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Abstract: Spatial variation of tropical forest tree height is a key indicator of ecological processes
associated with forest growth and carbon dynamics. Here we examine the macroscale variations of
tree height of humid tropical forests across three continents and quantify the climate and edaphic
controls on these variations. Forest tree heights are systematically sampled across global humid
tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System
(GLAS) satellite observations (2004—2008). We used top canopy height (TCH) of GLAS footprints to
grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture
the regional variability of average and large trees globally. We used the spatial regression method
(spatial eigenvector mapping-SEVM) to evaluate the contributions of climate, soil and topography
in explaining and predicting the regional variations of forest height. Statistical models suggest that
climate, soil, topography, and spatial contextual information together can explain more than 60% of
the observed forest height variation, while climate and soil jointly explain 30% of the height variations.
Soil basics, including physical compositions such as clay and sand contents, chemical properties
such as PH values and cation-exchange capacity, as well as biological variables such as the depth
of organic matter, all present independent but statistically significant relationships to forest height
across three continents. We found significant relations between the precipitation and tree height with
shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas
with low stress and higher annual precipitation but with significant differences across the continents.
Our results confirm other landscape and regional studies by showing that soil fertility, topography
and climate may jointly control a significant variation of forest height and influencing patterns of
aboveground biomass stocks and dynamics. Other factors such as biotic and disturbance regimes, not
included in this study, may have less influence on regional variations but strongly mediate landscape
and small-scale forest structure and dynamics.
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1. Introduction

Humid tropical forests play an important role in the global carbon cycle by covering only 7%-10%
of the Earth land surface, yet they contain about 40%-50% of the terrestrial carbon stock [1], and are
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responsible for about 70% of terrestrial carbon sink [2]. With increasing amount of high-resolution
remote sensing data and availability of networks of ground plots, understanding the fine scale
variations of forest structure and dynamics and their biotic and abiotic controls have improved
significantly over the past decade [3-8]. However, understanding macroscale variations of forest
structure and their ecological and environmental controls lags behind. This is because existing ground
plots are sparsely distributed and not suitable for macroscale studies [9,10], and investments in design
and implementation of regional scale ecological studies are inadequate.

The heterogeneity of the forest structure in humid tropics may come from: (1) small-scale dynamics
such as tree falls, mortality, and recruitment [11]; (2) large scale disturbance in the form of storms
and droughts [4,7,12,13]; (3) natural environmental variations in climate, soil, and geology [14-17];
and (4) evolutionary processes forming the phylogenetic variations and the biogeography of forest
species [18,19]. In addition, recent or past human induced land use activities such as small and
large-scale forest clearing or tree extractions may have also influenced the variations of forest structure.
This heterogeneity, generally using tree height and/or diameter as a measurable quantity, is therefore
a reflection of environmental impacts on the local vegetated surface in humid tropical forests [20].

At continental scales, individual-based ground measurements suggest large regional differences in
canopy height with tallest trees reported in tropical Asia, followed by forests in Africa and America [21].
These patterns, however, may not directly translate to variations of forest above ground biomass
(AGB) as diameter and wood density of trees also control the forest AGB and influence the landscape
heterogeneity [22,23]. Over sharp gradients such as tropical montane forests, tree height decreases with
the rising elevation as proxy for decreasing temperature [24], present a combined effect of both climatic
factors and edaphic properties. Studies using field observations also show that the aboveground live
biomass variations at landscape scales, which are highly related to the variation of large trees [25],
are positively correlated with soil texture gradients and topography. In addition to the impact of
soil structural properties, nutrient availability in soil, such as exchangeable cations, carbon, nitrogen,
and pH, as well as soil phosphorus status, have been found to have a non-negligible impact on the
tropical forest height structure and its dynamics [17]. Therefore, height of trees may be considered
a key functional trait at each location in tropical forests, capturing both the phylogentic variability of
species, differences in allometry, and their growth trajectory [26].

To understand and quantify the variability and the controls on forest mean and maximum
tree height in tropical forests, a systematic observation of tree height is required. Existing ground
observations documented in research networks of plots have contributed significantly in understanding
the local characteristics of forest structure [3,21]. However, the plot networks are not designed to
provide enough samples on regional or continental scale variations. Alternatively, remote sensing
techniques can provide systematic observations of tropical forest structure using recently advance
active sensors such as lidar (Light Detection and Ranging) and radar (Radio Detection and Ranging)
from airborne and spaceborne platforms [27-29].

Here, we focus on investigating the natural environmental controls on macroscale variations of
tropical forest heights. Our study will include only humid tropical forests including low land and high
land terra firme and swamp forests across elevation, soil, and climate gradients. We exclude dry and
woodland forests in tropical regions due to their readily distinct distributions in different climate and
soil conditions (REF). We use observations from the Geoscience Laser Altimeter System (GLAS) satellite
between 2004 and 2008, measuring forest top canopy height (TCH) and vertical profile at about 0.25 ha
effective footprint size across humid tropical forests. We perform statistical analysis of the variations of
forest canopy height at regional scale, linking variations of top canopy tree height to the environmental
controls. We also identify individual climate and edaphic factors that significantly contribute to the
TCH variation by accounting for the spatial autocorrelation effects. As an independent systematic
sampling of forest vertical structure, the GLAS-derived TCH data give us the opportunity to study the
relationships between humid pantropical forests and the associated environmental influences with
statistically large samples covering the entire tropical region.
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2. Materials and Methods

2.1. Remote Sensing Data

We used three remote sensing-based data sets in our study. First, the land cover (LC) map
from Globcover 2009 [30] was used to define our study region (57°5-30°N) and pick dense tropical
forest pixels only. We selected classes 40 (Closed to open (>15%) broadleaved evergreen and/or
semi-deciduous forest (>5 m)) and 160 (Closed (>40%) broadleaved forest regularly flooded-Fresh
water from the Globcover map and defined them as tropical dense forests). All other pixels were
marked as invalid and not included in further calculations. Although the area of flooded forests is
underestimated in Globcover due to the lack of SWIR band in the MERIS sensor [31] and significant
confusion in classification because of the similarity of the spectral reflectances, by combining the
two classes, we circumvent possible errors of mis-classification and use the overall domain of humid
tropical for this study.

For forest structure, we rely solely on the measurements from GLAS lidar data because of the
extensive systematic coverage over tropical forests for a period of more than four years (2003-2008).
GLAS sensor aboard the Ice, Cloud and land Elevation Satellite (ICESat) is the first spaceborne
waveform sampling lidar instrument for continuous global observation of the Earth. It emits short
duration laser pulses and records the echoes reflected from the Earth’s surface [31]. When the surface
is vegetated, the return echoes or waveforms are the function of the canopy vertical distribution and
ground elevation within the area illuminated by the laser (the footprint), thus reflecting the canopy
structure information [1,32,33]. From each GLAS lidar footprint, we selected the top canopy height
of the lidar waveform, representing the maximum height of trees of the forest sampled within the
lidar footprint. Top canopy height (TCH) is calculated as the difference between the elevation of the
first returned energy minus the mean elevation of ground elevation, and corrected for topographic
effects using waveform indices [34]. We use TCH instead of maximum height throughout the paper
because the maximum height measured by the GLAS large footprint is on the average smaller than
a similar measurement from small footprint lidar due to Gaussian shape of the waveform and the
spread of the engery over the larger footprints. TCH represents the most accurate retrieval of all canopy
parameters derived from lidar waveforms [35,36]. TCH from GLAS, unlike other metrics derived from
the lidar waveforms, provides the most direct measurement of forest height systematically sampled
over the landscape (Figure S1). GLAS measurements can provide similar features of forest structure as
derived from high-resolution airborne observations (Figure S2), suggesting that the large number of
samples can be readily used in characterizing forest height at landscape to regional scales. In addition,
examples of comparison of GLAS waveforms and high-resolution airborne observations acquired over
different continents show distinct and different features of the canopy structure (Figure S3), suggesting
continental differences in forest structure with potential relations to edaphic and climate variables.

For terrain topography, we used the surface elevation data from the Shuttle Radar Topography
Mission (SRTM) collected on a near-global scale using Interferometric Synthetic Aperture radar (InSAR)
measurement at C-band (5.3 GHz) [37,38]. We also used the SRTM data to create surface slopes for
further filtering of GLAS data. In this study, we removed all GLAS lidar measurements on steep
terrains (slope > 10%) to reduce any errors associated with impacts of the slope on GLAS waveforms
and forest height measurements. The high-resolution original data were resampled from approximately
90-m (3 arcsec) to 1-km (30 arcsec) spatial resolution using spatial average as well as local standard
deviation, both of which were used as environmental layers representing terrain characteristics.

2.2. Climate and Soil Data

We used all 19 bioclimatic variables from the WorldClim climate database [39,40] in our study.
WorldClim is a set of average monthly climate data collected globally from ground-based weather
stations and interpolated to a 1-km resolution grid. Variables 1 to 11 are related to characteristics
of temperature, including annual mean/min/max temperatures and seasonality parameters such
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as diurnal and annual range, standard deviation and seasonal mean temperatures. Variables 12
to 19 capture the characteristics of precipitation similar to the variables used for temperature [41].
The average bioclimatic variables are derived from data from different sources spanning over five
decades of observations (1950 to 2000).

We also used the recently proposed bioclimatic stress variable E [42] derived from water deficit,
temperature and precipitation seasonality:

E = (0.178 x TS — 0.938 x CWD — 6.61 x PS) x 1072 1)

where TS/ PS is the temperature/precipitation seasonality as defined in the Worldclim dataset, and
CWD is the maximum climatological water deficit (in mm/year) derived from monthly precipitation
and evapotranspiration data derived from the Climate Research Unit dataset. E factor is a measure
of environmental stress, increasing with temperature seasonality and CWD (a negative quantity),
emphasizing on the hydraulic limitations impacting the growth of tropical forests and a parameter to
scale the height-diameter relation of trees over all tropical regions [42]. We used the E-factor as the
20th climate variable in the spatial statistical analyses.

The soil data were based on the Harmonized World Soil Database (HWSD) and were used to
evaluate the impact of edaphic conditions on forest height distribution. The HWSD data are gridded in
a 30 arc-second (about 1 km) raster format with over 16,000 soil-mapping units collected from the Food
and Agriculture Organization of the United Nations (FAQO), the International Institute for Applied
Systems Analysis (IIASA), and other partners [41]. The soil maps are linked to an attribute database
of 12 different soil characteristics, including physical compositions such as clay and sand contents,
chemical properties such as pH values and cation-exchange capacity, as well as biological variables
such as organic matters. Four original source databases, the European Soil Database (ESDB), the China
soil map (CHINA), the regional the Soil and Terrain (SOTER) databases (SOTWIS) and the Digitized
Soil Map of the World (DSMW), were used to create the HWSD raster files through harmonization
and merging processes including range and missing data checks, recoding, unit conversions, data
inconsistency checks, and so on [43].

2.3. Developing of Gridded Data Layers

GLAS data are in a form of vector points representing the lidar footprints at specific locations in
geographic latitude /longitude coordinates. The GLAS data were rasterized using the Globcover 2009
data as the base map for selecting valid GLAS lidar measurements and aggregating the values. First,
we aggregated the land cover map into 0.5° x 0.5° spatial resolution using majority resampling filter.
We then selected only the GLAS shots that fall in the classes 40 and 160 of Globcover 2009 representing
the humid tropical terra firme and swamp forests. For the aggregation process, the 0.5 grid cell
was marked valid only when more than 70% of the aggregated pixels from the original-resolution
Globcover data fall into the class 40 or 160. For each valid forested 0.5° grid cell, we regarded the cell as
having a valid observation only when a sufficiently large number (>50) of GLAS shots located within
the cell boundary. We used the direct gridding approach without kriging or spatial modeling as we
regarded each GLAS shot as an independent sample of forest height measurement, and treated other
variations such as the forest growth within the study period to be minor dispersions to the regional
uncertainty. For each forested cell with valid GLAS observations, we simply averaged all GLAS-based
TCH and built a 0.5-deg map of mean TCH (TCHyy,) (Figure 1). We created another map, 90-percentile
TCH (TCHgyg)—calculated as the 90-percentile height of all TCH observations within each half-degree
cell, to represent the maximum attainable height of forests (Figure S4). The use of 90-percentile
TCH instead of maximum value provided a statistically stable measure of forests dominated by tall
trees by avoiding sample size differences among populations within each grid cell and at the same
time any noise and outliers associated with detecting maximum TCH at individual lidar footprint.
The two height metrics provide strong statistical measures of forest functional traits related to regional
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forest growth and architectural differentiation [26]. The gridded lidar height products were based on
statistically adequate sample size (>50 shots), providing regional variations of forest height structure
for reliable comparison with the soil and climate data. We tested the patterns of TCH,, and TCHgg
globally for any errors associated with over representation of grid cells by randomly subsampling each
valid grid cell to a minimum of 50 shots per grid and found no significant changes in the magnitude
and spatial patterns of forest height structure globally (Figure S5). This comparison provided assurance
that the grid cells with higher number of GLAS shots may have better standard errors around the
mean value but have no bias.
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Figure 1. TCHyy, calculated from GLAS dataset in 0.5-deg resolution. (A) TCHp, of South America;
(B) TCHy, of Central Africa; and (C) TCHp, of Southeast Asia. Pixels were colored white and marked
invalid if there are less than 50 GLAS points available in each pixel.

WorldClim and HWSD are interpolated spatial datasets at resolutions as high as 1 kilometer.
However, most native resolutions of these variables are at the scale of 50-100 km?. Without having fine
scale environmental variables, we cannot find the true small scale variations of tree height against the
abiotic factors. Using the climate and soil data close to their native resolution will help to understand
the macroscale variability of forest height much better. Therefore, we aggregated climate and soil
characteristics at 0.5° grid cells using spatial averages, and performed all spatial analyses studying the
relationships between GLAS forest structure and environmental variables, including climate and soil
properties, at the 0.5° grid cells globally.

2.4. Spatial Analysis

To evaluate the relationships between forest structure and environmental factors, we used
the spatial regression method, spatial eigenvector mapping (SEVM), which includes the spatial
autocorrelation of gridded forest height metrics as a set of independent variables [44,45]. It is
statistically rigorous and aim to retrieve the best linear unbiased estimators of regression coefficients.
The spatial regression analyses were performed using the SAM (Spatial Analysis in Macroecology) v4.0
software [46]. We used TCH,, and TCHyg for each 0.5-deg cell as our investigated response variables,
while predictor variables were separated into 3 groups: (a) 20 climate variables; (b) 12 soil properties;
and (c) the three-dimensional spatial features derived from the surface elevation data (SRTM) as well
as the spatial autocorrelation information based on geographic latitude/longitude information of each
grid cell (or pixels) using SEVM method (All important predictor variables in the spatial regressions are
listed in Table 1). Predictor variables were normalized using standard z-scores, so that all observations
should have zero-mean and 1-standard-deviation. The normalization procedure ensures that the
magnitudes of regression coefficients are comparable between different features. We also randomly
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sampled 1000 0.5-deg cells in America to make the sample size of tropical forested areas comparable to
the other two continents (we have in total 986 and 1133 valid observations in Africa and Asia, respectively).

6 of 18

Table 1. Soil properties, bioclimatic variables, and geographical features used in the Tables 2 and 3
All values of soil properties were extracted from the HWSD database, and averaged into 0.5° x 0.5°

pixel resolution.

Soil Property Description Unit
CEC_T/CEC_S Topsoil /Subsoil CEC in the soil Cmol kg~!
SLIT_T/SLIT_S Topsoil/Subsoil Silt Fraction %

OC_T/0OC_S Topsoil Organic Carbon % weight

CLAY_T/CLAY_S Topsoil/Subsoil Clay Fraction Y%

PH_T/PH_S Topsoil /Subsoil PH (H,0O) Unitless

SAND_T/SAND_S Topsoil /Subsoil Sand Fraction %
M Diurnal Range Mean of monthly (max temp-min temp) °C x 10

Isothermality Mean Diurnal Range/Temp Annual Range Unitless
T Annual Range Max temp of warmest Month-Min temp of coldest month °C x 10

M T wettest Q Mean Temperature of Wettest Quarter °C x 10

Max T warmest m Min Temperature of Warmest Month °C x 10
Min T coldest m Min Temperature of Coldest Month °C x 10
Annual M T Annual Mean Temperature °C x 10

T seasonality Temperature Seasonality (Coefficient of Variation) Unitless

M T driest Q Mean Temperature of Driest Quarter °C x 10
M T warmest Q Mean Temperature of Warmest Quarter °C x 10

P seasonality Precipitation Seasonality (Coefficient of Variation) Unitless

P driest Q Precipitation of Driest Quarter mm

P warmest Q Precipitation of Warmest Quarter mm

P coldest Q Precipitation of Coldest Quarter mm
Annual P Annual Precipitation mm
P wettest Q Precipitation of Wettest Quarter mm
E Bioclimatic stress variable (Chave et al., 2014) Unitless
SRTM Mean ground elevation from SRTM m
SRTM SD Standard deviation of ground elevation from SRTM m
LCF Linear combination of spatial filters retrieved from SEVM m

The SEVM method needs to model the spatial correlation of variables as a set of independent
variables. To achieve this, we used the “Gabriel Criterion” [47] to build the first-order connectivity
matrix, such that the correlations between neighboring spatial units can be modeled by including
the short-distance between the units as a variable. The choice of first-order connectivity was
determined empirically as regression residuals of the data present stronger spatial autocorrelations at
smaller distance classes [45]. We then included SEVM spatial filters as an additional set of predictor
variables, and selected valid filters based on the criterion to minimize the Moran’s I value [48] of
regression residuals.

Since multicollinearity exists in our predictor variables, we used a model selection procedure
based on Akaike information criterion (AIC) [17,49] to remove variables that are highly correlated.
We divided our predictor set into 3 subsets: soil, temperature, and precipitation. Since the correlation
between subsets should be much less than multicollinearity within subset, we first focused on removing
variables that are highly correlated with other variables in the same subset. For each subset, we
searched for models with the least AIC value and the condition number [50] smaller than 30. We further
searched down for the range of AAIC < 6 [51] to check the existence of potential model with less
predictor variables and smaller condition number. This procedure continued iteratively until we could
not find a better model or when the condition number of our selected model was already smaller than
5. After we obtained 3 best subsets of predictor variables for each continent, the combined variables
were screened using the variance inflation factor (VIF) for detection of residual multicollinearity, and
we manually removed one of the two variables that have VIF values large than 10 [52].
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The procedure for the model selection is equivalent to the feature reduction using techniques
such as principal component analysis (PCA) with minimal information loss. Here we chose to preserve
the original predictor variables in model selection, allowing direct interpretation of regression results
compared to the transformed variables selected from the PCA analysis. We also calculated the partial R?
values based on the SEVM results to assess the individual and combined contributions of climate, soil,
and geographical features in explaining the variability of forest height. The final set of environmental
variables proved useful after model selection procedure of both TCH,,, and TCHg includes 12 soil
variables, 17 climatic variables and 2 topographic variables (Table 1). The processing steps of spatial
analysis have been summarized in Figure S6.

3. Results

3.1. Spatial Patterns

The macroscale patterns of TCHp, shown in the 0.5-deg gridded map (Figure 1) capture the
known large-scale variations in forest structure along soil, elevation and climate gradients across
three continents [1]. The Amazon region shows an overall lower TCH;,, and TCHy (Figure 1 and
Figure S4) than the forests in Africa and Asia, with a large fraction of forest in the Amazon having
TCHy, between 25 and 35 m. Forests in the central drainage system of the Amazon basin, distributed
west of Rio Negro and the north and south of the Solomois River have on average 2 m shorter trees
than forests surrounding it. The tallest forests, prominently visible in the TCHgg map, are located
in the central east, northeast, and the southwest Amazonia in the state of Acre and southern Peru
(Figure S4A). Tree height gradually decreases by going south to regions near the arc of deforestation
and fragmented landscapes or in transitional semi-deciduous forests between Amazonia and Cerrado.

Tree height in western landscapes of the Central Africa, particularly in central and western Gabon
grow taller than most regions in the African humid tropical forests, whereas trees in the central Congo
Basin are on the average 2—-4 m lower with TCH,,, ranging between 28 and 30 m (Figure S4B). Forests in
Asia show the highest TCHy, and TCHy of all continents, especially in Malaysia, Kalimantan, Papua
and some regions of Myanmar with TCHy, often exceeding 32 m (Figure 1) and TCHyj reaching values
>50 m (Figure S4C) on the average in the grid cells.

As a comparison, we created a stratified map separating potential ecoregions based on the 1-km
gridded data of soil, ground elevation, land cover, and vegetation fractional cover maps (Supplementary
S1; Tables S1 and S2). We used the GLAS lidar shots in each strata or ecoregion to create the mean TCH
(Figure S7). This map shows finer features and variations when compared to the gridded TCH of coarser
resolution (Figure 1), and also has an advantage of capturing the mean TCH under similar environmental
factors. For example, inundated forests of the central Amazonia and along the river systems with
average tree height of less than 25 m are separated (Figure S7B), while similar patterns are not readily
visible in the gridded data (Figure 1). On the other hand, any spatial variation of TCH at pixel level
vanishes and only a single measure exists for each strata, e.g., the vast region of western Amazon
stratified as one ecoregion with one mean TCH (Supplementary S1; Figures S8 and S9), comparing to
the gridded map (Figure 1) exhibiting a high contrast between the north and the south. Although the
ecoregion-based map has its own merits, we decided to use the gridded map for further statistical
analyses for its much larger sample size (in total 3119 gridded cells vs. 348 strata).

3.2. Statistical Analysis

Using spatial regression models, we estimated the tree height variations from the linear
combination of environmental variables, thus explaining the first-order changes of forest tree heights
with climate, soil and topographic features. With the help of landscape spatial features such as surface
elevation and the contextual information from spatial correlation of pixels, the model can explain
63% of the variations in mean forest height (TCH,,) using environmental variables in America and
Africa, and about 68% of the variation in Asia (Figure 2). For the variability of large trees represented
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by TCHyg, the explanatory power is less in America (60%), while the model performance improved
in Asia (72%). The residual figures show that there is still a slight bias toward overestimation of
short trees and underestimation of tall trees using environmental variables and regression model.
Nevertheless, these spatial-based analyses successfully remove spatial autocorrelations (Figure S10)
between geographically close pixels, which can help to correctly interpret the results of statistical
regressions between forest height and various environmental inputs. We also found similar results
using GLS spatial regression (Supplementary S2, Figure S11, Tables S3-S5). From partial linear
regressions using SEVM, both TCHy, and TCHyg are found to be mostly influenced by the landscape
spatial features. The climate and soil together explain more than 30% of the variations in forest height
(31% in America, 30% in Africa, and 47% in Asia), with climate variables having slightly higher
explanatory power than soil properties (Figure 3).

Estimated i _45 :
. Ea0 2
éas K 1 o
§ 30| . uoy .
8 ; 25 " (]
g & 20(3] =
E E 15:':- 'H2_+°
=4 o B = .63
QI015202530354045
455, OBserved Wean TCH (m)
10 —
8 .5.40 il
6 235 :
4 5 § 30 2
2 & ;25' e U
g o fao A
E S
< 23 & :g RZ = +0.63
a2
5 1015202530354045
50 Ohserved Mean TCH (m)
8 -
E
B 0 =40 LY
» 5] L) )
< E o}, S
230 * s
3 SRR
E20 S 7
d 7 . R?2=+0.68

10
10 20 30 40 50

Observed Mean TCH (m)

Figure 2. Spatial regression of tropical forests in America, Africa and Asia between TCH;, and all the

selected environmental variables.
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Figure 3. Contributions of soil, climate and spatial features to forest tree heights in terms of partial R2.
In the “Topo” columns, we included spatial (geographic latitude /longitude) information together with
the terrain data (SRTM and SRTM_SD).
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3.3. Environmental Controls

We identified environmental variables that are significantly correlated with spatial variations of
TCH (Tables 2 and 3). Among climate variables, the bioclimatic stress variable E shows high sensitivity
to TCHg variations across all continents, whereas it shows less significant sensitivity to variations of
TCHyy,. The importance of seasonality of climate in explaining tree height growth and spatial variations
are shown in terms of different precipitation variables. For American and African forests, precipitation
of driest quarter is correlated with variations of TCHgg suggesting strong influence on tree growth.
In Asia, the seasonality of precipitation is negatively correlated with TCHgg indicating taller forests
growing in areas with more climate stability throughout the year and with less seasonality. Seasonality
of precipitation has slightly less effect on the average forest height (TCH,) except in Asia with similar
explanatory power as for TCHgy.

Table 2. Spatial regression results using SEVM method for TCHp,.

America Africa Asia
Variable Coeff. Variable Coeff. Variable Coeff.
CEC_T —0.004 CEC_T —0.312 *** CEC_S —0.267 ***
SILT_S —0.063 * SILT_T —0.007 CLAY_T 0.167 ***
OC_T —0.168 *** OC_T 0.231 *** PH_T 0.185 ***
OC_S —0.117 *** CLAY_S 0.079 * SAND_S —0.15 ***
CALY_S 0.226 *** PH_T 0.155 *** E —0.062
PH_T —0.109 *** E —0.31 *** M Diural Range 0.07
SAND_T 0.126 ** T Seasonality 0.237 *** Max T warmest m —0.045
SAND_S —0.015 Max T warmest m 0.042 P seasonality —0.303 ***
E —0.195 *** T Annual Range —0.108 * P wettest Q 0.071
Isothermality —0.068 P seasonality —0.245 *** P warmest Q 0.176 ***
T Annual Range —0.35 *** P warmest Q —0.013 STRM —0.02
M T warmest Q —0.035 P coldest Q —0.197 *** STRM SD 0.072
Annual P 0.025 STRM —0.148 * LCF 0.504 ***
P seasonality —0.1571 *** STRM_SD 0.365 ***
P warmest Q 0.131 *** LCF 0.718 ***
P coldest Q —0.279 ***
STRM —0.002
STRM SD 0.03
LCF 0.591 ***

* p-Value < 0.05; ** p-Value < 0.01; *** p-Value < 0.001.

Table 3. Spatial regression results using SEVM method for TCHgy.

America Africa Asia
Variable Coeff. Variable Coeff. Variable Coeff.
CEC_S 0.056 * CEC_T —0.086 CEC_S —0.179 **
OC_T —0.185 *** SILT_S 0.091 * OC_T —0.098
OC_S —0.129 *** OC_S —0.036 CLAY_T 0.128 **
CLAY_S 0.175 *** CLAY_S 0.122 ** PH_T 0.126 ***
PH_T —0.118 *** PH_T 0.013 SAND_T —0.088 **
SAND_T 0.156 *** SAND_S —0.122 *** E —0.378 ***
E —0.168 *** E —0.321 *** M Diural Range —0.186 ***
Max T warmest m —0.068 Max T warmest m 0.057 Min T_Coldest m —0.584 ***
M T driest Q —0.031 T Annual Range 0.004 P seasonality —0.283 ***
P driest M 0.16 *** P westtest M —0.071 P warmest Q 0.156 ***
P wettest Q —0.009 P driest Q —0.245 *** STRM —0.006
STRM —0.031 P warmest Q 0.202 *** STRM SD 0.093
STRM SD 0.219 *** STRM —0.051 LCF 0.519 ***
LCF 0.572 *** STRM SD 0.473 ***
LCF 0.531 ***

* p-Value < 0.05; ** p-Value < 0.01; *** p-Value < 0.001.
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Terrain elevation heterogeneity or ruggedness represented by STRM SD variable is positively
correlated with TCH variation across all continents in both methods, indicating that the ruggedness is
much more important than the average ground elevation in tree height distributions. This variable
strongly influenced the distribution of dominant forest height (TCHyg) in America and Africa and has
the largest coefficient compared to other predictor variables (Table 3). However, the same is not true
about TCHyy,, expect with some statistical significance in Africa, suggesting that moderate ruggedness
of the landscape impact the dominant tree height more than the average height.

Soil properties have less influence on variations of TCH compared to either the climate or
the geographical features. However, individual properties present nonnegligible impacts on TCH
variations. Clay content, as a physical structural property of soil, exhibits a significantly positive
relationship to both TCH metrics in all continents. Cation-exchange capacity (CEC), a well-known
chemical property and a measure of soil fertility, is also a significant factor in Africa and Asia for
TCHp, and in America and Asia for TCHgg. A general chemical measure, pH value, shows significant
but completely opposite effects on TCH metrics in America than other continents, with pH value
negatively correlated to TCHy, and TCHgg in Americas, but positively correlated in Africa and Asia.
For other soil biological properties, we find that the soil organic carbon (OC) content has a strong
negative correlation on TCH metrics in America, while it shows positively correlated with TCHy, in
Africa, and less clear in Asia.

4. Discussion

Results from our study suggest that mean annual properties of climate in humid tropical regions
such as annual mean and total precipitation do not exert any significant control or limit both the
mean and 90 percentile of forest canopy height across the three continents. Similarly, annual mean
temperature has no significant effect on the mean tree height variations. Our findings suggest
that the spatial distribution of mean canopy structure in humid tropical forests are not strongly
dependent on the mean climate characteristics. Although the relationship between TCH metrics and
annual precipitation (Figure 4) demonstrate that TCH metrics increase with rainfall within a certain
precipitation range (1000 mm to 2000 mm), particularly in the American forests, most observations
from humid tropical forests are located in the plateau area (precipitation > 2000 mm), thus making these
mean/total climate variables less important compared to other climate variables such as seasonality
parameters and extreme values. Note that in the model selection process, mean climate variables were
rarely included as important predictor variables (except in the case of TCHp, in America).

Climate seasonality is one of the major factors regulating the maximum or dominant forest
height represented by TCHyg (Table 3). Particularly, the E variable representing the water deficit,
ranks 4th in America, 2nd in Africa, and 2nd in Asia as the set of predictor variables (excluding the
spatial features) in the SEVM approach. The water deficit (E variable) also has a significant impact
on the TCH, in America and Africa. Precipitation Seasonality, replacing the E variable in Asia, is
found to be the important factor influencing the forest mean height (Table 2). By plotting the TCH
metrics directly against the E factor (Figure 5), we found a consistently negative relationship in either
America or Africa, but a less clear pattern in Asia, suggesting that water deficit plays a key control
in distribution of tree height in continental tropical forests. The island geography in southeast Asia
moderates the temperature seasonality [53] while still provides vital seasonal rainfalls from monsoon
phenomenon [54], so that the precipitation seasonality has a larger influence and dominates the changes
of E variable in Asia. Our study suggests that at the macroscale, the seasonal variation of climate,
particularly precipitation-related, is one of the most important factors linearly relating to mean and
dominant forest height as forest structural traits.
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Spatial regression results also show that the extreme values of precipitation (P coldest Q, P
warmest Q, P driest M, P driest Q and P wettest M) are more important than the extreme values of
temperature (M T warmest Q, Max T warmest m, M T driest Q, and Min T coldest m) in macroscale
patterns of mean forest height in tropics (Tables 2 and 3). Partial R? results of TCHy,, show that the
extreme values of precipitation can explain 4 to 12 times more than the extreme values of temperature
in America and Asia, while the extreme values play an equal role in African forests. This result confirms
that tropical forests are more sensitive to precipitation-related extreme events, such as droughts, rather
than temperature-induced events in their present condition [13]. However, this does not necessarily
imply that changes in future temperature due to climate warming do not have any adverse effects on
tropical forest function. There are strong evidence that climate warming is associated with changes
of precipitation seasonality and drier conditions with strong influence of the patterns and processes
that sustain tropical forests [55-57]. In fact, the gridded maximum height of the forests when used as
a surrogate for the maximum attainable height of tree population in the forest, may be strongly related
to demographic trade-offs and the recruitment rate efficiency, together reflecting the investments for
hydraulic conductance of forests in the region [26,58]. Sensitivity of the maximum height trait to
climate over the tropics suggests that changes of the climate, particularly precipitation seasonality may
directly impact demographical trade-offs such as mortality and recruitment rates. These effects will
potentially change the tree composition by emphasizing the abundance of trees with more efficient
hydraulic conductivity and possibly shorter in height [59].

Recent studies of modeling efforts on the prediction of tropical forest biomass and productivity
always present a biased estimation of large trees due to the limited or simplified resource information
regulating the growth of forest [60]. We thus included the soil properties in our analyses and attempted
to find evidences of edaphic controls on tropical tree height. Although the overall importance of soil
on TCH is approximately half of that of climate (Figure 3), the TCH variations are statistically related
to the changes of soil properties. In all regression results, TCHy, and TCHgy show a significantly
positive relationship to the soil physical property—clay content of either topsoil or subsoil. The results
support the typical functionality of clay content in soil that (1) it has a relatively large nutrient capacity;
(2) it can hold enough water for root absorption, and (3) it potentially has the structural strength
to fix the roots of large trees [61]. The one-to-one relationships of TCH and soil physical property
demonstrate a positive trend of TCH with clay content in America, as well as a negative relationship
between TCH and sand in Africa and Asia (Figure 6). We plotted sand instead of clay content in
Africa and Asia due to the fact that clay content has less dynamic ranges in these two continents.
However, the variation of sand content should compensate the changes of clay, as sand, silt and clay
together describe the soil texture. Another significant control of the soil is the negative relationship
between TCHp, and the soil fertility—CEC. It is seemingly counterintuitive, that mature forests with
taller trees are actually located on less fertile soil. However, the result is corroborated by several
previous findings in the Amazon basin—forests with largest above ground biomass occur on relatively
poor soils [17]. Although the total CEC may not be an ideal indicator of fertility due to the inclusion
of aluminum, such negative relationship can potentially be explained by the faster turnover rates for
forests with high soil fertility [17]. In contrast, we found positive relationships between pH values
and TCHyy, both Africa and Asia, though CEC should be highly dependent on the pH values. We also
found this behavior of pH by plotting the one-to-one relationships of TCH vs pH values (Figure 7).
The underlying reasons for these differences remain unclear. Possible explanation could be that the
forests in Africa and Asia are in favor of the basic environment to allow more base cations (Ca, Mg, K
and Na) rather than Al and H+ ions under high acidity, which may be explained by the less factions
of Ferralsol found in Africa and Asia [62]. If we consider the combined effect of pH and CEC as
the indicator of the soil fertility, then similar observations on the continental differences have been
reported in other studies [63]. The last soil factor that can explain the TCH distribution at macroscale is
the soil organic carbon (OC). Interestingly, the sensitivity of OC to TCH varies continent by continent.
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In America, OC is negatively related to both TCH,, and TCHgg, while it is positively correlated to
TCHp, in Africa. In addition, these relationships are less obvious for the TCHg in either Africa or Asia.
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The last control variable on forest structure we tested is ground topography. Higher elevation
usually indicates lower temperature and probably less water availability, leading to a high possibility
of resource limitation. Thus, SRTM is expected to show a negative relationship to TCH metrics,
like what we found in Tables 2 and 3 for most of the SRTM numbers. However, most of them are
not significant, either meaning the mean ground elevation is not one of the major drivers for TCH
prediction, or insufficient data range due to the fact that most observations are from low-elevation
inundated forests. In contrast, the standard deviation of ground elevation (SRTM SD) consistently
shows a positive relationship to either TCHy, or TCHgg and statistically significant in Africa and
America, indicating that the surface ruggedness is more important in finding taller trees, or old and
tall trees are better preserved in hard-reaching (rugged) area. Such regional differences imply that
areas with moderate topography can produce a higher overall carbon stock probably due to its large
variation in resource supply.

In our analysis the underestimation of TCH using climate-only data is not resolved. In fact,
we can see both underestimation of high TCH and overestimation of low TCH, suggested by the
regressions analyses (Figure 2). This is probably due to: (1) land use changes creating heterogeneous
and fragmented landscapes with variations in tree height at small scale that are not captured by the
land cover map but can be detected by lidar footprints. Although we filtered the GLAS lidar based on
the land cover types, but a significant number of GLAS footprints over fragmented landscapes may
still remain in the mix; (2) there are other controls not considered in this analysis, such as disturbances
including logging, disease and wildfires, that drive the growth of tall trees. Essentially, tree height is
related to its age, especially when the tree is not mature yet. The forest turnover rate is high in areas
where it is easily accessible (close to road, river, population, or in low elevation) [64]. Given the same
conditions of climate, soil and topographic features, the areas with high disturbances could have lower
tree heights that are not detectable from our current regression model.

5. Conclusions

The macroscale variations of tree height over humid tropical forests present regionally as well
as continentally different patterns from systematically samples of satellite observations using GLAS
lidar sensors. In this study, we used TCH;,, and TCHgg derived from GLAS to analyze the regional
variability of average and large trees globally. Using spatial regression, our continental-scale results
confirm other landscape and regional studies that soil fertility, geology and climate may jointly control
majority of the regional variations of tropical forest structure and influence both biomass stocks and
dynamics. Our tests include a large suite of parameters in climate and soil properties, which can
provide as a source of reference to other in-depth studies focusing on the unexplainable fraction of
variations caused by other environmental factors, such as biotic and disturbance regimes, not included
in this study.
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