score. The score for this case
study is 0.97. The agreement is also expressed by the Hanssen-Kuiper Skill Score (KSS) [50], which is
useful when the analyzed parameter is not normally distributed. Such is the case for ice concentration.
This score expresses the hit rate relative to the false alarm rate, with range of ´1 to +1, with 0 and
negative as no skill, and 1 as perfect. The KSS is 0.81. However, 57,490 of total 318,843 pixels identified
as water by Landsat are classified as ice by VIIRS. Compared to the low rate that pixels identified as ice
by Landsat are classified as water by VIIRS, this high rate of water misclassification may result from
the differences in the inputs to the VIIRS and Landsat ice concentration and differences in how the
products are derived, e.g., the differences in the VIIRS and Landsat cloud mask, and tie point method
is applied in VIIRS ice concentration, but not in Landsat.
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Table 4. VIIRS/Landsat ice and water classification results.

Landsat Ice Landsat Water

VIIRS ice 2,479,814 57,490
VIIRS water 14,077 261,353

Histograms of the differences between VIIRS and Landsat 8 ice concentration match-ups are
shown in Figure 12 for all cases and for concentration bins of 15%–30%, 30%–50%, 50%–70%, 70%–90%,
and 90%–100%. Only cases (pixels) with ice concentration from both products higher than 15% are
included. For over 2 million matched pairs, the VIIRS ice concentration shows an overall bias of ´0.3%
and an RMSE with the bias removed of 9.5% as shown in Table 5. The majority of the ice concentration
differences (biases) have absolute values less than 10.0%.
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Table 5. Bias and RMSE with bias removed (precision) for comparisons of VIIRS minus Landsat ice
concentrations for different concentration ranges/bins.

Overall VIIRS SIC
15%–30%

VIIRS SIC
30%–50%

VIIRS SIC
50%–70%

VIIRS SIC
70%–90%

VIIRS SIC
90%–100%

Case number 2,479,814 7784 27,732 66,977 262,761 2,114,560
Bias (%) ´0.3 ´15.6 ´16.9 ´11.7 ´4.8 0.9

RMSE (%) 9.5 20.4 26.0 22.6 14.4 6.4

On a bin-by-bin basis the differences can be somewhat larger as shown in Table 5. For the bin with
the VIIRS ice concentration between 90% and 100%, the bias is positive and small at 0.9%. The bias
becomes negative for smaller VIIRS ice concentration, and becomes more negative with decreasing
VIIRS ice concentration. The RMSE with bias removed values also increases with smaller VIIRS
ice concentrations.

It should be noted that Landsat uses its own cloud detection, which is different from VIIRS.
This difference can affect the validation results. Melting ice and melt ponds can affect the ice/no
ice identification, and can lead to uncertainties in the ice concentration retrieval due to its similar
temperature and reflectance with open water. As shown in Table 6, the overall bias is similar for all
surface temperature subranges, and the overall RMSE is between 4% and 6% for surface temperature
of 250 K or higher, but below 2% for surface temperature below 250 K. For medium ice concentration,
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e.g., 30%–50%, the VIIRS SIC bias and RMSE decrease with increasing surface temperature; the same
applies to the bias for 50%–70%, 70%–90% and 90%–100% VIIRS SIC.

Table 6. Bias and RMSE with bias removed (precision) for comparison of VIIRS minus Landsat ice
concentrations for different concentration ranges/bins for different surface temperature ranges with
match-up pairs more than 1000.

Overall VIIRS SIC
15%´30%

VIIRS SIC
30%–50%

VIIRS SIC
50%–70%

VIIRS SIC
70%–90%

VIIRS SIC
90%–100%

Surface
Temperature

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

<240 K 0.0/0.9

240–250 K ´0.1/1.5 ´8.2/16.9 ´0.3/3.4

250–260 K ´0.2/5.4 ´32.4/27.8 ´21.2/21.5 ´9.7/14.5 0.5/7.1

260–270 K ´0.3/4.8 ´22.9/24.7 ´24.0/26.8 ´15.2/22.5 ´5.4/14.3 0.6/6.3

>270 K 0.3/5.9 ´12.5/17.3 ´9.4/22.2 ´5.4/21.1 ´2.2/13.7 1.6/6.3

3.4. Ice Concentration Validation with Landsat Applying Nighttime Algorithm on Daytime Data

As stated in Section 2.2.2, the visible reflectance at 0.67 µm is used during the day, and
ice surface temperature is used at night to calculate the VIIRS ice concentration after tie point
reflectance/temperature are determined. In Section 3.3, Landsat ice concentration is used to validate
the daytime algorithm for all the Landsat scenes are in daytime. To assess the nighttime algorithm, we
apply it to the VIIRS scenes corresponding to the Landsat scenes, and validate the derived VIIRS ice
concentration using the same Landsat ice concentration and same approach as detailed in Section 3.3,
which means that the sea-ice concentration based on Landsat images is based on optical data while
sea-ice concentration derived with VIIRS is solely based on thermal channel information. The results
are shown in Table 7. The nighttime algorithm performance is comparable to, or better than, the
daytime algorithm for surface temperatures below 260 K, especially for VIIRS ice concentrations
between 30% and 90%. Both algorithms perform similarly for surface temperatures between 260 and
270 K. The daytime algorithm performs substantially better when the surface is near the melting point.

Table 7. VIIRS minus Landsat ice concentrations bias and RMSE with bias removed (precision) for
cases where the nighttime ice concentration algorithm was applied to daytime data, over different
concentration ranges/bins for different surface temperature ranges with match up pairs more than 1000.

Overall VIIRS SIC
15%–30%

VIIRS SIC
30%–50%

VIIRS SIC
50%–70%

VIIRS SIC
70%–90%

VIIRS SIC
90%–100%

Surface
Temperature

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

Bias/RMSE
(%)

<240 K 0.0/0.7

240–250 K ´0.2/1.8 ´9.1/13.2 ´0.9/3.7

250–260 K ´0.4/6.3 ´13.4/24.2 ´16.4/22.8 ´8.9/14.0 0.0/7.2

260–270 K ´0.2/6.4 ´27.5/29.3 ´16.7/26.4 ´12.1/23.0 ´6.1/15.0 1.4/8.7

>270 K ´3.0/12.6 ´71.4/15.0 ´54.7/14.4 ´35.6/13.0 ´16.4/12.1 2.6/12.1

3.5. Tie Point Adjustment

The comparison of VIIRS ice concentration and Landsat 8 ice concentration demonstrates a larger
absolute bias and larger RMSE for lower VIIRS ice concentrations. Similar biases were identified
during prelaunch testing of the IDPS version of the VIIRS Sea Ice Concentration product [34].
Ice concentrations observed prelaunch using MODIS data as a proxy were frequently too low for
lead-like features associated with thin ice or a mixture of thin ice and subpixel water. The bias towards
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low ice concentrations for such features is the result of the assumption that an ice tie point can be
adequately defined as that of the predominant ice type within a search window.

A mechanism for reducing the bias has been implemented as a mitigation strategy. An adjusted
ice tie point is computed as a function of the observed reflectance/temperature and is allowed to take
on values close to the observed pixel value and to vary linearly up to the value of the ice tie point of
the window (Figure 13):

mp “ pBice´Bice_adj_thinice_threshq{pBice´Bwater_defaultlq (5)

Bice_adj “ pmpqpBp´Bwater_defaultq ` Bice_adj_thinice_thresh (6)

where mp is the slope of the linear ice tie point adjustment for a pixel; Bp is the reflectance/temperature
of the pixel; Bice is the reflectance/temperature of a pure ice pixel, i.e., the ice tie point;
Bwater_default is the default tie point reflectance/temperature for water; Bice_adj is the adjusted
ice tie point reflectance/temperature; and Bice_adj_thinice_thresh is the thin ice adjustment threshold
reflectance/temperature.
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Figure 13. The ice tie point adjustment scheme.

The adjustment is applied only to regions with pixels that have temperatures below a threshold
value and with ice tie point reflectance values greater than that of the minimum thin ice tie point
value. The magnitude of the adjustment is tunable via the minimum thin ice reflectance thresholds
(maximum temperature threshold). The adjustment scheme is applied only for the situation where few
water pixels are found in a local search window. This adjustment is designed for cases in which the
lead-like features are ice free or covered by thin, snow-free ice with a substantially higher temperature
and/or a substantially lower reflectance.

After the adjustment methodology is implemented, the validation of S-NPP VIIRS ice
concentration with Landsat 8 ice concentration reported above was updated, with results shown
in Figure 14 and Table 8. The overall bias increases, with a reduction in the overall RMSE. The SIC
range 90%–100% is the dominant range for all cases, and the bias and RMSE for this range increase.
The bias and RMSE for the SIC ranges 15%–30%, 30%–50% and 50%–70% decrease except the RMSE
for SIC range 70%–90%.
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Table 8. Bias and RMSE with bias removed (precision) for comparisons of VIIRS minus Landsat ice
concentrations for different concentration ranges/bins after tie point adjustment.

Overall VIIRS SIC
15%–30%

VIIRS SIC
30%–50%

VIIRS SIC
50%–70%

VIIRS SIC
70%–90%

VIIRS SIC
90%–100%

Case number 2,480,093 6055 16,559 34,428 168,009 2,255,042
Bias (%) 1.4 ´12.6 ´9.1 ´4.5 0.3 1.6

RMSE (%) 8.9 17.4 22.4 21.7 17.2 7.2

It should be noted that the tie point adjustment methodology presented here has not been
implemented in the Enterprise VIIRS sea ice concentration algorithm. Its future implementation relies
on a deeper understanding of the discrepancy between VIIRS ice concentration and ice concentration
from Landsat and other data sources.

4. Summary and Conclusions

A new algorithm for estimating ice concentration from visible and infrared satellite images has
been presented. Clear-sky sea and fresh-water ice concentration at 0.75 km resolution are produced
from VIIRS visible and infrared data in both daytime and nighttime. It will be used operationally
with VIIRS on the future JPSS satellites. The approach builds on previous research algorithms for the
AVHRR, MODIS, and on the current operational VIIRS algorithm. It determines local ice tie points and
then linearly interpolates the ice concentration for each pixel between ice and water tie points.

High-resolution Landsat 8 data were used to validate the VIIRS ice concentration. Overall, the
VIIRS ice concentration has a bias of ´0.3% and an RMSE with the bias removed of 9.5%. The majority
of the ice concentration differences (biases) for different concentration ranges have absolute values less
than 10.0%. This shows that overall the VIIRS ice concentration algorithm is performing well.

Comparisons of VIIRS and passive microwave ice concentrations reveal the strengths and
weaknesses of each. Historically, passive microwave sensors have been used for ice concentration,
primarily because of their all-weather capability. However, small-scale information can only be
obtained from optical and infrared sensors, albeit only for clear-sky areas. Validation of VIIRS ice
concentration is best performed with higher resolution optical sensors. Landsat 8 has proven to
be a valuable asset for this task. SAR is a potential validation source as well, as it provides high
spatial resolution data under all weather conditions. Ice concentration algorithms for SAR have been
developed [51], but operational products do not yet exist. Nevertheless, such a product should be
considered in the future for validating the VIIRS ice concentration.
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NOAA’s operational satellite products are available from the National Centers for Environmental
Information (NCEI) Comprehensive Large Array-data Stewardship System (CLASS). The Enterprise
VIIRS ice concentration product is planned for operations in late 2016.
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