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Abstract: Woodland vernal pools are important, small, cryptic, ephemeral wetland ecosystems that
are vulnerable to a changing climate and anthropogenic influences. To conserve woodland vernal
pools for the state of Michigan USA, vernal pool detection and mapping methods were sought that
would be efficient, cost-effective, repeatable and accurate. Satellite-based L-band radar data from
the high (10 m) resolution Japanese ALOS PALSAR sensor were evaluated for suitability in vernal
pool detection beneath forest canopies. In a two phase study, potential vernal pool (PVP) detection
was first assessed with unsupervised PALSAR (LHH) two season change detection (spring when
flooded—summer when dry) and validated with 268, 1 ha field-sampled test cells. This resulted
in low false negatives (14%–22%), overall map accuracy of 48% to 62% and high commission error
(66%). These results make this blind two-season PALSAR approach for cryptic PVP detection of use
for locating areas of high vernal pool likelihood. In a second phase of the research, PALSAR was
integrated with 10 m USGS DEM derivatives in a machine learning classifier, which greatly improved
overall PVP map accuracies (91% to 93%). This supervised approach with PALSAR was found to
produce better mapping results than using LiDAR intensity or C-band SAR data in a fusion with the
USGS DEM-derivatives.
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1. Introduction

Due to increased awareness of the ecological significance of vernal pools, there has been growing
interest in identifying, mapping, monitoring, and protecting these valuable forested wetlands. Vernal
pools are small (typically less than 1 ha), shallow, isolated, temporary wetlands that are important for
maintaining healthy forest ecosystems. In addition, known as temporary or ephemeral ponds, vernal
pools occur in various forms throughout the world [1]. In most years, vernal pools are filled with water
in the spring, and dry or significantly draw down in summer, exposing all or most (i.e., >50%) of the
pool bottom. As confined-basin depressions, they lack continuously flowing inlets or outlets, and they
have no continuous surface-water connection with permanently flooded water bodies. Woodland
vernal pools generally contain water for a minimum of two months in most years and the regular
drying prevents fish from establishing populations in these wetlands. Reduced predation pressure
from fish and minimum hydroperiods of two months allow the eggs and larvae of many of the
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amphibians and invertebrates that breed in vernal pools to successfully complete their development,
metamorphose into adults, and leave the pools. Vernal pools, therefore, provide critical breeding
habitats for amphibians and invertebrates, including obligate (a species that requires or is restricted
to a specific habitat or environmental conditions) species that rely on vernal pools to complete their
life cycle and a number of rare and declining plant and animal species [2–11]. Additionally, there
are important ecosystem services that vernal pools provide, such as nutrient cycling, water storage,
groundwater aquifer recharge, flood control, and improved water quality [5,11–15]. Due to their small
size and short hydroperiods, vernal pools are vulnerable to climate change and land use development.
Researchers and resource managers agree that these important ecosystems need to be protected, but
conservation of these small isolated ecosystems requires knowledge of their location and distribution,
which is largely unknown. Conservation also requires information about their biology and ecology,
which needs to be sampled in the field.

Due to their small size, temporary and isolated nature, and association with forested ecosystems,
vernal pools can be challenging to locate with conventional surveying and mapping techniques.
Currently, the most common approach to inventorying and mapping vernal pools is through aerial
photograph interpretation [16–21]. A number of state governments within the United States of
America have implemented efforts to identify and map vernal pools within their jurisdictions
(e.g., Massachusetts, Maine, New Hampshire, New Jersey, Rhode Island, and Vermont) [5,11,19,20].
These efforts have consisted of remotely identifying and mapping water features within forests that
are labeled potential vernal pools (PVPs) and then conducting necessary field surveys to confirm that
the identified water features are actual vernal pools. After confirmation, the PVPs are upgraded to a
status of confirmed vernal pools (CVPs). This naming convention is followed in the research presented
in this article.

While aerial photo interpretation and field surveys can be fairly effective in identifying and
mapping vernal pools, these approaches are time- and labor-intensive and expensive to implement
across large regions [5]. In addition, there are limitations to optical-based imagery in detecting pools
beneath tree canopies. Image interpreters typically rely on spring photos to obtain the best detection of
PVPs because in leaf-off conditions the amount of foliage blocking the view of sub-canopy features is
minimized. Vegetation layers within the pools are variable and may consist of trees, shrubs, submergent
and floating aquatics. However, the utility of this approach is limited to deciduous forests and generally
fails in the case of dense evergreen forest cover (e.g., conifers). The accuracy of aerial photograph
interpretation varies depending on landscape characteristics, surrounding forest cover, pool type and
size, timing of the aerial photography, photograph scale, and interpreter experience [5,17–20,22]. These
limitations have led researchers and resource managers to investigate other image sources for detecting
and mapping PVPs (e.g., radar and/or LiDAR data) [23–25].

The low frequency radar sensors (synthetic aperture radar—SAR) are able to penetrate forest
canopy cover to detect the presence of standing water at the ground surface. In addition, the all-weather
capability of SAR sensors allows for timely collection of data to detect flooded conditions in the spring,
irrespective of cloud cover. For example, L-band (~24 cm) wavelengths produce characteristic enhanced
(bright) radar signatures from forests in a flooded condition because much of the incoming energy
is reflected back to the antenna due to double-bounce scattering (dihedral effects, Figure 1). In a
non-flooded forest, more of the incoming energy is absorbed by the ground and the backscatter
signatures are moderate, with gray image tones. While shorter wavelength C-band (~5.6 cm) reflects
primarily off the canopy (Figure 1), when there are gaps in the canopy or leaf-off conditions, penetration
of C-band energy to the ground does occur (not shown in Figure 1). L-band is theoretically the better
SAR wavelength for PVP detection in leaf-off and leaf-on conditions, while C-band may only provide
limited utility under leaf-off or low density forest conditions.
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Figure 1. Schematic showing the theoretical scattering of L-band (~24 cm wavelength) and C-band (~5.6 cm 
wavelength) SAR from flooded versus non-flooded forests. In leaf off condition or with significant gaps in 
the canopy C-band will penetrate to the forest floor similar to L-band. 

LiDAR (Light Detection and Ranging) sensors are typically used to create high resolution Digital 
Elevation Models (DEMs) that are useful for delineating low lying areas indicative of PVPs e.g., [24]. The 
intensity of the returns has also been used to map extent of inundation of forested wetlands in leaf-off 
conditions [26]. The mapping is possible because of the high absorption of incident near-infrared by water, 
often resulting in very low returns from inundated forests when leaves are off. While scan angle (glint), 
surface roughness and other variables influence whether or not the energy is absorbed, these limitations 
can be accounted for and using LiDAR intensity for mapping forest inundation is an active area of research. 
However, LiDAR data availability for the region of interest (the state of Michigan) is limited to merely a 
few counties. It was therefore not a main focus of study. 

The goal of our research was to develop a remote sensing method for mapping vernal pools across the 
state of Michigan that would be efficient, cost-effective, repeatable and accurate. We evaluated satellite-
based L-band radar data from the high (10 m) resolution Japanese ALOS PALSAR FBS (fine beam single) 
imagery (collected between 2006 and 2011) to determine if it could be used to effectively detect vernal pools. 
Using the definition of a vernal pool, as described above (that they are forest covered and flooded in the 
spring and dry in the summer), we hypothesized that two seasons of radar imagery (spring and summer) 
could be used to capture these hydrological differences for distinction of vernal pools from non-wetlands, 
as well as from permanently-flooded wetlands which should have a bright L-band signature in both spring 

Figure 1. Schematic showing the theoretical scattering of L-band (~24 cm wavelength) and C-band
(~5.6 cm wavelength) SAR from flooded versus non-flooded forests. In leaf off condition or with
significant gaps in the canopy C-band will penetrate to the forest floor similar to L-band.

LiDAR (Light Detection and Ranging) sensors are typically used to create high resolution Digital
Elevation Models (DEMs) that are useful for delineating low lying areas indicative of PVPs e.g., [24].
The intensity of the returns has also been used to map extent of inundation of forested wetlands in
leaf-off conditions [26]. The mapping is possible because of the high absorption of incident near-infrared
by water, often resulting in very low returns from inundated forests when leaves are off. While scan
angle (glint), surface roughness and other variables influence whether or not the energy is absorbed,
these limitations can be accounted for and using LiDAR intensity for mapping forest inundation is
an active area of research. However, LiDAR data availability for the region of interest (the state of
Michigan) is limited to merely a few counties. It was therefore not a main focus of study.

The goal of our research was to develop a remote sensing method for mapping vernal pools across
the state of Michigan that would be efficient, cost-effective, repeatable and accurate. We evaluated
satellite-based L-band radar data from the high (10 m) resolution Japanese ALOS PALSAR FBS
(fine beam single) imagery (collected between 2006 and 2011) to determine if it could be used to
effectively detect vernal pools. Using the definition of a vernal pool, as described above (that they are
forest covered and flooded in the spring and dry in the summer), we hypothesized that two seasons
of radar imagery (spring and summer) could be used to capture these hydrological differences for
distinction of vernal pools from non-wetlands, as well as from permanently-flooded wetlands which
should have a bright L-band signature in both spring and summer. We also evaluated LiDAR intensity
data and Radarsat-2 C-band high resolution data for suitability in detection of vernal pools.
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2. Materials and Methods

2.1. Criteria for Selection of Study Areas

Several areas within Michigan including the western Upper Peninsula (WUP), southeastern Lower
Peninsula (SLP), and northeastern Lower Peninsula (NLP) were targeted for this study (Figure 2).
These areas include distinct ecoregions [27] suspected to support an abundance of vernal pools because
of the presence of bedrock, fine-textured soils, or high water tables near the surface that would
impede surface water infiltration. To help identify potential study areas, a GIS-based hotspot analysis
was performed on isolated forested wetlands based on palustrine wetlands in the National Wetland
Inventory (NWI) and concentrations of hydrologically isolated wetlands in forested settings were
thereby identified [23]. This analysis helped limit (stratify) our mapping to areas in the state with a high
potential to exhibit vernal pools. Several areas in Michigan’s Upper and Lower Peninsula were chosen
to test the effectiveness of remote sensing methods for mapping vernal pools to determine if there was
any regional variability in the approaches. All study areas were located on public lands in relatively
undeveloped areas (i.e., federal and state forest lands and state recreation areas). Study areas were also
limited to parts of the state that had archival 10 m FBS PALSAR data (Figure 3) and aerial photographs
available from the seasons of interest (i.e., available radar data for spring and summer/flooded and
not flooded conditions as well as high resolution, color-infrared leaf-off aerial photographs).
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Figure 3. Map shows optimal PALSAR footprints for 10 m Fine Beam Single data from Spring as “blue” for 
summer as “purple” and the yellow shows the overlap. 
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and precipitation. The SLP study area has a growing season of 140 to 150 days, annual average snowfall of 100–
127 cm, total precipitation of 76 to 81 cm and an average minimum temperature of −31 °C [27]. The NLP has a 
shorter growing season (70–130 days) and colder minimum temperatures (−37 °C to −45 °C) with more snow 
(127–355 cm) but similar total precipitation (71 to 81 cm). The WUP is the most extreme of the study areas 
with heavy snow (101 to 355 cm) and extremely cold winters. Growing season is merely 87 days with an average 
minimum temperature of −45 °C [27]. 

The vegetation also varies among the study areas, with the dominant natural community around 
sampled vernal pools (i.e., within 30 m) of the SLP characterized as dry-mesic southern forest [28]. The 
vegetation canopy layer of the dry-mesic southern forest is generally dominated by white oak (Quercus 
alba) and/or black oak (Q. velutina). For the NLP, the dominant types were mesic northern forest and dry-
mesic northern forest [28]. Mesic northern forests are characterized by the dominance of northern 
hardwoods, particularly sugar maple (Acer saccharum) and American beech (Fagus grandifolia). Conifers 
such as hemlock (Tsuga canadensis) and white pine (Pinus strobus) are frequently important canopy 
associates. Dry-mesic northern forests are pine or pine-hardwood forests dominated by white pine, red 
pine (Pinus resinosa) and hemlock. Hardwood associates include white oak, black oak, red oak (Q. rubra), 
red maple (A. rubrum), paper birch (Betula papyrifera), aspen (Populus tremuloides and P. grandidentata), and 
balsam poplar (P. balsamifera). For the WUP, the sampled pools were surrounded by mesic northern forest, 
with coniferous species, such as hemlock, white pine, and northern white-cedar (Thuja occidentalis) dominant 
in the canopy and beech was absent. 

2.2. Field Sampling Methods 

Sampling Design and Surveying Methods 

Field sampling was conducted in all three study areas (Figure 2) in 2012 and 2013 to identify presence 
of vernal pools on the ground, verify and map locations. Field sampling was conducted during two 
different time periods; early season sampling from 4 May to 14 June 2012 to identify PVPs when they are 
typically filled with water and late season sampling from 14 August to 2 November 2012 to revisit identified 

Figure 3. Map shows optimal PALSAR footprints for 10 m Fine Beam Single data from Spring as “blue”
for summer as “purple” and the yellow shows the overlap.

The climatic conditions of the study areas are continental but vary in growing season length,
temperature and precipitation. The SLP study area has a growing season of 140 to 150 days, annual
average snowfall of 100–127 cm, total precipitation of 76 to 81 cm and an average minimum temperature
of ´31 ˝C [27]. The NLP has a shorter growing season (70–130 days) and colder minimum temperatures
(´37 ˝C to ´45 ˝C) with more snow (127–355 cm) but similar total precipitation (71 to 81 cm). The
WUP is the most extreme of the study areas with heavy snow (101 to 355 cm) and extremely cold
winters. Growing season is merely 87 days with an average minimum temperature of ´45 ˝C [27].

The vegetation also varies among the study areas, with the dominant natural community around
sampled vernal pools (i.e., within 30 m) of the SLP characterized as dry-mesic southern forest [28].
The vegetation canopy layer of the dry-mesic southern forest is generally dominated by white oak
(Quercus alba) and/or black oak (Q. velutina). For the NLP, the dominant types were mesic northern
forest and dry-mesic northern forest [28]. Mesic northern forests are characterized by the dominance of
northern hardwoods, particularly sugar maple (Acer saccharum) and American beech (Fagus grandifolia).
Conifers such as hemlock (Tsuga canadensis) and white pine (Pinus strobus) are frequently important
canopy associates. Dry-mesic northern forests are pine or pine-hardwood forests dominated by white
pine, red pine (Pinus resinosa) and hemlock. Hardwood associates include white oak, black oak, red
oak (Q. rubra), red maple (A. rubrum), paper birch (Betula papyrifera), aspen (Populus tremuloides
and P. grandidentata), and balsam poplar (P. balsamifera). For the WUP, the sampled pools were
surrounded by mesic northern forest, with coniferous species, such as hemlock, white pine, and
northern white-cedar (Thuja occidentalis) dominant in the canopy and beech was absent.

2.2. Field Sampling Methods

Sampling Design and Surveying Methods

Field sampling was conducted in all three study areas (Figure 2) in 2012 and 2013 to identify
presence of vernal pools on the ground, verify and map locations. Field sampling was conducted
during two different time periods; early season sampling from 4 May to 14 June 2012 to identify PVPs
when they are typically filled with water and late season sampling from 14 August to 2 November
2012 to revisit identified PVPs to confirm draw down and to sample additional PVPs. A stratified
random sampling design was used for the field surveys. A sampling grid of 1-ha (2.5 ac) test cells
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was overlaid on each study area (Figure 2) and the cells were randomly numbered. The first 150 of
these randomly ordered cells were selected for field sampling in the early season of 2012. Since only a
small number of these 150 test cells contained PVPs from aerial photograph interpretation, we selected
an additional 40 test cells from each area that contained at least one aerial photograph interpreted
PVP and randomly ordered these for sampling in the late season (2012). These were added to better
estimate commission error.

The entire area within sampled test cells was surveyed. Two observers would systematically
walk a series of transects or passes through each 1-ha test cell selected for sampling to identify and
locate vernal pools within the test cell. Observers divided up the test cell into halves or thirds, and
walked parallel to each other through the test cell from end to end, making one or two passes through
depending on visibility (e.g., vegetation type and density, slope, etc.) to detect vernal pools within the
test cell.

A total of 402 test cells were sampled across all three study areas; including 125 in the SLP, 168
in the NLP, and 109 in the WUP study area. Within the test cells, 38 PVPs were mapped in the NLP
study area, 37 in the SLP study area, and 30 in the WUP. In 2013, PVPs that had been field-mapped
in the test cell were surveyed to confirm their status (i.e., CVP), and additional new or previously
unmapped PVPs were identified and located within the sample test cells as well. All vernal pools are
not wet every spring and the timing of inundation may vary from year to year or between pools, thus
repeating the surveys in subsequent years is useful and necessary.

To provide additional data to evaluate the suitability of using L-band and C-band SAR data to
detect and map PVPs, additional field surveys were conducted in 2013 and 2014 in the SLP and WUP
study areas. These surveys focused on visiting and verifying individual PVPs that had been identified
as PVPs from ground surveys described above and/or aerial photograph interpretation. A total of
30 PVPs in the SLP study area and 35 PVPs in the WUP study areas were surveyed in 2013–2014. Field
sampling in 2013 and 2014 followed the vernal pool survey and monitoring protocol developed for
the Michigan Volunteer Vernal Pool Mapping and Monitoring Program [29]. The protocol consists of
conducting three visits a year to view the different stages of the vernal pool (early spring, mid-spring,
and late summer/early fall). Information on the physical and ecological characteristics of the pools was
collected during these surveys. The pool size, cover type, substrate type, water level, vegetation/cover
in pool, the surrounding habitat and any disturbances were all recorded each visit. Indicator species
and other animal species were identified and counted. A diagram of the pool was drawn along with a
GPS center point and GPS tagged photos were taken in the four cardinal directions.

2.3. Remote Sensing Datasets

ALOS PALSAR L-band HH polarization, Radarsat-2 C-band HH polarization and an airborne
LiDAR dataset were evaluated for vernal pool detection. In addition, USGS 10 m resolution digital
elevation models (DEM) were used as an ancillary dataset. The imagery available for evaluation varied
by site (Table 1).

Table 1. Summary of datasets evaluated for the detection of vernal pools including source imagery,
year, resolution and sites covered. Two image dates were used per site (spring and summer).

Data Set Date of Acquisition Sites Resolution Incidence Angle

PALSAR FBS L-HH
2 April 2006 and 12 July 2006 WUP

10 m 34.3˝ and 41.5˝31 May 2006 and 14 August 2006 NLP
31 May 2006 and 2 August 2006 SLP

Radarsat-2 FQ
C-HH

31 May 2014 and 4 September 2014 WUP
5–8 m

19˝ (WUP)
24 April 2014 and 29 July 2014 SLP 24˝ (SLP)

LiDAR Spring 2009 SLP 1 m Nadir
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2.3.1. LiDAR

The LiDAR data for Washtenaw County were collected using a LH Systems ALS50 at 1064 nm
wavelength with scan frequency of 65.3 Hertz and 1.5/m2 point density in the spring of 2009 for the
Southeastern Michigan Council of Governments (SEMCOG). The LiDAR data were processed to a 1 m
resolution DEM and a 1 m resolution intensity image using Quick Terrain Modeler [30] software. Only
the LiDAR intensity data are presented in this study. The LiDAR intensity analysis was exploratory to
determine the utility for PVP detection. Since LiDAR data were unavailable for the NLP and WUP
study areas and limited in the SLP, but the 10 m USGS DEMs were available for the entire state through
the USGS, the latter were chosen to produce DEM derivatives for integration with PALSAR for this
research study. LiDAR DEM data have been evaluated for PVP detection by others [24].

2.3.2. USGS 10 m DEM

The USGS 10 m DEM products used are from the 3D Elevation Program (3DEP) [29,31]. The
10 m DEM products with 1.55 m vertical accuracy from the USGS were used to create two additional
products, a Topographic Position Index (TPI) and an isolated depressions map:

Development of Isolated Depressions Maps from USGS DEM

A method to create a map of isolated depressions was developed using ArcGIS. Pixels in the 10 m
USGS DEM with values lower than each of their surrounding eight neighbors are filled to the level
of their lowest neighbor using the ArcGIS Fill tool from the Spatial Analyst Toolbox. This process is
iterated until all sinks are filled. This method is typically used to eliminate imperfections in elevation
models for hydrologic analyses, but was exploited for this project by subtracting the depression-less
DEM from the original DEM. The resulting dataset shows only the locations of isolated depressions.
These depressions are, in theory, independent of local surface-water hydrology, which is one of the
main criteria used for vernal pool verification. These data were then used as an input layer to the
Random Forests Classifier.

Development of the TPI from USGS DEM

Topographic Position Index (TPI) is a measure of a point’s elevation relative to the area
immediately surrounding it [32]. To calculate TPI, each cell in the 10 m USGS DEM was compared to
the average value of cells in its surrounding neighborhood. In the resulting dataset, negative values
indicate the cell is relatively lower in elevation than the area around it, while positive values indicate
the cell is relatively higher in elevation. TPI is highly dependent on input parameters such as the shape
and size of the neighborhood. For this project, a circular neighborhood with a 10 cell (100 m) radius
was used.

2.3.3. SAR Data

The high resolution Fine Beam single (FBS) product of ALOS PALSAR (Phased Array type L-band
Synthetic Aperture Radar on board the Advanced Land Observing Satellite) was the focus of study
with its L-band (~24 cm) wavelength at 10 m resolution and HH-polarization. Archival PALSAR
FBS images were obtained in 2012 through the Alaska Satellite Facility (ASF) and processed and
radiometrically terrain corrected in ASF’s MapReady software, which uses the Ulander approach to
mitigate the effect of local terrain variability [33,34]. PALSAR has a radiometric accuracy ˘0.64 dB and
a noise equivalent of ´31.1 dB for HH [35,36].

Radarsat-2’s C-band (~5.6 cm) wavelength data in fine quad (FQ) polarization were tasked for
spring and summer collection for two of the study areas in 2014 to test the applicability of C-band on
woodland vernal pool detection. Radarsat-2 data were processed and radiometrically terrain corrected
in PCI Geomatica. Radarsat-2 has a reported radiometric accuracy within 0.43 dB [37].



Remote Sens. 2016, 8, 490 8 of 21

All SAR data were georeferenced to UTM using bilinear interpolation. The data were further
geocorrected to each other in Erdas Imagine to within 1 pixel using Landsat TM Images as reference. A
3 ˆ 3 median filter was applied to the SAR imagery to reduce speckle. Speckle is the coherent addition
of backscatter from multiple scatterers in the same resolution cell, and is inherent to all SAR imagery.
The result is random constructive and destructive interference, manifesting itself in bright and dark
neighboring pixels that have the appearance of “salt and pepper”. Because of speckle, a single pixel in
SAR imagery cannot be used to measure features on the ground without further processing, therefore,
a filter was applied to the SAR data.

Development of SAR Seasonal Change Images

Using the hydroperiod of a vernal pool, as defined in this article, wet in spring and dry in summer,
seasonal change images were created between spring and summer PALSAR HH-polarization data
of similar incidence angle for the various sites. Optimal spring and summer SAR data were selected
which did not have more than a trace of rain within the previous 24 h of the collection date (local
weather stations were used to check rainfall). Scenes with rainfall were avoided since water on plant
leaves and the soil could have a significant effect on the backscatter signal. Forested areas exhibiting
backscatter greater than ´5.23 dB in the spring scene were considered flooded. This determination was
made by examining pixel values at both known flooded and dry forest locations. The speckle filtered
spring image was therefore thresholded to only show pixels with backscatter of ´5.23 dB (linear scale
0.3) or greater. The reclassified spring image was then subtracted from the summer image. Negative
values in the resulting product were areas with decreased backscatter, indicative of drying, and were
considered to be areas that could be PVP locations (Figure 4).
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Figure 4. Example of the Summer and Spring PALSAR images and resulting Seasonal change Image.
In the SAR seasonal change image areas of negative change are shown as cyan. A subsetted area is
shown below with the cyan (negative change) values overlaid on an aerial image and confirmed vernal
pool (CVP in yellow) field points overlaid.
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2.4. Remote Sensing Approach

The assessment of SAR for vernal pool mapping was implemented in two phases (Figure 5).
In phase I, remote sensing methods developed without field training data (unsupervised approaches)
were tested for detecting PVPs in the study areas selected (Figure 2). The SAR seasonal change images
described above were the basis of the Phase I unsupervised PVP maps (Figure 5). Once the negative
change values were extracted from the seasonal change images, the change maps were filtered with a
forest/non-forest map based on the 2010 NOAA Coastal Change Analysis Program (C-CAP) landcover
map ([38], Figure 5). This last step was conducted to limit the errors in non-forested areas, which may
also cause a negative change from spring to summer (e.g., spring to summer changes in agricultural
lands).This first phase was conducted in 2012 and allowed comparison of blind methods of PVP
detection (PALSAR seasonal change) to the 2681 ha test cells concurrently sampled in 2012, to establish
the viability of the PALSAR methods [23].
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Figure 5. Schematic diagram showing the Phase I (top panel) unsupervised approach to detecting PVPs
and the Phase II (bottom panel) supervised Random Forests approach, including the datasets used for
validation. The spring, summer and seasonal change PALSAR images are used in both approaches.
WUP = western Upper Peninsula; NLP = northeastern Lower Peninsula; SLP = southeastern Lower
Peninsula; PVPs = Potential Vernal Pools; CVPs = Confirmed Vernal Pools; C-CAP = Coastal Change
Analysis Program.
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In Phase II of the project, the machine learning classifier, Random Forests [39], was evaluated for
mapping PVPs with the PALSAR and DEM-derivative datasets using field data for training (supervised
classification, Figure 5). Random Forests (RF) is an ensemble classifier consisting of multiple decision
trees generated from a random subset of training data sites and bands from a stack of all data. Once
the forest of decision trees is created, an individual pixel’s classification is determined by which class
receives the most “votes” across all decision trees. RF has been demonstrated as suitable for regional
wetland mapping [40–42].

For phase II (Figure 5), field data on specific CVP locations (not test cells) were used to create
polygons to be used as training and validation data. The SAR and LiDAR images used in this study
did not cover the entire areas that were field surveyed, therefore a subset were used for training and
validation; 28 SLP, 23 NLP and 35 WUP CVPs fell within the imaged areas. For all other non-vernal
pool (NVP) land cover types, polygons (121 SLP, 180 NLP, 161 WUP) were delineated by trained aerial
photograph interpreters and included in the training and validation data. All polygons combined
(CVP and NVP) represented 2.25 km2 of the SLP (total image area 554 km2) and 9.65 km2 of the NLP
(total image area 1363 km2). The image area is based on an intersection of the remote sensing footprints
and study area. An 80/20 split was made between training (80%) and validation (20%) data.

The SLP sites served as the location of PALSAR algorithm development and the methods were
then applied to the NLP and WUP study areas. The RF classifier was also applied to the Radarsat-2
spring, summer, seasonal change and DEM data for the SLP, and WUP sites, while RF was applied to
LiDAR and DEM data only for the SLP site.

2.5. Accuracy Assessments

2.5.1. PALSAR Blind Potential Vernal Pool Mapping

An accuracy assessment was performed by comparing PVP unsupervised mapping results to
field sampling results of the 1 ha test cells surveyed for presence/absence of water beneath a forest
canopy in 2012. Producer’s and User’s accuracies were calculated for each of the maps. User's accuracy
is a measure of how accurately a classification performed in the field (errors of commission = 100 ´

user’s accuracy) while producer’s accuracy is a measure of how accurately the analyst classified the
image data (errors of omission = 100 ´ producer’s accuracy) [43].

The stratified random field sampling approach allowed for an assessment of the true positives
(accuracy rate for mapping PVPs), true negatives (accuracy for mapping areas without vernal pools),
as well as error rates associated with commission: false negatives (i.e., pools observed in the field but
not mapped from remote sensing) and false positives (i.e., pools mapped from remote sensing that
were not vernal pools).

2.5.2. Supervised Classification of Vernal Pools

For Phase II supervised classification, the maps were assessed for accuracy using the CVPs and
traditional remote sensing producer’s and user’s accuracy assessments on a per pixel basis. There
were a total of 23 CVPs in the NLP, 28 CVPs in the SLP study area and 35 CVPs in the WUP study
areas that were surveyed and used for training and validation of the SAR imagery (L- and C-band).

3. Results

3.1. SAR Blind Seasonal Change Map Results

A comparison of a subset of the PALSAR Unsupervised PVP results from the SLP to the field
sampled test cells for vernal pools (independent of remote sensing) is shown in Figure 6. The green
polygons (Figure 6) are PALSAR-derived PVPs while the blue cells show 2 acre areas that were sampled
in the field and were positive for standing water within or touching the cell, and the red cells show
areas that were negative for standing water in the field. This example shows PVPs identified by
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PALSAR seasonal change detection for 5 of the 7 blue (positive standing water) cells and no false
alarms in the three red cells. A full statistical analysis of the unsupervised PALSAR seasonal change
products for the entire SLP and NLP study areas based on the random field sampling strategy provided
a rigorous statistical analysis.
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Figure 6. Green polygons are PALSAR-derived potential vernal pools in the Pinckney Recreation Area
of the Southeastern Lower Peninsula study area. Red Cells are 2 acre field checked areas without
water presence and blue Cells are those with water presence. Cells were chosen for field sampling
independent of remote sensing.

A total of 268 test cells that were sampled in the SLP and NLP study areas (i.e., 100 test cells in the
SLP, 168 test cells in the NLP) were used in the accuracy assessment of unsupervised SAR seasonal
change for detecting PVPs. These results indicate that unsupervised PALSAR seasonal change has
an overall detection accuracy of 62% in the SLP and 48% in the NLP (Table 2). The accuracy rate for
unsupervised PALSAR seasonal change correctly identifying test cells with vernal pools in the field
(i.e., true positives) was fairly low at 34% overall across the SLP and NLP study areas. However, the
accuracy rate for correctly identifying test cells that did not contain vernal pools in the field (i.e., true
negatives) was much higher at 81% overall across the two study areas. The false positive errors were
51% in the SLP and 77% in the NLP. There are two types of false positives, the ones that are not a
waterbody and the ones that are a waterbody but not a vernal pool. Of the 33 test cells in the SLP that
were false positives, 21 cells contained other wetlands/waterbodies that were not vernal pools, and
12 test cells contained no water and were dry. For the NLP, there were 72 test cells that were false
positives and only 9 of these contained other wetlands/waterbodies that were not vernal pools. The
other 62 test cells contained no water and were dry, and 1 test cell was inconclusive (sampled in the
fall only).

The combined commission error rate for identifying and mapping vernal pools using
unsupervised (blind) PALSAR seasonal change data was 66% across the SLP and NLP study areas
(Table 2). The overall false negative error rate (Table 2) for identifying and mapping non-vernal pools
(NVP) was 19% across the two study areas. False negatives error ranged from only 14% in the SLP
study area to 22% in the NLP study area (Table 2).
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Table 2. Accuracy tables for the seasonal change unsupervised PALSAR PVP maps for southeastern
Lower Peninsula (SLP, top) andnortheastern Lower Peninsula (NLP, bottom). Categories are Potential
Vernal Pool (PVP) and Non-Vernal Pool (NVP). Numbers represent field sampled test cells.

Random
Stratified Field

Sampling

Unsupervised PALSAR PVP Map—SLP

PVP NVP Sum Omission Error Producer
Accuracy

PVP 32 5 37 14% 86%
NVP 33 30 63 53% 47%
Sum 65 35 100

Commission Error False positives 51% False negatives 14% Overall Accuracy 62%
User Accuracy True positives 49% True negatives 86%

Random
Stratified Field

Sampling

Unsupervised PALSAR PVP Map—NLP

PVP NVP Sum Omission
Error

Producer
Accuracy

PVP 22 16 38 42% 58%
NVP 72 58 130 55% 45%
Sum 94 74 168

Commission Error False positives 77% False negatives 22% Overall Accuracy 48%
User Accuracy True positives 23% True negatives 78%

3.2. Supervised Classifications of SAR, LiDAR, and DEM Datasets

The spring and summer PALSAR backscatter images and Seasonal Change images, or LiDAR
intensity data and USGS 10 m DEM TPI and Isolated Depressions products were used in Random
Forests supervised classifications. Examples of these layers are shown in Figure 7 with an aerial image
for reference and CVPs are shown as yellow dots. Review of these layers demonstrates that while
any one product alone would not likely produce a robust PVP map, the fusion of data sources should
allow for an improved map. These layers are of the same area shown in map outputs of Figure 8.
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Figure 7. Examples of input data layers to Random Forests Classifier including Spring and Summer
PALSAR L-HH backscatter, LiDAR intensity, USGS 10 m DEM Topographic Position Index (TPI) and
Isolated Depressions products, with 2014 NAIP aerial photography for reference at Pinckney Recreation
Area of southeastern Lower Peninsula (SLP) study area. Not shown is the Spring-Summer PALSAR
change image. Yellow points show field verified vernal pool locations.
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Figure 8. Comparison of the LiDAR and DEM potential vernal pool map ((a) pink polygons, Table 3) to
SAR and DEM-generated potential vernal pool map ((b) orange polygons, Table 4). Red outlines show
potential pools from air photos, and green dots are field verified locations of vernal pools. Numbers in
tables represent pixels. These images are a subset of the larger area mapped.

Table 3. LiDAR Intensity and USGS DEM derivatives (TPI and isolated depressions) southeastern
Lower Peninsula (SLP) Accuracy Assessment for potential vernal pools (PVPs) based on the Random
Forests Classifier. Values represent number of pixels in each class. CE—Commission Error; UA—User’s
Accuracy; OE—Omission Error; and PA—Producer’s Accuracy.

Supervised
Class

Field Truthed Values

Other PVP Sum CE UA

Other 198 120 318 38% 62%
PVP 12 75 87 14% 86%
Sum 210 195 405
OE 6% 62% Total Accuracy = 67%
PA 94% 39%

Table 4. PALSAR and USGS DEM derivatives (TPI and isolated depressions) southeastern Lower
Peninsula (SLP) Accuracy Assessment for potential vernal pools (PVPs) based on the Random Forests
Classifier. Values represent number of pixels in each class. CE—Commission Error; UA—User’s
Accuracy; OE—Omission Error; and PA—Producer’s Accuracy.

Supervised
Class

Field Truthed Values

Other PVP Sum CE UA

Other 202 19 221 9% 91%
PVP 11 182 193 6% 94%
Sum 213 201 414
OE 5% 10% Total Accuracy = 93%
PA 94% 39%

3.2.1. Comparison of Classification of Vernal Pools with PALSAR and 10 m DEM vs. LiDAR and 10 m
DEM Data

The classification of LiDAR intensity and DEM derivative products (Figure 8a and Table 3) had
39% Producer’s accuracy (62% omission error) and 86% User’s accuracy (14% commission error),
while the PALSAR and DEM classification (Figure 8b and Table 4) had 91% Producer’s accuracy (9%
omission error) and 94% User’s accuracy (6% commission error). Although many of the areas are
similar between the 2 products, notice the missed areas in the southwest corner of the LiDAR-DEM
product (Figure 8a), which are captured in the SAR-DEM product (Figure 8b). The red outlines show
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PVPs mapped with aerial photograph interpretation and CVPs as yellow points [22]. Note how in
many cases the red polygons are smaller than the area mapped by PALSAR in the right image of
Figure 8. This could be due to year to year variability in extent of inundation, since the SAR was
collected in a different year than the aerial imagery or it could be overestimation by SAR. A few of the
aerial photography interpreted PVPs are not captured with the PALSAR or the LiDAR.

3.2.2. Application of SAR & 10 m DEM Methodology to NLP Study Site

Since the approach of using SAR and the derived 10 m DEM products had high accuracy for
the SLP study region, the methods were applied to the NLP study area to determine robustness
and transferability of the approach to another study site with different vegetation, topography and
climate. The results are shown in Figure 9, with the blue polygons showing PVPs and the accuracy
assessment in Table 5. CVPs are shown as green dots (Figure 9). Note that not all pools identified by
the PALSAR-DEM methodology have been field visited.
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PALSAR data collection is critical for detection of the inundation condition versus the “dry” condition. The 
available PALSAR data for the WUP study area were less than ideal. Due to its more northerly location, 
spring onset is typically later than the early April image date that was available from PALSAR FBS. Timely 
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Figure 9. PALSAR potential vernal pool (PVP) map of northeastern Lower Peninsula (NLP) study
area with leaf-on color infrared background image from April 1998. Accuracy assessment is next to
the image with numbers representing number of pixels correctly or incorrectly identified based on
validation training polygons.

Table 5. Northeastern Lower Peninsula (NLP) Accuracy Assessment for potential vernal pools
(PVPs) based on the Random Forests Classifier with PALSAR and USGS DEM derivatives
(Topographic Position Index and isolated depressions). Values represent number of pixels in each class.
CE—Commission Error; UA—User’s Accuracy; OE-Omission Error; and PA—Producer’s Accuracy.

Supervised
Class

Field Truthed Values

Other PVP Sum CE UA

Other 216 35 251 14% 86%
PVP 3 172 175 2% 98%
Sum 219 207 426
OE 1% 17% Total Accuracy = 91%
PA 94% 39%



Remote Sens. 2016, 8, 490 15 of 21

3.2.3. Application of SAR & 10 m DEM Methodology to WUP Study Area

While the PALSAR and 10 m DEM method proved to be successful in the SLP and NLP study
areas, we were unable to create a PVP map for the WUP study area due to lack of suitable data. The
timing of the PALSAR data collection is critical for detection of the inundation condition versus the
“dry” condition. The available PALSAR data for the WUP study area were less than ideal. Due to its
more northerly location, spring onset is typically later than the early April image date that was available
from PALSAR FBS. Timely SAR data collected after snowmelt and during vernal pool inundation is
critical to the mapping process. The approach developed for the NLP and SLP sites should prove
useful for PVP detection where suitable data are available throughout the Great Lakes region.

3.2.4. C-Band Preliminary Evaluation

For the Pinckney Recreation Area of the SLP study area, spring C-band radar data collected in
April 2014 were ideal for capturing the inundation condition before full leaf flush (Figure 10). Of the six
CVPs within the example area shown in Figure 10, four were partially detected with Radarsat-2. One
of the undetected CVPs was not covered by a tree canopy but had a large opening in the surrounding
forest. For such an open area, the double bounce (strong SAR return) characteristic of inundated trees
would not occur. In comparison to the PALSAR PVP map of this similar area (Figure 8) and the CVP
boundaries (Figure 10), the C-band sensor appears to only pick up partial pools (yellow polygons).
However, the image collection years were different between the PALSAR and Radarsat-2, so if one year
was drier or imagery was collected later in the season this possibly could account for these differences.
However, it is likely that the shorter wavelength of C-band is simply not picking up the entire pool
due to penetration limitations.
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Figure 10. Areas exhibiting high backscatter appear bright in the Radarsat-2 image from 25 April (a)
while appearing darker in the image collected on 29 July (b); Field verified vernal pools are outlined
in blue; (c) shows the Radarsat-2 Seasonal Change product (yellow) overlaid with air photo mapped
PVPs (blue) and isolated depressions outlined in red.

The Radarsat-2 images for the WUP study area did not exhibit enough variability between the
spring and summer data collected for field sampled vernal pools to be detected. The vernal pools
of the WUP were quite small and the spring imagery was collected on 31 May 2014, which was past
leaf flush.
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4. Discussion

It has long been known that inundation beneath a forest canopy could be detected with L band
HH-polarization SAR data [44] and in some cases with C-HH imagery [26,45,46] through enhanced
backscatter returns. However, detection of seasonal inundation in small isolated wetlands, such as
vernal pools, which can sometimes be only 15 m across, was uncertain with an 8–10 m resolution SAR.
Detection beneath a forest canopy requires not only careful timing of the seasonal imagery, but also
high spatial resolution and 10 m resolution may be near the limit for a SAR for this application due
to speckle.

The phase I study demonstrated the utility of L-band HH polarization 10 m resolution data for
detection of cryptic vernal pools in two study areas (NLP and SLP) with overall accuracy of 48% and
62%, respectively. The SAR PVP products were compared to stratified random field sampling cells of
the study areas which allowed for a fairly robust accuracy assessment of errors in seasonal SAR PVP
detection. However, due to the large size of the test cells in relation to the small size of vernal pools,
our validation may be biased with inflated true positives. For example, the SAR seasonal change could
map a PVP polygon in the 1.0 ha cell in a different location than the field verified vernal pool, but
with the large test cell size it would be marked a true positive. At the same time, due to the ephemeral
nature of vernal pools, the mismatch of year and season of imagery to year and season of field sampling
could also be biasing our results; thus, the number of true negatives could be overestimated.

True positives were higher at the SLP study area (49%) than the NLP study area (23%). This may
be due to the timing of the imagery at each site in relation to the hydroperiod status. It may also be due
to differences in vegetation structure and physiography. Average water depths were similar between
the SLP and NLP (~45 cm) at the time of field sampling. However, timing of the satellite imagery was
not necessarily at the peak water depth for each of the study areas. It is also interesting that more of
the false positives of SLP (63%) were water bodies that were not CVPs than for the NLP (13%). The
causes of these differences are in need of further investigation. However, one of the features that we
have found to cause false positives is the existence of structures (homes, barns, etc.) beneath a tree
canopy. Such man-made structures may cause some double bounce scattering in spring with wet soil
conditions and lower return in summer when the soil is dry. The exact nature of the false positives
needs further investigation with coincident SAR and field collection.

Due to the low false negative rates at both study areas (22% and 14%), SAR was deemed suitable
for narrowing down the search in detecting otherwise cryptic vernal pools. Even though this was higher
than the false negative error for aerial photograph interpretation (7%; [23]), the cost-effectiveness of SAR
makes it appropriate. When the location of vernal pools is largely unknown, some method to narrow
down the areas to conduct further detection through field surveys or aerial photography is desirable
since the latter two methods can be a formidable task. While the phase I analysis did not provide an
assessment of discrete delineation of PVP boundaries, the phase II supervised classification did.

In phase II, supervised classification of the PALSAR data with derived DEM products (91%–93%
overall accuracy) was implemented to improve the detection and mapping of vernal pool boundaries.
Using multiple sources of imagery or ancillary information allows cross checks on the variables that
define a vernal pool, thus improving map accuracy. The PALSAR RF classification that included 10 m
DEM-derived isolated depressions and TPI products was demonstrated as superior to LiDAR intensity
data with the same DEM products (34% overall accuracy) for detection and mapping of vernal pools in
this study. Although the spring LiDAR intensity image alone (Figure 6) appears to well delineate the
vernal pools, it produces many false alarms, and when combined with the DEM product misses some
CVPs (Figure 7). Combining the spring LiDAR intensity data with the PALSAR may be a viable option.

As more LiDAR data become available for the state of Michigan, pursuing LiDAR DEM data
for vernal pool mapping in combination with L-band SAR would likely improve mapping capability
even further. Wu et al. [24] described an accurate method of using LiDAR-derived DEMs with color
orthoimagery and hydrography data to identify vernal pools in Massachusetts. Their approach to
using the LiDAR-derived DEMs avoided the issues of surface complexity recognized for this study,
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and further exploration could improve the accuracy of vernal pool detection in Michigan where LiDAR
data are available. Additionally, Faccio et al [25] presented another LiDAR-based method used to
map vernal pools in Vermont and New Jersey. Their method takes advantage of LiDAR intensity
data, as well as other ancillary datasets, to detect vernal pools with an Object Based Image Analysis
(OBIA) approach.

Although L-band is theoretically and practically better suited to detection of inundation beneath
a forested canopy, C-band data from Radarsat-2 were preliminarily evaluated in this study. Previous
work has shown 5.7 cm C-band data from Radarsat-1 as useful for detection of inundation beneath a
forest canopy in Roanoke riparian wetlands [45,47]. Although the spring and summer C-Band SAR
data were useful for detection of seasonal differences in flooding in vernal pools in the SLP, they
were not able to detect sufficient variability in backscatter to detect PVPs in the WUP study area. The
resolution of the USGS DEM may be too coarse to detect isolated depressions in the WUP. At the time
of the WUP spring Radarsat-2 image collection, there was standing water in the vernal pools, but the
leaves had fully flushed, which may be limiting the ability of the C-band SAR wavelength to reach
the ground. The pools in WUP were also much smaller than in Pinckney and the canopy cover was
more coniferous. This then leads to questions about the dry (summer) C-band SAR collections, and if
leaves limit the penetration capability, then the methodology of differencing of spring and summer
data would be of question. Leaf flush had just begun when the Pinckney spring image was collected,
which may explain why it was possible to detect vernal pools there with the Spring–Summer seasonal
difference image. The fact that the pools detected are smaller than those field-verified and mapped
from aerial photograph interpretation or PALSAR may be due to more closed canopy conditions in
the summer. Further investigation into the forest structural differences between these vernal pool
locations is needed before conclusions may be drawn, but early spring collections before leaf-flush
appear to have potential for detection of PVPs with C-band data, however L-band is better suited.

The only SAR sensors available for mapping at L-band at the time of this article were ALOS
PALSAR (2006–2011) and ALOS-2 PALSAR-2 (2013-present). The availability of PALSAR-2 is more
limited in comparison to the predecessor satellite, ALOS PALSAR. While PALSAR was available for
minimal to no cost through the Alaska Satellite Facility (AFS) for North America, PALSAR-2 is available
only through JAXA [48] at high cost. Looking to the future, Argentina plans to launch an L-band
satellite, SAOCOM, in 2017 and NASA is planning a mission with ISPRA called NISAR. This latter
satellite has a mission plan that includes downloading and storing all data collected every 2 weeks.
This will tremendously improve timely data collection of “wet” vs. “dry” vernal pool conditions over
the past satellites that downlinked and saved only some of the data due to recorder and downlink
station limitations. For those pools that were missed with the seasonal change approach because they
were not wet in the particular spring imagery that was available or they were still wet on the image
collection date that was used as the “dry” condition, having continuous data every 2 weeks will greatly
improve detection capability, but also allow for determination of hydroperiod.

5. Conclusions

The research presented has demonstrated the utility of high resolution L-band SAR for detection of
potential vernal pools through a seasonal change approach to detect the seasonal hydrological change
(inundated to non-inundated) that defines a vernal pool. Using an unsupervised SAR seasonal change
approach allows for the area of PVP locations to be reduced dramatically with low false negatives
of vernal pools, but high false positives and true negatives (Table 2). This may be a useful quick,
cost-effective approach to narrow down a region to those areas of high likelihood of PVP locations
to aid in directing follow up aerial photograph interpretation and field sampling to verify the vernal
pool status. When a 10 m DEM is available, integrating that ancillary dataset with L-band SAR in
a supervised classification was shown to substantially reduce the commission and omission errors
of PVPs. Additionally, if leaf-off LiDAR or high resolution optical imagery were also integrated into
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the classification scheme with the L-band SAR, it should improve map accuracy and vernal pool
delineation even more.

The novel seasonal change SAR approach to detection and mapping of woodland vernal pools
(PVPs) provides an alternative to expensive airborne sensor data collection and with new sensors
planned for launch in the next 1–5 years is a viable approach for detection, mapping and monitoring
of PVPs. Incorporating L-band SAR and a more robust LiDAR-based topographic analysis into a
classification scheme is a promising potential next step for vernal pool mapping and detection in
Michigan. L-band data have the added advantage of detection of inundation beneath evergreen
canopies, conditions under which LiDAR and optical data have limited capability.

Due to the archival nature of much of the imagery (PALSAR and LiDAR) used in this study,
a determination of actual vernal pool extent on the ground in comparison to the supervised PVP
classified polygon results was not possible. This is generally true for the use of aerial photographs
as well, which are often accessed from as many years as possible to detect PVPs. Although the pools
change in hydroperiod and extent from year to year, and in some years may not be wet, remote sensing
provides the most viable tool to detect location of PVPs across large regions. The maps of PVPs created
from a single or multiple years of imagery provide a starting point upon which to build a database of
PVP locations. These locations then need to be confirmed in the field, checking for draw down in the
summer and species presence. Using the new L-band satellites (PALSAR-2, SAOCOM and NISAR)
with coincident field data collected in the spring when the vernal pools are inundated will allow for
determination of the capability and limitations of L-band SAR–DEM methods in delineating vernal
pool boundaries.
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