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Since the 1992 Earth Summit in Rio de Janeiro, the importance of biological diversity in supporting
and maintaining ecosystem functions and processes has become increasingly understood [1].
Biodiversity “connects the web of life,” that is, biodiversity represents the diversity of species in
an ecosystem, landscape, region and globe. It is their combined interactions, with each other
and their environment that alters biogeochemical cycles and the climate system. In recent years,
biodiversity has come to broadly include diversity in terms of taxonomic, systematic and genetic
attributes, morphological and structural attributes, and their ecological and functional traits. Human
actions are driving climate change and land use changes throughout the globe, causing major losses
of biodiversity [2,3]. These actions impact the climate, influencing magnitude and the timing of
disturbance events, e.g., drought and wildfires, create pollution and contamination in water, air, and
soil, and cause many other impacts that accelerate species losses, altering ecosystem functions and
their services. The loss of biological diversity impacts ecological processes at scales comparable to
other drivers of global environmental change [4] and likely interacts synergistically with climate
change [5]. Biodiversity is recognized as a key factor in the maintenance of healthy ecosystems and for
the sustainability of conservation efforts. Losses of biodiversity reduce the stability and resilience of
ecosystems through the loss of functional traits associated with resource capture and decomposition [1].
The rapid pace of global change requires increased knowledge about species composition, numbers of
species, and the states of health and the conditions for global ecosystems in order to respond effectively.
Tittensor et al. (2014) [6] show that many of the 20 Aichi indicator targets from the Convention on
Biological Diversity are unlikely to be met by 2020. The development of large plant trait databases like
TRY [7,8] that have data on thousands of vascular plant species (46,085 species) still remain significantly
under-sampled, particularly outside the northern temperate zone [9]. Remote sensing provides the
only feasible way to measure and monitor biodiversity changes at the scales necessary. Nonetheless,
until recently, there has been little success in monitoring ecologically meaningful aspects of diversity
(e.g., alpha, beta, and gamma diversity). Today, there are an increasing number of remote sensing
satellites and aircraft instruments that can provide a wide range of observational capability, in terms of
spatial, temporal, and spectral resolutions, especially when combined with “big data” computational
capacity and in situ monitoring systems. Similarly, significant progress in image processing algorithms
has increased the potential for the successful characterization of biodiversity at various scales.

We are pleased to present this special issue of 18 state-of-the-science papers [10–27] covering a
wide range biological diversity issues assessed from different spatial, spectral, and temporal scales
of remote sensing instruments that use different methodologies, but which illustrate the many ways
remote sensing data are being used to address biodiversity concerns. The papers range from the
detection of phylogenetic variation in oaks [10] using full-range (400–2500 nm) leaf level spectroscopy
to habitat models for seven dolphin and whale species [11] that assimilate sea surface temperatures
and sea height data for training and validating model predictions. In a study of drivers of oak
woodland productivity, Santos et al. [12] analyzed a 15-year time series of EVI Landsat data to identify
trends in productivity in relation to climate in Southern Portugal. Suitable chimpanzee habitat was
modeled using Landsat data for each of the four populations that cover its current range [13]. In a
boreal study of full-range (380–2500 nm) hand-held spectral reflectance of mammal pelts [14] showed
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that it was possible to separate mammals from snow and show promise for discriminating species,
with polar bear fur being most distinctive. In terms of vascular plant species mapping in tropical
forests, McManus et al. [15] show promise for differentiating phylogenetic relationships among foliar
traits in tropical forest species. Graves et al. [16] address developing operational models for species
classification using imaging spectroscopy and addressed the accuracy problems of imbalanced training
data. Chadwick and Asner [17] collected Carnegie Airborne Observatory data at high spatial and
spectral resolution and map leaf mass area (LMA) and several key mineral nutrients including foliar
nitrogen, phosphorous, magnesium, potassium, and calcium. Revermann et al. [18] used land surface
phenology metrics from MODIS and Shuttle Radar Topographic Mission (SRTM) data to map alpha
diversity across the Okavango Basin, one of the largest inland deltas in the world, originating in the
Angolan Central Plateau and terminating in the Okavango Delta of Botswana.

Two papers address species richness in grasslands. Wang et al. [19] followed seasonal changes
measured with a field spectrometer for NDVI-species richness relationships at the Cedar Creek Prairie
experiment and in grazed dry grasslands on the Baltic Island of Öland, Sweden. Möckel et al. [20]
flew an imaging spectrometer (414–2500 nm) and present best results for predicting species richness
and Simpson’s diversity using spectral responses from all wavebands analyzed with partial least
squares regression (PLSR). Wang et al. [21] also address grassland productivity in a Southern Alberta
prairie using airborne imaging spectrometry combined with ground sampling and eddy covariance
data, showing greater productivity in sites with higher biodiversity based on species richness and
the Shannon Index. Garroutte and Hansen [22] evaluated the quality of grasslands for elk habitat
in the Yellowstone River Basin using seasonal MODIS EVI and NDVI. Zhao et al. [23] address
the optimal detection of biochemical indicators for species mapping, and two papers show the
potential of mapping foliar traits related to ecosystem functionality. Chadwick and Asner [17]
used airborne imaging spectroscopy to map leaf mass area (LMA) and the foliar concentrations
of nitrogen, phosphorus, calcium, magnesium and potassium for dominant trees in the Peruvian
wet tropics, and McManus et al. [15] address the relationships between foliar reflectance spectra
and the phylogenetic composition of a tropical forest on Barro Colorado Island, Panama. The
paper by Coops et al. [24] take into account forest fragmentation and land use with distribution
modeling to predict forest species migration in the Pacific Northwest of North America under climate
change, while Zhang et al. [25] identify a MODIS based Dynamic Habitat Index Analysis using the
Photosynthetically Active Radiation (fPAR) product for China that characterizes terrestrial biodiversity,
while Barboas et al. [26] used imaging spectroscopy data to identify the subcanopy invasive species
Psidium cattleianum in Hawaiian forests. The three-dimensional structural complexity and niche
diversity in forest habitats are key predictors of biodiversity. Zielewska-Büttner et al. [27] describe an
automated detection method to retrieve forest gap structure and height from LiDAR data and stereo
imagery, which were independently validated using stereo imagery for the Northern Black Forest in
Southwestern Germany.
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